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Softening non-metallic crystals by 
inhomogeneous elasticity
P. R. Howie1, R. P. Thompson1, S. Korte-Kerzel   2 & W. J. Clegg1

High temperature structural materials must be resistant to cracking and oxidation. However, most 
oxidation resistant materials are brittle and a significant reduction in their yield stress is required if they 
are to be resistant to cracking. It is shown, using density functional theory, that if a crystal’s unit cell 
elastically deforms in an inhomogeneous manner, the yield stress is greatly reduced, consistent with 
observations in layered compounds, such as Ti3SiC2, Nb2Co7, W2B5, Ta2C and Ta4C3. The mechanism 
by which elastic inhomogeneity reduces the yield stress is explained and the effect demonstrated in 
a complex metallic alloy, even though the electronegativity differences within the unit cell are less 
than in the layered compounds. Substantial changes appear possible, suggesting this is a first step in 
developing a simple way of controlling plastic flow in non-metallic crystals, enabling materials with a 
greater oxidation resistance and hence a higher temperature capability to be used.

Surprisingly low yield stresses have been observed in some non-metallic compounds, with values as low as ~36 
MPa1 being reported in some layered compounds such as Ti3SiC2. Understanding why such easy plastic flow 
occurs in some non-metallic compounds is a starting point in learning how to control plastic flow in non-metallic 
and normally brittle materials. If this could be achieved, compounds that are more resistant to oxidation could be 
used. As oxidation often limits the maximum use temperature of a material, this would enable the development of 
materials that can operate at higher temperatures than are currently possible. In metallic glasses plastic flow has 
been associated with a variation in the elastic modulus with position in the crystal, though it was thought that this 
could not occur in crystals, nor was there any explanation of the effect2.

We begin by considering crystalline Ti3SiC2, which may be thought of as being composed of M–X and M–A 
layers, where M is Ti, A is Si and X is C. Calculations have shown that in these layered structures there is a ten-
dency for electron density in the M–A bond to be drawn toward the M–X layer3–5. This might also be expected 
simply by considering the relative average electronegativities of the two layers6. Other layered structures, Nb2Co7

7, 

8, W2B5
9, Ta4C3

10 also show anomalously low yield stresses, albeit on a single slip-plane, suggesting that such an 
effect might be more general. Calculations by density functional theory predict that a layered electronic struc-
ture should form in Ti0.5Mo0.5N and Ti0.5W0.5N11, 12, the effect increasing as the valence electron concentration 
increased. Furthermore, calculations of the macroscopic elastic constants suggested an increase in the ease of 
plastic deformation, inferred from a decrease in the value of G/B, where G is the shear modulus and B is the bulk 
modulus, a criterion for plastic deformation first introduced by Pugh13.

Plastic deformation in crystals.  Plastic deformation in crystals generally occurs by the movement of line 
defects, known as dislocations14–17. These can be formed, for instance, by inserting an extra half-plane of atoms 
into a crystal, an edge dislocation, that moves on a given plane and in a given crystal direction. Alternatively a 
sheared region can be incorporated, so that lattice points are transformed into a helix, a screw dislocation18. The 
incorporation of this half-plane or sheared region gives rise to a misfit energy localized in a small region. In most 
brittle crystals, and even in some metals, e.g. Fe at low temperatures, it is these changes in the misfit energy, as 
the dislocation moves, that are the predominant obstacle to dislocation motion19. These arise from the atoms in 
the crystal lattice being displaced from their equilibrium positions, so this effect is known as the lattice resistance.

There are two components to the changes in misfit energy as an edge dislocation moves. Those associated with 
the misalignments of atoms across the slip plane, misalignment energies20: These localize the misfit strains. There 
are also energies associated with the misfit strains parallel to the slip-plane, compressive in the plane above the 
slip-plane and tensile below it, in-plane strain energies: These act to spread the misfit strains over a larger region. 
The action of these two terms, one tending to localize the misfit strains, the other tending to spread them, gives 
rise to an energy minimum, which defines the atom configuration and hence the width of this locally strained 
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region, known as the dislocation width, w0. This was first quantified by Peierls21, who showed that the stress 
required to move a dislocation in this way, known as the Peierls stress, τP, and often given as a fraction of the shear 
modulus G, was dependent on the exponential of the dislocation width, w0: a wider localised region enabling a 
dislocation to move more easily. The Peierls stress is also dependent on the atom spacing normal to the crystal 
plane on which slip occurs, d, to that parallel to it, b21, with the stress required for dislocation motion through 
the crystal lattice, in the absence of thermal activation, varying exponentially with the ratio of d/b22, Fig. 1. The 
sensitivity of this dependence means that making small changes could have a substantial effect on the magnitude 
of the lattice resistance.

Previous work on modifying the lattice resistance by doping in halides23 and in compound semiconductors24 
either hardened the material or produced only a relatively small effect. Increasing toughness requires that the 
stress required for a dislocation to move must be substantially reduced. In this case we wish to decrease the energy 
associated with the misalignments across the slip plane, which act to reduce the dislocation width, w0. These ener-
gies scale with the shear modulus. Softening requires an increase in the dislocation width and a decrease in these 
energies, which can be achieved by decreasing, relative to that in adjacent layers.

The nature of elastic deformation.  We therefore start by considering elastic deformation. The shear mod-
uli of the M–X and M–A layers, GM–X and GM–A respectively, were calculated using density functional theory. The 
shear modulus of the M–X layer was always greater than that of the M–A layer, suggesting that the unit cell might 
undergo a non-uniform elastic strain. Such non-uniform strains have been suggested in the tetrahedrally-bonded 
compound semiconductors25–27.

The electronegativity difference, Δχ, between the layers is equal to

χ χ χ∆ = −- - (1)M X M A

where χΜ–Χ is the arithmetic mean of the electronegativities of M and X, as there are equal numbers of M and X 
atoms in the M–X layer. Similarly for χM–A, as there are also equal numbers of M and A atoms in the M–A layer. 
The Mulliken scale of electronegativity was used here28. If the electronegativity of the M–X layer were greater 
than that of the M–A layer, electron density would tend to be drawn toward the M–X layer. This occurs where the 
M–A layers contain elements such as In, Si, Ga or Al. However, if the M–A layer contains S, the electronegativity 
difference between the layers is much smaller, so that one would expect changes in electron density to be less 
marked, Fig. 2a.

Figure 1.  Change in predicted values of τP/G with d/b for some layered compounds compared with 
experimental values for other materials. The lines show the variation in the predicted values of the lattice 
resistance at 0 K (Peierls stress), using the approach described in the Methods, for the movement of a screw 
dislocation and edge dislocations where the material has a Poisson ratio of 0.2 and 0.3 respectively. This 
is compared with values for some selected materials. Also shown are the predicted values of the Peierls 
stress, divided by G, for different layered compounds. Note that the Peierls stress for the layered compounds 
decreases with d/b more rapidly than predicted by the Peierls analysis, suggesting the occurrence of some 
extra effect. Filled circles denote layered compounds with 211 stoichiometries, e.g. Ti2SC, open triangles 312 
stoichiometries, e.g. Ti3SiC2 and open squares 413 stoichiometries, e.g. Ti4AlN3. The named compounds above 
show the values of the Peierls stress obtained from the literature.
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The shear modulus of layered structures.  These changes in shear modulus were also reflected in changes 
to the length of the M–A bond, with the bond length increasing as the electronegativity difference between the 
layers increased, Fig. 2b, and electron density was drawn from the M–A bond.

The difference in elastic constants of the two layers suggests that the overall shear modulus of the unit cell of 
a crystal might be considered as two slabs: an approach commonly used to describe the elastic properties of elas-
tically inhomogeneous composite materials29. Making the assumption that the stresses are the same in two slabs 
bonded together, the value of the composite shear modulus Gslab is given by29
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where fM–X and fM–A are the volume fractions of the M–X and M–A layers respectively. The values were obtained 
from the unit cell of each compound30. The value of fM–X = 4z1, z1 being the fractional height of the M1 atom in 
the unit cell and fM–A = 1−4z1 for a compound with a 211 stoichiometry, e.g. Ti2AlC, Fig. S1. For 312 and 413 
stoichiometries, e.g. Ti3SiC2 and Ti4AlN3, fM–A = 4z2 and fM–X = 1−4z2, where z2 is the fractional height of the M2 
site in the unit cell, Fig. S1.

Figure 2.  The variation in shear modulus with the electronegativity difference, Δχ, between the M–X and 
M–A layers. (a) Note the increasing value of G with increasing Δχ, due to the tendency for electron density 
to be withdrawn from the M–A layer. (b) The variation in the length of the M–A bond with the difference in 
electronegativity of the M–A and M–X layers. Where electrons are drawn out of the M–A layer, at higher values 
of Δχ, the M–A bond length also increases.

http://S1
http://S1
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Despite the simplicity of the approach, the slab model predicts the shear modulus of the layered structure from 
that of the components surprisingly well, Fig. 3a, giving good agreement between the calculated values using the slab 
model, obtained from Equation (2), and the calculated values of the relaxed shear modulus. This is also consistent 
with calculations elsewhere of the bulk modulus31. This supports the idea that the unit cell of such a layered crystal 
elastically deforms in a non-uniform fashion, Fig. 3b, with the more compliant parts of the unit cell deforming more 
than the stiffer ones, consistent with the apparent scatter in elastic properties that has been observed5.

As a result, the calculated value of the relaxed shear modulus is strongly influenced by the modulus of the 
more compliant M–A layer. This follows from the equal-stress assumption in the slab model29. It is the influence 
of this more compliant layer and the composite nature of the modulus on the atomic scale that has given rise to 
the difficulties in correlating the overall elastic properties with features such as the electronic structure5.

The next question is whether such non-uniform elastic deformation can influence the stress required for the 
movement of dislocations. The Peierls stress is calculated using the program Peierls Calculator, together with 
values of the variables given in Table S1 in the supplementary material. While thermal activation will modify 
the exact values measured, it is found that the predicted Peierls stress varies over two orders of magnitude, from 
(4.07 × 10–3) G for Ti2SC to (1.29 × 10–5) G for Zr2InC, Fig. 1. In terms of absolute stresses, this ranges from 
~1 MPa for Zr2InC to ~690 MPa for Ti2SC. This range in Peierls stress corresponds approximately with that for 
copper, a tough metal, at the lower end, whereas at the higher end they are similar to those for TiC and TiN, 
materials used for their high hardness, Fig. 1. A large variation is therefore possible, suggesting that the approach 
might be a useful one.

Discussion
It is suggested here that the changes in Peierls stress arise due to changes in electron density brought about by 
differences in electronegativity between the adjacent layers within the unit cell, giving rise both to non-uniform 
elastic deformation of the unit cell and changes in d/b. Incorporating these effects into a modified Peierls model 
to allow for the non-uniform elastic deformation predicts that the rate at which τP/G decreases with d/b is greater 
than predicted by the conventional analysis, where the elastic deformation within a unit cell is uniform. This indi-
cates the existence of some extra effect. Figure 4a shows that the magnitude of the Peierls stress decreases as the 
electronegativity difference between the M–X and M–A layers increases. This can be understood in the following 
way. Where the electronegativity difference between the layers causes a shift of electron density, from the M–A 
layer to the M–X layer, the shear modulus of the M–A layer decreases with respect to that of the M–X layer. As the 
misfit energies scale with the shear modulus, this reduces the misalignment energies with respect to the in-plane 
strain energies. This reduction enables the dislocation width to increase, so that the dislocation moves at a lower 
applied stress, Fig. 4b. No threshold is apparent, unless it is less than 0.02 (Table S1 Supplementary Information), 
which is most likely within any error, both in the calculation of the dislocation widths and even the electroneg-
ativities. Furthermore, one might expect this withdrawal to be a continuous function of the electronegativity so 
that a threshold would not be anticipated, consistent with the continuous change observed in Fig. 4b.

Conversely, where the electronegativity difference between the M–X and M–A layers is small, that is where 
the M–A layers contain S, there is little change in electron density, giving rise to a higher Peierls stress caused by a 
smaller dislocation width, Fig. 4c. Unfortunately, experimental comparisons are difficult, as there are no low temper-
ature measurements of the yield stress to compare with the predicted values of the Peierls stress. However, the yield 
stress at room temperature, in large grains, has been determined to be ~36 MPa, not far from the 26 MPa predicted 
here and well within the error of the Peierls calculation21. Some micropillar deformation studies do exist32. However, 
there is a difficulty in that in such materials one might expect size effects to be important33. This is consistent with 
measured strengths of the order of 1 GPa, much greater than the values measured in larger samples1.

This approach is also consistent with the observation that Ta2C has a lower flow stress34 than Ta4C3. Here 
double layers of Ta atoms lie between layers of TaC, so that one would expect a similar effect to occur as described 
above. The idea of electronegativity differences within the unit cell giving rise to a low yield stress in layered com-
pounds can also be extended to other layered structures, such as Nb2Co7, W2B5 and Ta4C3, Supplementary Fig. S2.

Demonstration in a cubic Ti2Ni-type structure.  To demonstrate this effect we have measured the hard-
ness in a Ti2Ni crystal structure, Supplementary Fig. S3. The cubic Ti2Ni structure can be described as ABC stack-
ing of 111 planes, each of which consists of two physically distinct layers, a mixed layer consisting of Ti and Ni 
sites in the ratio 8:9 and a layer made up entirely of Ti sites. Changing the elements occupying these sites leads to 
a change in the electronegativity of these two layers. The details are given in the Materials and Methods. A cubic 
structure is required here so that there are sufficient slip systems that the indent can be accommodated without 
leading to substantial elastic stresses35. However, the range of electronegativity difference, ~0.38–0.44 eV, Fig. 4d, 
is smaller than in the layered compounds, where the range is 0.02–1.59 eV but even so a decrease in hardness of 
2 GPa was observed as electrons are withdrawn from the (111) slip plane.

Summary.  In summary, we have shown that the low yield stresses observed in some crystals are associated 
with electronegativity differences within their unit cells, giving rise to changes of electron density and hence of 
local stiffness in different parts of the unit cell. This reduces the magnitude of the energy terms that localize the 
region of misfit around a dislocation, allowing the width to increase and enabling the dislocation to move more 
easily. These ideas are consistent with what is observed in other easily deformed crystals. Importantly, they enable 
a very wide range of behaviour to be obtained. This suggests that using controlled electronegativity differences 
in crystals offers a first step in a general route to being able to greatly increase the toughness of non-metallic 
materials.

http://S1
http://S1
http://S2
http://S3
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Methods and Materials
A number of layered compounds were chosen so that there was a range of electronegativity differences between 
the M–X and M–A layers, table S1, so that the effects of electron density being drawn toward the M–X layer could 

Figure 3.  (a) Comparing the predictions of a slab model, using the calculated shear moduli and thickness 
fractions for the individual M–X and M–A layers with the overall relaxed shear moduli predicted. Filled circles 
denote phases with 211 stoichiometries, e.g. Ti2SC, open triangles 312 stoichiometries, e.g. Ti3SiC2 and open 
squares 413 stoichiometries, e.g. Ti4AlN3. The good agreement between the two suggests that such layered 
compounds elastically deform in a non-uniform way with the more compliant M–A layers deforming more 
than the stiffer M–X layers, as shown schematically in (b).
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Figure 4.  The influence of the electronegativity difference between the M–A and M–X layers on the Peierls 
stress as a fraction of the shear modulus. (a) Note that as the electronegativity difference increases, electron 
density is drawn from the M–A layer, and the Peierls stress decreases. (b) Variation of the dislocation width, 
wo/b, with the ratio of the shear moduli in the M–A and M–X layers. Note that these are greater than the values 
obtained in a material that deforms uniformly. (c) The change in estimated dislocation width, wo/b, with the 
electronegativity difference between the the M–A and M–X layers. Note the width increases as Δχ increases 
and electrons are drawn from from the M–A layer. Filled circles denote phases with 211 stoichiometries, e.g. 
Ti2SC, open triangles 312 stoichiometries, e.g. Ti3SiC2 and open squares 413 stoichiometries, e.g. Ti4AlN3. (d) 
Shows the effect of a smaller electronegativity difference, relative to the compounds considered above, on the 
hardness of a complex metallic alloy with the cubic Ti2Ni stucture, with the compositions: Ti2Ni, Ti2Co, Hf2Co, 
Ti2(Co, Ni), (Hf,Ti)2Ni.
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be investigated. Compounds selected for study were chosen from those which have already been synthesised 
experimentally, according to Fig. 4 of Aryal et al.5. Sixth-row elements were avoided due to difficulties associ-
ated with producing pseudopotentials containing occupied f states. Where possible, families of compounds were 
selected so that the effect of changing the M atom, changing the A atom or moving from 211 to 312 or 413 struc-
tures could be studied. Of particular interest were compounds containing sulphur, which is the sufficiently more 
electronegative than most A elements that the M–A layer is more electronegative than the M–X layer.

The model used is similar to that described previously36, except that the minimum energy configuration is 
calculated for each step. This causes the changes in misalignment energy to be greater than those associated with 
the in-plane energies.

To use the Peierls analysis, the generalised stacking fault energy surface, or γ surface is required37. This 
replaces the original assumption made by Frenkel38 in calculating the ideal shear strength of a material that the 
restoring force varies sinusoidally between atoms. In order to insert the γ surface into the Peierls model, it must 
be represented as a mathematical function. The function chosen is

∑γ π
=







−




ϕ 






=

C m
b

1 cos 2
(3)m

M

m
1

where ϕ is the displacement and the Cm are coefficients adjusted to fit the DFT results. In most cases, three terms 
were sufficient. This function can be put into the Program Peierls Calculator to estimate the Peierls energy, Peierls 
stress and dislocation width at the rest position.

This was calculated by displacing two halves of the crystal relative to each other, taking the slip vector as 
⟨ ¯ ⟩a/3 1120  13. Periodic boundary conditions were used and the simulation cell contained two opposing slip planes. 

Atoms were allowed to relax in the two directions perpendicular to the slip direction but not in the slip direction 
itself, otherwise the system would simply return to its equilibrium state. What is being calculated here is the 
Peierls stress, that is the lattice resistance at 0 K. This will give an upper bound to the yield stress, if it is assumed 
that other effects are minimal. In this paper, the aim is to see what effects might cause a sudden decrease in the 
magnitude of the lattice resistance.

The energies associated with misalignments across the slip plane, misalignment energies, were determined 
using DFT, rather than using the Frenkel assumption38. These were then fitted to give a variation in the misalign-
ment energy for each atom pair. The slip vector was taken as ⟨ ¯ ⟩a/3 1120 13.

Density functional theory (DFT) calculations were carried out using SIESTA, a pseudopotential-based LCAO 
code39, 40. To allow for the possibility of interactions between orbitals of different energies on different elements, 
semicore pseudopotentials with partial core corrections in the Perdew-Burke-Ernzerhof (PBE) formulation41, 42 
were generated and tested for transferability using the Troullier-Martins procedure43, as implemented in SIESTA’s 
ATOM code40. A double-ζ, polarised basis set, additionally including the semicore states, was used; cutoff radii of 
the basis functions were optimised using a variational simplex method.

For each compound, initial lattice parameters and atom positions were taken from literature, with experimen-
tal values preferred where available30. The simulation cell was the conventional P63/mmc unit cell, with periodic 
boundary conditions applied in all three directions. The a parameter, c/a ratio and the z heights of those layers 
unconstrained by symmetry were all refined. Where atom positions were relaxed, this was by molecular dynam-
ics, using a conjugate gradient relaxation scheme.

The shear moduli were calculated by calculating the energy of the cell under an imposed strain. This was car-
ried out under three different conditions.

	 1.	 With atoms on the symmetrical planes at z = 0 and 0.5 fixed but all other atom positions free to relax, 
giving the relaxed shear modulus, Grel’xd.

	 2.	 With the relative positions of the atoms in the M–X layers fixed, so that the shear distortion is concentrated 
about the A atoms, giving the shear modulus of the M–X layer, GM–X.

	 3.	 With the relative positions of the A atoms and the first M layers adjacent to them fixed, so that the shear 
distortion is concentrated in the M–A layers, giving the shear modulus of the M–X layer, GM–A.

In all cases, the maximum shear strain applied was 2% in the layers, which were free to distort.
Data for the ionization energies and electron affinities are taken from the CRC Handbook of Chemistry 

and Physics44, 45.

Data availability.  The input data used is given in the Supplementary Table S1.
A detailed list is given with the Supplementary Materials and includes the input data used, the programs 

used to estimate the Peierls stress, structures of various soft crystals and a sample of the input data for the DFT 
calculations.
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