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INTRODUCTION

A Brief History of Neurosurgical Oncology
Modern neurosurgical treatment of brain tumors involves maximal safe resection of tumorous
tissue whilst preserving adjacent normal neurovascular anatomy in order to minimize the risk of
neurological injury to the patient (Sunaert, 2006). A surgical series of 8 patients performed by
renowned Johns Hopkins neurosurgeon Dr. Walter Edward Dandy, published in 1933, involved
surgical removal of the right cerebral hemisphere with preservation of the right basal ganglia, in
right-handed patients who presented with left-sided paralysis due to their right hemispheric
tumors (Dandy, 1933). This pioneering report demonstrated the invasiveness of malignant brain
tumors despite heroic surgical efforts, as patients inevitably succumbed to residual disease in the
preserved basal ganglia, with invasion into the opposite hemisphere, emphasizing both the need
for better visualization of tumor cells within the brain during surgery and the necessity for
adjuvant chemotherapy and radiation therapy to treat residual tumor burden. Further
pioneering work throughout the past century by other neurosurgical greats including: Drs.
Harvey Cushing, William Halsted, Fedor Krause, Victor Horsley, Wilder Penfield, Gazi Yaşargil,
Rolando Del Maestro, and others, paved the way for the advent of cortical brain mapping
techniques, use of the operating microscope, and stereotactic surgery—all of which are now
common tools in the neurosurgeon’s armamentarium to enable safe surgical resection of brain
tumors (exquisitely reviewed in “A History of Neuro-Oncology,” by Dr. Rolando Del Maestro)
(Del Maestro, 2006).

Further pioneering work published in 1916 by Dr. Dandy and his then senior neurosurgery
resident, Dr. George J. Heuer, reported the localization of brain tumors in one hundred
consecutive patients using x-ray roentgenography (Heuer and Dandy, 1916). This was
followed by a series of studies by Dr. Dandy in which he injected air, and later, contrast
agents, into the ventricular and lumbar subarachnoid spaces to diagnosis and localize brain and
spinal tumors using x-rays (Dandy, 1918; Dandy, 1919). The herculean efforts of renowned
neurologist Dr. Egas Antonio Ceatano de Moniz and neurosurgeon Dr. Pedro Almeida Lima in
Lisbon, Portugal, in developing the technique of cerebral angiography for the localization and
visualization of the blood supply of brain tumors, led to Dr. Lima’s documentation of over 2000
angiograms in 1949, paving the way for the indispensable use of cerebral angiography in modern
day neurosurgery for the diagnosis and treatment of brain tumors and the coiling of cerebral
aneurysms (Moniz, 1927; Del Maestro, 2006).
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Intraoperative Image-Guided Technology in
Neurosurgical Oncology
The use of intravenous fluorescein tagged with radioactive 131iodine
to differentiate tumor tissue from normal brain under ultraviolet
(UV) light by Dr. George EugeneMoore in 1947 at the University of
Minnesota was one of the first reports of exploiting the inherent
leakiness of the blood-brain barrier (BBB) around brain tumors to
allow for the extravasation of a radioactive fluorophore to enhance
visualization of brain tumors. This landmark discovery paved the
way for the introduction of radioactive nucleotides such as
18
fluorodeoxyglucose for use with computed tomography (CT)

and positron emission tomography (PET) to localize
metabolically active tumor cells in the brain. However, it was the
advent of nuclear magnetic resonance (NMR) by Professors Felix
Block from Stanford University and Edward Purcell from Harvard,
for which they were awarded the Nobel Prize in Physics in 1952, that
led to the introduction of magnetic resonance imaging (MRI)
scanners, which has since revolutionized our ability to visualize
with stunning resolution the neurovascular anatomy of the brain and
spinal cord. Since then, adaptations such as functional MRI (fMRI)
(Ogawa et al., 1990; Kwong et al., 1992) and diffusion tensor imaging
(DTI) (O’Donnell and Westin, 2011; Alexander et al., 2007) have
allowed for the neurosurgeon to superimpose multiple layers of
imaging information on top of contrast agent enhanced MRI
sequences to allow for rendering of the spatial characteristics of
brain tumors in eloquent regions of the brain (using fMRI) with
respect to neighboring neuronal fiber tracts (using DTI) to achieve
maximal safe resection of brain tumors (Algethami et al., 2021).

Incorporating different image-guided technologies into the
operative neurosurgical workflow varies depending on the
modality that is used. Many neurosurgical centers now have
access to portable neuronavigation systems such as the Medtronic
StealthStation™ (Minneapolis, MN, United States) that occupy
minimal footprint in the operating room and can overlay high
resolution CT orMRI imaging with fMRI or DTI images to allow for
fixed 3D mapping of intracranial lesions for presurgical planning
Algethami et al. (2021). The disadvantage of these fixed imaging
systems is that they do not allow for real-time evaluation of intra-
operative resection margins, unlike intraoperative MRI (iMRI),
which currently provides the highest quality resolution of EoR
and assessment of changes in the brain throughout the course of
a tumor resection (Rogers et al., 2021). However, given the large
footprint required to accommodate an MRI scanner, the need for
specialized operating rooms with MRI compatible (non-
ferromagnetic) instruments that are required to allow for
positioning of the patient in and out of the scanner whilst
providing adequate surgical access throughout the course of the
operation, and the high costs associated with purchasing and
installation of the MRI scanner and the MRI compatible
instruments, the use of iMRI is currently limited to specialized
neurosurgical centers that can afford this technology (Mislow et al.,
2009; Chicoine et al., 2011).

Despite the improvements in preoperative imaging planning
workflow, the surgeon is often times limited in their ability to
differentiate tumor tissue from adjacent normal neuroanatomy
under direct white light microscopy. This is particularly

challenging during resection of infiltrative tumors such as
high-grade gliomas, the most common and aggressive primary
brain tumor in adults. To overcome this limitation, fluorescence-
guided surgery (FGS) using tumor-targeting fluorophores have
steadily been introduced into the neurosurgeon’s
armamentarium (Vahrmeijer et al., 2013). The FDA-approved
protoporphryin IX prometabolite 5-aminolevulenic acid (5-ALA)
has yielded promising results in increasing the EoR for high-
grade gliomas (Stummer et al., 2006; Della Puppa et al., 2014a;
Belloch et al., 2014), but has shown no clear benefit in lower-grade
disease where tumor cells are less metabolically active, thereby
decreasing the levels of intraoperative fluorescence to allow for
maximal safe EoR (Mirza et al., 2022). Furthermore, the need to
orally administer 5-ALA to the patient 2.5–3 h prior to induction
of anesthesia followed by strict avoidance of direct exposure to
sunlight or bright room lights for 24 h after 5-ALA
administration due to increased skin photosensitivity (Tonn
and Stummer, 2008) and the relative high cost of 5-ALA, have
limited its widespread use. Alternatively, the FDA-approved
fluorescent dye sodium fluorescein, which has been widely
used and tested for safety in the field of ophthalmology, is
inexpensive, can be administered intravenously at the time of
surgery, and relies on the leakiness of the surrounding BBB to
accumulate at the site of high grade brain tumors (Acerbi et al.,
2014; Cavallo et al., 2018). Unlike 5-ALA, fluorescein does not
depend on the metabolic activity of tumor cells and could lead to
false-positive identification of non-tumorous cells surrounding
the leaky BBB, however several studies comparing fluorescein-
guided to white light resections have demonstrated a high level of
accuracy in identification of tumor tissues (Kuroiwa et al., 1998;
Kuroiwa et al., 1999; Acerbi et al., 2013; Acerbi et al., 2014). The
much lower cost of fluorescein and its safety profile supported by
the ophthalmologic literature have increased its prevalence for
use in neurosurgical procedures (Kwiterovich et al., 1991; Kwan
et al., 2006). Disadvantages of 5-ALA and sodium fluorescein are
that while both fluorophores can clearly demarcate tumor
boundaries, they lack depth of tissue penetration with laser
excitation in their respective wavelengths and their signal can
be masked by endogenous cellular autofluorescence (Acerbi et al.,
2014; Mirza et al., 2022). More recently, the FDA-approved near-
infrared fluorophore indocyanine green (ICG), traditionally used
in angiography procedures, has gained popularity in FGS. Like
fluorescein, ICG also accumulates at the tumor site through leaky
BBB vasculature but has also been shown to achieve endocytosis
inside tumor cells (Onda et al., 2016), whereas fluorescein does
not, allowing for higher sensitivity of detection of tumor cells
during surgery which correlates well with gadolinium contrast-
enhancing tumor signal on preoperative MRI (Lee et al., 2016).

Evidence for Using Intraoperative Imaging
Technology to Maximize Extent of
Resection to Improve Survival Outcomes in
Neurosurgical Oncology
Successful outcomes in neurosurgical oncology is increasingly
being defined by the EoR to achieve a gross total resection (GTR)
or maximal safe cytoreduction (Rogers et al., 2021). Several
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studies have reported the EoR as the single most significant
variable for impacting survival in patients with newly
diagnosed or recurrent high grade gliomas (HGG) (Lacroix
et al., 2001; Sanai et al., 2011; Oppenlander et al., 2014).
Similarly, a GTR or maximal safe EoR were associated with
significantly longer progression free survival (PFS) and overall
survival (OS) in patients with low grade gliomas compared to
performing a biopsy alone (Roelz et al., 2016; Scherer et al., 2020).

Studies comparing across image-guided surgical modalities
demonstrated that iMRI was superior over both 5-ALA FGS and
conventional neuronavigation approaches in obtaining GTRs and
led to prolonged survival (Knauth et al., 1999; Bohinski et al.,
2001; Senft et al., 2011; Golub et al., 2020). A recent Cochrane
Database network meta-analysis comparing image-guided
technologies to maximize EoR for resection of gliomas yielded
a paucity of high level evidence supporting the use of iMRI or 5-
ALA in achieving maximal EoR with heavily biased results and
inconclusive evidence regarding improvements in PFS and OS
(Fountain et al., 2021). Furthermore, a brief cost benefit analysis
suggested that image-guided surgery, iMRI, and 5-ALA FGS in
particular, are associated with increased costs compared to
conventional surgical resections, and therefore further research
and randomized controlled trials will be needed in order to
determine whether these modalities should be offered as
standard of care for resection of brain tumors (Fountain et al.,
2021). A more recent frequentist network meta-analysis was
published identifying 23 studies with 2,643 patients comparing
5-ALA, sodium fluorescein, and iMRI, to no image guidance for
the resection of HGGs (Naik et al., 2022). This study found that
image guidance using iMRI, fluorescein, and 5-ALA led to greater
rates of GTR, improved PFS, and OS compared to no image
guidance. However, both meta-analyses confirmed that future
studies are needed to assess superiority betweenmodalities as well
as other metrics including duration of surgery while using image
guided techniques and cost.

One caveat that must be taken into consideration when
interpreting the results of the aforementioned network meta-
analysis is that the majority of studies using 5-ALA to maximize
EoR were in patients with HGGs that were located in the
supratentorial space (i.e. Frontal, parietal, occipital, and
temporal lobes of the brain) (Stummer et al., 2006). These are
regions of the brain that are relatively easy to access surgically,
and patients can generally tolerate aggressive tumor tissue
debulking without significant neurological sequelae. Thus,
conventional neurosurgical approaches are more likely to yield
EoR margins and outcomes that are comparable to image-guided
approaches. However, lesions that are located in more sensitive
regions of the brain (i.e. the brainstem, posterior fossa) may
benefit from image-guided surgery in order to better appreciate
tumor margins around brainstem nuclei and nerve fiber tracts
that control essential neurological and life-sustaining functions
while achieving maximal safe EoR (Della Puppa et al., 2014b;
Della Puppa et al., 2015; Algethami et al., 2021). In fact, the
importance of intraoperative visualization for maximal safe brain
tumor resection has been recognized by the global neurosurgical
oncology community, as evidenced by the inaugural 2021
conference on intraoperative visualization and the

connectome, organized by the prestigious Society for Neuro-
Oncology (https://www.soc-neuro-onc.org/WEB/WEB/Event_
Content/Intraoperative_Visualization_and_the_Connectome.
aspx).

The Emerging Uses of Nanoscale Materials
to Augment Fluorescence-Guided
Neurosurgery
Forging the frontiers of image-guided neurosurgery is the
emerging use of nanoscale materials for the detection and
treatment of tumor cells in neurosurgical procedures.
Nanoscale materials are self-assembling polymeric systems
measuring less than 1,000 nm in their longest axis. These
systems can be organic or inorganic in nature, and can be
functionalized with targeting moieties to facilitate delivery
across the BBB into the CNS with the ability to then deliver
payload to specific cells of interest in the brain. Nanoparticles
(NP) that have been developed for potential CNS applications
typically have a maximal diameter of ~100 nm to facilitate
trafficking across the tight junctions of the BBB. We
previously developed a liposomal NP of ~100 nm in diameter
that was functionalized with a fluorophore and transferrin to
enable transferrin receptor-mediated transcytosis across the
BBB to deliver dual combination therapies to glioma brain
tumors in mice (Lam et al., 2018). Other researchers have
developed mesoporous silica NPs, magnetic iron oxide NPs,
gold NPs, copolymers, and carbon nanotubes, for delivery of
cargo into the brain (a summary of these nanoplatforms with
accompanying references are provided in Table 1).
Functionalization of NPs with surface moieties such as
transferrin, folate, cyclic RGD peptide, or angiopep-2, that
enable trafficking across the BBB and targeting to tumor cells
in vivo can improve specificity of delivery, although the
effectiveness of receptor targeting of NPs in solid tumors
has been recently questioned (Obaid, 2021 #233). We have
provided a tabular summary of these NP formulations, specific
targeting ligands and sequences, along with potential
applications for use in neurosurgical oncology for ease of
reference for our readers (Table 1).

The versatility of a single nanoscale delivery system to be
multiplexed with detection and treatment capabilities defines
it as a theranostic (d’Angelo et al., 2019). The ability of a
theranostic to visualize tumor cells in vivo during surgery and
track cellular biodistribution and treatment response
throughout the course of adjuvant therapy, can allow for
time and cost savings while adopting a personalized
medicine approach to improve outcomes (d’Angelo et al.,
2019; Mendes et al., 2018). For example, a fluorescent-
labelled theranostic NP conjugated to a CD133 monoclonal
antibody has recently been shown to enable NIR tracking of
patient-derived glioma cancer stem cells in an orthotopic
mouse model of glioma (Jing et al., 2016). Finally, a
fluorescent-tagged monoclonal antibody targeting the
epidermal growth factor receptor (EGFR), cetuximab-
IRDye800, has recently been shown in a first-in-human trial
demonstrating the ability to identify tumor tissue in glioma
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patients in real-time under NIR FGS with high correlations to
pre-operative gadolinium-enhanced MR imaging and post-
operative histopathological staining of tissue specimens
(Miller et al., 2018), emphasizing the timeliness and
importance of discussing novel brain tumor-targeting
theranostic technologies that can potentially surpass the
sole reliance of the heterogeneously leaky BBB around high
grade tumors allowing for delivery of 5-ALA or ICG.

We previously leveraged the use of M13 bacteriophage (M13
ϕ)—highly specialized and modular nanoscale filamentous
protein particles that can be genetically tuned for
programmable assembly, chemically modified for surface
functionalization of imaging, chemical, or antigenic moieties,
for in vivo theranostic applications. These applications have
included: Tumor-targeted imaging and drug delivery (Ghosh
et al., 2012); Image-guided solid tumor resection (Yi et al.,
2012; Ghosh et al., 2014); And high contrast short-wavelength
infrared (SWIR) fluorescence imaging of vascular and lymphatic
structures (Ceppi et al., 2019; Lin et al., 2019). In this mini review
and opinion piece, we introduce proof-of-concept data
demonstrating our ability to functionalize M13 ϕ for systemic
delivery to detect glioma brain tumors using SWIR fluorescence

imaging in a patient-derived mouse model of glioma,
demonstrating the potential for the use of M13 ϕ as a brain
tumor theranostic.

RESULTS

We previously published on our expertise to generate stable rod-
like filamentous M13 ϕ with a narrow diameter of 5 nm and
length of 900 nm that can be conjugated with various NIR
fluorescent dyes or single-wall carbon nanotubes (SWCNT) to
enable SWIR imaging of ovarian tumors and lymph nodes in a
mouse model of ovarian cancer (Ghosh et al., 2012; Yi et al., 2012;
Ghosh et al., 2014; Ceppi et al., 2019). We hypothesized that the
extremely narrow diameter and high length-to-diameter aspect
ratio of the M13 ϕ would allow it passage across the tight
endothelial gap junctions of the BBB if functionalized with a
known peptide moiety with proven ability to achieve endocytosis
across the BBB with the ability to target glioma tumor cells in the
brain following systemic delivery. Several such peptides have been
identified including angiopep-2 (Liu et al., 2019), PepC7 (Li et al.,
2012), and GL1 (Ho et al., 2010), amongst others, however, there

TABLE 1 | Summary of different physicochemical and functional properties of nanoparticles with their potential clinical applications in neurosurgical oncology.

Types of nanoparticles Liposomes/polymersomes Jiang et al. (2012), Zong et al. (2014), Shi et al. (2015)
Iron oxide NP Alphandéry et al. (2015)
Silica NP Wang et al. (2015)
Gold NP Fan et al. (2014)
Quantum dots Onoshima et al. (2015)
Carbon nanotubes Wang et al. (2012), Ceppi et al. (2019)
Bacteriophage Ghosh et al. (2012), Yi et al. (2012), Staquicini et al. (2020), Wang et al. (2021)
Copolymers Ke et al. (2017)

BBB trafficking receptors, peptide sequences, and
ligands

Mannose Du et al. (2014)
Glucose Du et al. (2014)
Lactate Pérez-Escuredo et al. (2016)
Neutral amino acids Nawashiro et al. (2005), Kobayashi et al. (2008), Abbott et al. (2010), Geier et al. (2013)
Cationic amino acids Barar et al. (2016)
Anionic amino acids Smith (2000), Hawkins et al. (2006)
Oligopeptides and polypeptides Butte et al. (2014), Dardevet et al. (2015)
Transferrin Wang et al. (2009), Zhou et al. (2021)
Folate Wang et al. (2009), Zhou et al. (2021)
LRP1 Jiang et al. (2018)

Tumor targeting peptide sequences, ligands, and
receptors

RGDQin et al. (2011), Sharma et al. (2013), Zong et al. (2014), Liu et al. (2015), Shi et al. (2015), Wang et al. (2016),
Joshi et al. (2017), Ke et al. (2017), Yao et al. (2017)
NGR Sharma et al. (2017)
CGKRK Sharma et al. (2017)
Angiopep-2 Gao et al. (2014)
Chlorotoxin Veiseh et al. (2009), Wang et al. (2020)
HA Jiang et al. (2012)
CD133 Jing et al. (2016)
Folate Cho et al. (2019)
Transferrin Dixit et al. (2015)
LRP1 Jiang et al. (2018)

Potential clinical applications Drug delivery to brain tumors d’Angelo et al. (2019), Dixit et al. (2015)
Imaging of brain tumors Jing et al. (2016), Carr et al. (2018)
Photo-thermal-accoustic therapy for brain tumors Golubewa et al. (2020)
Anti-tumor gene therapy Staquicini et al. (2020)
Fluorescence-guided tumor surgery Butte et al. (2014), Cho et al. (2018), Cho et al. (2019)
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has only been one peptide to-date that has been FDA-approved
for in-human use to assist in FGS of higher grade brain
tumors—the 36 amino-acid peptide chlorotoxin (CTX),
derived from the venom of the Leiurus quinquestriatus
scorpion (Veiseh et al., 2009; Dardevet et al., 2015; Cohen-
Inbar and Zaaroor, 2016). CTX peptide and CTX conjugates
have demonstrated the ability to traverse the BBB and achieve
binding to over 80% of tumor cells in an intracranial orthotopic
model of glioma (Wang et al., 2020). To achieve functionalization
of M13 ϕ with CTX, we cloned in the 108 base pair CTX gene
sequence upstream of the phage p3 capping protein insertion site.
We hypothesized that conjugation of CTX-M13 ϕ with either the
NIR II IR1050 dye (Figure 1A, left panel, schematic) or SWCNT
(Figure 1B, left panel, schematic) to the p8 coat proteins ofM13 ϕ
would allow detection of CTX-M13 ϕ at the site of patient-
derived GBM22 brain tumors in an intracranial orthotopic
xenograft murine model of GBM using SWIR imaging.

Brightfield images of the heads of GBM22 mice show their
skulls outlined in red, their occipital boney prominence outlined
in green, and the site of intracranial GBM22 tumor induction in
the right posterior frontal lobe, outlined in black (Figures 1A,B,
right panel, brightfield images). Twenty-four hours following tail
vein injection of either IR1050-CTX-M13 or SWCNT-CTX-M13
ϕ, the heads of GBM22 mice were subjected to in vivo SWIR

imaging (Figures 1A,B, right panel, In vivo SWIR images,
respectively). Results demonstrated IR1050-CTX-M13 ϕ or
SWCNT-CTX-M13 ϕ signal localized to the right posterior
frontal lobe region corresponding to the site of GBM22 tumor
induction (Figures 1A,B, right panel, In vivo SWIR images, black
dotted circles). Background uptake of IR1050-CTX-M13 or
SWCNT-CTX-M13 phage was observed in the occipital bony
protruberance of the mice (Figures 1A,B, right panel, In vivo
SWIR images, green dotted circles, respectively). To further
confirm the uptake of CTX-M13 ϕ at the site of GBM22 brain
tumors, we removed the brains from the skulls of GBM22 mice
and performed ex vivo SWIR imaging. Ex vivo SWIR imaging
demonstrated focused IR1050-CTX-M13 or SWCNT-CTX-M13
signal at the site of GBM22 tumors (Figures 1A,B, right panel, Ex
vivo SWIR images, black dotted circles, respectively). The
elimination of signal from the bony region corresponding to
the occipital bone during ex vivo SWIR imaging confirmed the
nonspecific uptake of IR1050-CTX-M13 ϕ and SWCNT-CTX-
M13 ϕ by the occipital bone (Figures 1A,B, right panel, Ex vivo
SWIR images, green dotted circles) and the specificity of the
CTX-M13 ϕ to detect GBM22 cells in the brain (Figures 1A,B,
right panel, Ex vivo SWIR images, black dotted circles). Taken
together, our preliminary data confirms the modular nature of
M13 ϕ to be functionalized and conjugated for use in glioma

FIGURE 1 | Chlorotoxin (CTX)-functionalized M13 phage conjugated to IR1050 dye or single-wall carbon nanotubes (SWCNT) detect GBM22 human glioma
tumors using short-wavelength near infrared II (SWIR) imaging in an intracranial orthotopic xenograft model of human glioblastoma. (A) Left panel—schematic of IR1050-
CTX-M13 phage. Right panels—brightfield image of the skull of a GBM22 mouse (red dotted circle). In vivo SWIR imaging through the skull localizes IR1050-CTX-M13
phage signal at the site of a GBM22 tumor in the right frontal hemisphere (black dotted circle). Background SWIR signal caused by uptake of IR1050-CTX-M13
phage in the occipital bone (green dotted circle). Ex vivo SWIR imaging shows uptake of IR1050-CTX-M13 phage in a GBM22 tumor in the mouse brain. (B) Left
panel—schematic of SWCNT-CTX-M13 phage.Right panels—brightfield image of the skull of a GBM22mouse (red dotted circle). In vivo SWIR imaging through the skull
localizes SWCNT-CTX-M13 phage signal at the site of a GBM22 tumor (black dotted circle). Background SWIR signal caused by uptake of SWNT-CTX-M13 phage in
the occipital bone (green dotted circle). Ex vivo SWIR imaging shows uptake of SWCNT-CTX-M13 phage in a GBM22 tumor. White scale bar = 1 cm.
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tumor detection using SWIR imaging with the potential for
further development as a theranostic nanomaterial for the
treatment of gliomas.

DISCUSSION

Filamentous bacteriophage are highly stable and scalable nanoscale
materials that have been characterized for their inert effects as a
nano-carrier for the delivery of a range of vaccine-based therapies in
humans (González-Mora et al., 2020; Margot et al., 2020; Chung
et al., 2021). Like other filamentous bacteriophage systems, M13 ϕ is
genetically tunable and can be manufactured at relative low costs
with high uniformity across batches, making this nanoplatform an
ideal candidate as a theranostic delivery system. Recent studies have
demonstrated the ability of filamentous phage to achieve penetration
into the CNS space through intranasal delivery or assisted by
temporary disruption of the BBB through convection-enhanced
delivery for the treatment of neurological diseases (Carrera et al.,
2004; Wan et al., 2009; Dabrowska, 2019).

A recent study using a hybrid vector expressing an adeno-
associated virus and a single-stranded M13 phage (AAVP)
displaying a double-cyclic RGD4C motif ligand (which targets
alpha V integrin receptors expressed on the surface of tumor
vascular endothelium) with the gene sequence for the cytotoxic
protein tumor necrosis factor (RGD4C-AAVP-TNF),
demonstrated tumor killing when systemically delivered over 3
consecutive doses in an intracranial orthotopic xenograft mouse
model of U87MG human glioma (Staquicini et al., 2020). The
same study also leveraged the RGD4C-AAVP construct to
express Herpes simplex virus thymidine kinase (RGD4C-
AAVP-HSVtk) in U87MG mice followed by treatment with
gangciclovir as suicide gene therapy. Both the RGD4C-AAVP-
TNF and RGDC4C-AAVP-HSVtk constructs achieved the
intended cytotoxic and theranostic effects, respectively,
demonstrating the potential for using M13 ϕ as a theranostic
for the treatment of human gliomas and potentially other brain
tumors (Staquicini et al., 2020). Our preliminary data
demonstrating the ability of IR1050-CTX-M13 ϕ and
SWCNT-CTX-M13 ϕ to detect patient-derived GBM22 tumors
in the brains of mice using SWIR imaging (Figures 1A,B, right
panel, Ex vivo SWIR images), and our previously published
studies using NIR II conjugated-M13 ϕ expressing tumor-
targeting peptides to detect ovarian cancer tumors during real-
time surgical resection in a mouse model of ovarian cancer (Yi
et al., 2012; Ghosh et al., 2014), further enforces the potential of
usingM13 ϕ as a versatile theranostic platform for use in FGS and
multimodal treatment of a wide range of tumors, including brain
tumors.We are currently conducting further preclinical studies to
better characterize the pharmacokinetics, pharmacodynamics,
and safety of M13 ϕ in the CNS to assess the translational
potential for use in human trials (Tsedev et al., 2022).

The potential for tumor-targeting nanoscale materials to be
used in the detection and treatment of a wide range of brain
tumors can offer patients a personalized treatment path. In
particular, the recent 2021 reclassification of CNS tumors into
further molecular subtypes based on genetic modifiers and/or

diagnostic molecular pathological features (Louis et al., 2021), has
uncovered limitations in using 5-ALA FGS for Gr III glial tumors
(Mirza et al., 2022). This study compared outcomes in 69 patients
with Gr III gliomas—39 patients had 5-ALA FGS and 30 patients
had non-5-ALA FGS. Patients in the 5-ALA group had
preoperative MR imaging that demonstrated some degree of
contrast enhancement compared to those in the non-5-ALA
group. The degree of intraoperative 5-ALA fluorescence
directly correlated to the presence of contrast enhancement on
preoperative imaging. Interestingly, the degree of intraoperative
fluorescence was not associated with either 1p19q codeletion nor
IDH mutational tumor status, however, significantly more
patients with gliomas that had O-6-methylguanine-DNA
methyltransferase methylation received 5-ALA FGS. There
were no statistically significant differences in OS nor EoR
between groups, but interestingly performance status was
worse in the 5-ALA group in the immediate post-operative
and 6-month follow-up periods. Patients in the 5-ALA group
who had a GTR had significant improvements in OS compared to
patients with subtotal resections (STR), however patients who
had STRs in the non-5-ALA group had better performance scores
at 6 months compared to patients with STRs in the 5-ALA group.
This and other studies point towards a potential correlation
between molecular subtyping with 5-ALA tumor fluorescence,
and argues against the widespread use of 5-ALA FGS in these
patients. Similarly, an elegant study by Obaid and colleagues
using an NIR-II EGFR-targeting nanoliposome formulation to
study the specificity of NP delivery to EGFR-expressing glioma
cell lines in vitro, in vivo, and ex vivo, demonstrated that delivery
of nanoliposomes to the tumor site did not correlate with EGFR
expression in the three different glioma cell lines that were tested,
underrepresenting the image-derived molecular specificity by up
to 94.2% (Obaid et al., 2021). This suggests that the accumulation
of functionalized nanoliposomes (which are the most commonly
used types of NPs for clinical applications) at the sites of tumors
may be more dependent on the enhanced permeability and
retention properties of tumors rather than their specificity of
molecular targeting—something that researchers should be aware
of when using receptor-ligand biochemistry to improve a
nanoparticle’s delivery to the tissue site of interest to assist in
FSG. Finally, the ability to tailor theranostics for patients who
have subtypes of gliomas that do not respond well to FGS may
offer an alternative personalized approach to treating this
increasingly heterogeneous group of tumors.

CONCLUSION

In conclusion, the increasing use of fluorescence image-guided
tumor resection within the neurosurgical community opens an
avenue for the introduction of innovative theranostic
nanoplatforms that could further assist the tumor surgeon in
achieving intraoperative detection and maximal EoR. Whilst
future comparative studies are needed to definitively assess the
ability of FGS to achieve better patient outcomes compared to the
less costly, non-fluorescence-based navigated resection
techniques, the potential for theranostics to be applied in a
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more personalized fashion may lead to breakthroughs in treating
complex and heterogeneous brain tumors such as gliomas in
order to achieve better survival outcomes afforded by current
standard of care treatment regimens, which have largely
remained unchanged over the past several decades.
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