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ABSTRACT

In silico tools have been developed to predict vari-
ants that may have an impact on pre-mRNA splic-
ing. The major limitation of the application of these
tools to basic research and clinical practice is the
difficulty in interpreting the output. Most tools only
predict potential splice sites given a DNA sequence
without measuring splicing signal changes caused
by a variant. Another limitation is the lack of large-
scale evaluation studies of these tools. We compared
eight in silico tools on 2959 single nucleotide variants
within splicing consensus regions (scSNVs) using
receiver operating characteristic analysis. The Po-
sition Weight Matrix model and MaxEntScan outper-
formed other methods. Two ensemble learning meth-
ods, adaptive boosting and random forests, were
used to construct models that take advantage of
individual methods. Both models further improved
prediction, with outputs of directly interpretable pre-
diction scores. We applied our ensemble scores to
scSNVs from the Catalogue of Somatic Mutations
in Cancer database. Analysis showed that predicted
splice-altering scSNVs are enriched in recurrent sc-
SNVs and known cancer genes. We pre-computed
our ensemble scores for all potential scSNVs across
the human genome, providing a whole genome level
resource for identifying splice-altering scSNVs dis-
covered from large-scale sequencing studies.

INTRODUCTION

Since pre-mRNA splicing was first discovered in the 1970s
(1,2), DNA variations that disrupt normal splicing have
been linked to human genetic diseases (3,4,5). Unlike non-
synonymous mutations within coding regions that directly

alter amino acids by changing the codon, splice-altering
mutations influence the normal process of removing introns
from the pre-mRNA and rejoining the remaining exons.
This normal process is regulated by complicated mecha-
nisms that usually result in the production of different pro-
teins by exon skipping, intron retention, use of different 5′
or 3′ splice sites, etc. which is termed alternative splicing
(6). Alternative splicing is very common in human genes; it
has been estimated to occur in ∼95% of multi-exon genes
(7). The ubiquitous alternative splicing, the previous fo-
cus of the scientific community on exonic variants that di-
rectly modify protein sequences, and the fact that more than
20% of non-synonymous mutations reported in the Hu-
man Gene Mutation Database (HGMD) (8) may also affect
splicing (9,10), create challenges in identifying variants that
are causal or modifiers for human diseases due to disruption
of splicing. Additionally, widespread high-throughput next-
generation sequencing (NGS) technology is rapidly generat-
ing a large amount of data, which enables the identification
of more variants in a shorter time than ever before. For ex-
ample, a recent study sequenced the whole genome of 962
individuals and identified a total of more than 25 million
genetic variants (11). This not only provides us with oppor-
tunities to discover novel causal variants but also makes the
prioritization of these newly identified variants more chal-
lenging in view of the infeasibility of confirming each vari-
ant in vivo/in vitro.

In silico tools can take advantage of sequence information
to predict the possible effect of a variant based on specific
models on a very large scale. This approach has been used
to prioritize millions of variants (i.e. distinguish pathogenic
mutations from a large number of background variations)
and narrow down the search to a relatively small number
of variants for laboratory validation. In particular, in silico
tools for the prediction of variants affecting splicing have
been developed that take into account different aspects of
the splicing mechanism, which consist of (i) splicing sig-
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nals, including the 5′/3′ splice site and the branch point;
(ii) splicing regulatory elements, i.e. exonic/intronic splic-
ing enhancers/silencers; and (iii) the spliceosome and other
trans-acting elements that bind to cis-acting elements. Some
tools have had successful application in predicting splicing
defects. For instance, MaxEntScan, a tool that predicts the
5′/3′ splice site (12), correctly predicted three apparently
nonsense, missense or silent mutations as disrupting normal
splice sites in the ATM gene that are responsible for ataxia-
telangiectasia (13). ESEfinder, a tool that predicts exonic
splicing enhancers (ESEs) (14), has successfully predicted
the loss of a putative ESE motif in the SMN2 gene as the
cause of spinal muscular atrophy (15). These examples im-
ply that in silico tools have the potential to be utilized for
prioritization of variants that may disrupt splicing in the
NGS era.

Recently, we reviewed some of the most commonly used
in silico tools for splicing defect prediction and noted that
the major problem that prohibits the use of these tools in
research and clinical practice is the difficulty in interpret-
ing the output (16). One reason for this difficulty is that
there is no unified standard to measure how splicing sig-
nals change when one allele is substituted by another be-
cause most tools only output prediction scores for potential
splice sites given an input DNA sequence. Another reason
is the lack of large-scale studies to evaluate the predictive
performance of these tools. To make a more thorough com-
parison of existing prediction tools and provide a directly
interpretable score for splice-altering variants, we evaluated
eight in silico tools and constructed prediction models using
ensemble learning methods that take advantage of some of
these tools in order to further improve prediction. Because
the relatively conserved sequences at the two ends of an in-
tron (splicing consensus sequences) are the prominent cis-
acting elements of splicing (17) that have been the focus of
most existing tools, and single nucleotide variants (SNVs)
are the most commonly observed variants in the human
genome (18), the present study is restricted to SNVs within
splicing consensus regions (−3 to +8 at the 5′ splice site and
−12 to +2 at the 3′ splice site) defined by Burge et al. (17);
we named these variants scSNVs. We validated our models,
pre-computed our ensemble prediction scores for all poten-
tial scSNVs across the human genome and applied them to
scSNVs from the Catalogue of Somatic Mutations in Can-
cer (COSMIC) database (19).

MATERIALS AND METHODS

Data sources

Positive (i.e. splice-altering) variants were downloaded
from three databases: (i) the HGMD Professional Version
2013.1, which contains more than 13 000 mutations with
consequences for mRNA splicing (8); most (more than
8000) are located at invariant GT-AG sites (the first two
and last two sites of an intron), while the remaining sites
are mostly exonic; (ii) the SpliceDisease database, which col-
lects and curates experimentally supported data of RNA
splicing mutations and disease (20); this database integrated
2337 splicing mutation-disease entries, including 303 genes
and 370 human diseases from 898 publications; and (iii) the

Database for Aberrant Splice Sites (DBASS), which con-
tains 577 and 307 records of mutation-induced and disease-
causing aberrant 5′ and 3′ splice sites, respectively (21). Neg-
ative variants were retrieved from the 1000 Genomes Project
phase 1 data (18), which contain genomes of 1092 individ-
uals from 14 populations that can be used as controls for
comparisons with other samples. To further validate our fi-
nal models, an additional independent test set was retrieved
from the published data of Houdayer et al., in which the
impact of the variants was experimentally validated (22).

Splicing variant filtering strategy

The following strategies were used when recruiting variants
from the databases into our positive group: (i) based on
the National Center for Biotechnology Information Refer-
ence Sequence (RefSeq) database release 59 (23), we only
included variants within the splicing consensus regions (−3
to +8 at the 5′ splice site and −12 to +2 at the 3′ splice site)
at the exon/intron boundaries of protein-coding genes; (ii)
within the consensus regions, all variants at GT-AG sites
were excluded, because these sites are so invariant that al-
most all mutations that occur at these sites affect splicing
and most tools can predict their impact with very high ac-
curacy (22,24); (iii) only single nucleotide substitutions (i.e.
SNVs) were retained; (iv) variants were excluded if infor-
mation provided by the database did not contain biologi-
cal evidence (e.g. merely computational predictions or sta-
tistical associations); and (v) to avoid duplication, variants
present in more than one database were only counted once.
The first three criteria were also applied to the recruitment
of negative variants from the 1000 Genomes Project phase
1 data. Furthermore, additional filtering strategies were im-
plemented: we chose variants within genes that have only
one annotated transcript in RefSeq database release 59 (this
only applies to recruitment of negative variants) (23), and
we only chose variants with minor allele frequency >0.05
in combined populations of European ancestry. The ratio-
nale is that as individuals of European ancestry are the
most commonly studied subjects; if a common variant al-
ters splicing, it is highly likely the alternatively spliced tran-
script has been reported in this population. In contrast, a
common variant in a gene without alternative transcripts
reported is unlikely to alter splicing of that gene. For the
additional test set, we chose the variants reported in the
work of Houdayer et al. that are (i) within splicing con-
sensus regions defined above; (ii) single nucleotide substi-
tutions; and (iii) not in our dataset (22). All variants were
annotated using ANNOVAR, a software package that per-
forms functional annotation of genetic variants from high-
throughput sequencing data (25) and based on human ref-
erence sequence assembly GRCh37/hg19.

Choice of in silico prediction tools

A total of eight tools were examined because they provide
command line interface and can conduct ‘batch’ analysis,
which is easier, quicker and more convenient for the sub-
mission of a large number of variants. Among them, the
Position Weight Matrix (PWM) model (26), MaxEntScan
(MES) (12), Splice Site Prediction by Neural Network
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(NNSplice) (27), GeneSplicer (28) and Human Splicing
Finder (HSF) (29) are integrated into a commercial anno-
tation software package called Alamut (Interactive Biosoft-
ware, Rouen, France). We used its high-throughput version,
Alamut Batch, to obtain prediction scores of these five tools
simultaneously. Because NetGene2 (30), GENSCAN (31)
and SplicePredictor (32) provide their source codes, we ob-
tained their outputs separately (Supplementary Table S1).
All tools provide one prediction score for the wild-type al-
lele and one for the mutant allele of a SNV.

Score missing rate and score transformation

For each scSNV, we first obtained the prediction scores for
its wild-type and mutant alleles using all eight tools (Sup-
plementary Table S2). For negative variants, we considered
major alleles as wild-type and minor alleles as mutant. To
correctly predict the consequence of a scSNV, a tool should
be able to identify the wild-type splice site first. Because the
wild-type allele represents the true splice site and a higher
score implies a higher probability of being a true splice site,
the wild-type score for a variant should not be zero; other-
wise, the tool is not able to detect the true splice site. There-
fore, we first carried out a screening step with all eight tools
by examining their ability to predict the true splice site for
all variants in our dataset, and a score was considered miss-
ing if the score for the wild-type of a variant was zero. We
excluded tools with missing score rates >5% from our eval-
uation analysis. To compare the predictive performance of
different tools, we transformed two scores for each variant
to a single score that measures the scale of change caused
by the variant via calculation of the score difference for each
variant. The larger the difference is, the more likely the vari-
ant alters splicing. For a given tool, if the score had a range
(e.g. 0 to 100 for PWM), we calculated two score variations,
one that was relative (score difference divided by the wild-
type score) and one that was absolute (score difference di-
vided the by score range). If the score did not have a finite
range (e.g. MES score is a log-odds ratio), only a relative
score variation was calculated. For each tool, score varia-
tions were not calculated for variants whose wild-type score
was zero (i.e. missing). These variants were discarded from
the evaluation analysis for this individual tool.

ROC analysis and model construction using ensemble learn-
ing methods

We performed receiver operating characteristic (ROC) anal-
ysis (33) with 10-fold cross-validation on the seven score
variations. We defined the cutoff value as the score variation
above which the results should be considered positive. We
calculated sensitivity and specificity across the whole spec-
trum of possible cutoff values by comparing the predictive
results with the ‘true’ results for a series of cutoff values
from the minimum to the maximum and plotted all pairs
to form a ROC curve. For each score variation, we plot-
ted the ROC curve, obtained areas under the ROC curve
(AUC), and identified the optimum cutoff value that maxi-
mized accuracy in the cross-validation training set to calcu-
late the accuracy, sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) in the cor-
responding test set. All these measures were averaged from

10 cross-validation runs. We also compared AUCs of each
pair of score variations using 10-fold cross-validated paired
t-test (34). Considering that mechanisms for the identifica-
tion of 5′ and 3′ splicing signals may differ, we also divided
our dataset into variants within 5′ or 3′ splicing consensus
regions and performed the analysis separately to see if a tool
performed better for specific regions. ROC analysis was per-
formed using R version 3.1.0 (R Foundation for Statistical
Computing, Vienna, Austria). All ROC curves were drawn
using the R package ROCR (35).

Two ensemble learning methods, adaptive boosting (Ad-
aBoost) (36) and random forests (37), were used to con-
struct new models that improve the prediction. The two
R packages used were ada (38) and randomForest (39),
respectively. Training on our dataset using both ensemble
learning methods, we inputted different combinations of
parameter values to identify those that maximize the AUC.
The following settings were chosen because they performed
best for their respective conditions. For AdaBoost, we im-
plemented the ‘gentle boost’ algorithm under the ‘logistic
loss’ function while keeping other arguments at the default.
For random forests, we used all default settings. We con-
ducted ROC analysis as described above to evaluate the
new models. To further improve the predictive performance,
two conservation scores (phyloP46way placental and phy-
loP46way primate (40)) and two whole-genome functional
prediction scores (CADD raw and CADD phred (41)) were
added to both models because they had a score missing rate
<0.05 for all sites within splicing consensus regions on each
chromosome (data not shown). These scores were obtained
separately (Supplementary Table S1). When training new
models with 11 scores, we ran the same process except for
replacing the ‘gentle boost’ algorithm with the ‘real boost’
algorithm in AdaBoost. For all ensemble methods, we also
assessed the relative importance of each individual score,
which was measured by the frequency of a score selected for
boosting for AdaBoost and the mean decrease in accuracy
for random forests.

Validation and application

After the best models were identified, they were retrained
using all variants in our dataset. To further validate our
models, we obtained our ensemble scores for all variants in
the additional test set and used the optimum cutoff value
identified in the ROC analysis (0.6) to calculate the sensi-
tivity, specificity and accuracy. We also used the retrained
models to compute ensemble prediction scores for all po-
tential scSNVs across the human genome annotated by ei-
ther RefSeq database release 62 (23) or Ensembl database
release 73 (42).

We applied our scores to the COSMIC dataset (19),
which curates comprehensive information on somatic mu-
tations in human cancer. As of its v68 release, 1 627 878
mutations were documented from 981 720 tumor samples
within 25 660 genes, of which 522 genes are known to be in-
volved in cancer promotion (Cancer Gene Census) (43). We
first identified all scSNVs in COSMIC and obtained our en-
semble prediction scores. Then, we tested whether predicted
splice-altering scSNVs were enriched in recurrent scSNVs
(measured by the number of times a variant was observed)
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and in known cancer genes using the Chi-squared test for
trend in proportions and Pearson’s Chi-squared test, respec-
tively.

RESULTS

Dataset, in silico tools and missing score rates

After filtering data according to our inclusion and exclu-
sion criteria, 1164 unique splice-altering scSNVs within 408
genes from three databases constituted our positive group,
among which 790 were from HGMD (8), 266 from the
SpliceDisease database (20) and 108 from DBASS (21). Our
negative group consisted of 1795 scSNVs within 1447 genes
from the 1000 Genomes Project phase 1 data (18). Our to-
tal sample size was 2959 (within 1804 genes), of which 1682
were within the 5′ splicing consensus region (positions −3
to +8) and 1277 were within the 3′ splicing consensus re-
gion (positions −12 to +2) (17) and 1881 were intronic and
1078 were exonic (Table 1). All variants were within the
splicing consensus regions, but outside of the GT-AG sites.
To see the complete list of these 2959 positive and negative
scSNVs, please refer to Supplementary Table S2. To com-
pare the predictive performance of PWM, MES, NNSplice,
GeneSplicer, HSF, NetGene2, GENSCAN and SplicePre-
dictor, we first examined the ability of these tools to iden-
tify wild-type splice sites for all variants in our dataset and
treated them as a missing score if the wild-type score of a
variant was zero. Due to extremely high missing score rates
(Table 2), we excluded GeneSplicer, GENSCAN, NetGene2
and SplicePredictor from further evaluation and limited our
comparison to PWM, MES, NNSplice and HSF. Because
MES score does not have a finite range (log-odds ratio), we
only calculated one score variation for MES (relative). Each
of the remaining three tools had two score variations (rel-
ative and absolute). Therefore, seven score variations were
entered into our ROC analysis.

PWM and MES have the best predictive performance among
individual tools

ROC curves are illustrated in Figure 1. For each score varia-
tion, 10 curves from the cross-validation runs were averaged
to one curve. The 10 AUCs were also averaged. Although
all score variations were maintained at a high level of over-
all performance (all AUCs > 0.9), PWM outperformed all
other tested methods, with AUCs of 0.951 (relative) and
0.946 (absolute). MES had a similar performance, with an
AUC of 0.941. HSF performed a little poorer worse, with
AUCs of 0.930 (relative) and 0.927 (absolute), followed by
NNSplice with AUCs of 0.902 (relative) and 0.910 (abso-
lute). To determine the qualitative predictive performance
for each score variation, the mean sensitivity and specificity
from 10 cross-validation runs were plotted (Figure 2). For
example, when the cutoff value for PWM (absolute) was set
to 0.06 (which maximized accuracy in the cross-validation
training set), the accuracy was 0.911, with a correspond-
ing sensitivity of 0.851 and specificity of 0.952 in the cross-
validation test set. The full list of these evaluation measures
for all score variations as well as their PPVs and NPVs are
summarized in Table 3. The P-values of the 10-fold cross-
validated paired t-test (34) for the difference in AUCs be-

tween any pair of score variations are illustrated in Figure 3.
The results for stratified analyses are consistent with those
for pooled analyses in that PWM and MES performed best,
but no improvements in AUC were observed by predictions
for any tool at either the 5′ or 3′ splice site (results are similar
or weaker and are not shown).

Models constructed using ensemble learning methods further
improve predictions and are validated on an additional test set

Using two ensemble learning methods, AdaBoost (36)
and random forests (37), we constructed new models that
take advantage of all seven score variations. Ensemble
learning methods have a better overall performance than
any individual method, with similar AUCs (AdaBoost:
0.963; random forests: 0.964) (Figure 1, Table 3). To fur-
ther improve the predictive performance, two conservation
scores (phyloP46way placental and phyloP46way primate
(40)) and two whole-genome functional prediction scores
(CADD raw and CADD phred (41)) were added to both
models. Addition of these four scores further improved both
models, with AUCs of 0.977 for AdaBoost and 0.978 for
random forests (Figure 1, Table 3), with optimum sensitivity
>0.9 and specificity >0.95, which were significant increases
compared with any other method evaluated (Figure 2, Ta-
ble 3). The P-values of the 10-fold cross-validated paired
t-test for the difference in AUCs between ensemble meth-
ods and individual methods are illustrated in Figure 3. Rel-
ative importance for each individual score is summarized in
Supplementary Table S3. All ensemble methods outputted
a probability score for each variant that reflects the confi-
dence that the variant alters splicing.

We then validated these two models (retrained using all
data instead of cross-validation training data) on an addi-
tional test set curated from a published study (22). A total of
65 variants were located within splicing consensus regions
(32 within BRCA1 and 33 within BRCA2), 56 of which were
SNVs. Due to annotation discrepancies, we obtained our
prediction scores for 54 scSNVs; nine of these were also in
our dataset. Therefore, the additional test set consisted of
45 scSNVs with experimentally validated splicing outcomes
(Supplementary Table S4). The original publication classi-
fied these variants into three classes: 1S (no effect on splic-
ing), 2S (partial effect or effect on alternative splicing) and
3S (severe effect on splicing) (22). There were only two sc-
SNVs in the 2S class that slightly changed alternative splic-
ing; because this was not the goal of our prediction, we con-
sidered them negative. Consequently, 19 scSNVs were pos-
itive and 26 were negative. Using the optimum cutoff point
of 0.6 from our evaluation analysis, all 19 positive scSNVs
were correctly predicted by AdaBoost, with six false posi-
tives, yielding a sensitivity of 1 and specificity of 0.77 (ac-
curacy = 0.87). For random forests, there was one missing
score for a negative scSNV. All 19 positive scSNVs were cor-
rectly predicted, and there were only three false positives,
yielding a sensitivity of 1 and specificity of 0.88 (accuracy
= 0.93).



13538 Nucleic Acids Research, 2014, Vol. 42, No. 22

Table 1. Summary of the dataset used in the present study

Data source 5′ 3′ Intronic Exonic Total

Positive
HGMD 725 65 2 788 790
SpliceDisease 182 84 235 31 266
DBASS 63 45 96 12 108
Subtotal 970 194 333 831 1164
Negative
1000 Genomes 712 1083 1548 247 1795
Total 1682 1277 1881 1078 2959

Table 2. Missing rates of the prediction scores for eight in silico tools

Tool No. of missing Missing rate

PWM 77 0.026
MES 82 0.028
NNSplice 68 0.023
HSF 66 0.022
GeneSplicer 563 0.190
GENSCAN 2466 0.833
NetGene2 1887 0.638
SplicePredictor 2252 0.761
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Figure 1. Averaged ROC curves for seven individual scores and four ensemble scores with 10-fold cross-validation.
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Figure 2. Plots of sensitivity and specificity for seven individual scores and four ensemble scores using cutoff values that maximize accuracy. All measures
are reported as averages based on 10-fold cross-validation.
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Table 3. Mean values of the evaluation measures for the 11 scores based on 10-fold cross-validation

Score AUC Cutoff Accuracy Sensitivity Specificity PPVa NPVb

PWM1 0.951 0.075 0.905 0.838 0.950 0.918 0.897
PWM2 0.946 0.062 0.911 0.851 0.952 0.922 0.904
MES 0.941 0.217 0.895 0.859 0.919 0.875 0.908
NNSplice1 0.902 0.146 0.827 0.787 0.854 0.782 0.860
NNSplice2 0.910 0.125 0.845 0.768 0.895 0.830 0.855
HSF1 0.930 0.044 0.885 0.825 0.925 0.879 0.889
HSF2 0.927 0.039 0.883 0.825 0.922 0.875 0.889
AdaBoost 0.963 0.708 0.924 0.881 0.952 0.923 0.925
Random forests 0.964 0.515 0.923 0.898 0.941 0.911 0.932
ada addc 0.977 0.612 0.937 0.907 0.955 0.930 0.941
rf addd 0.978 0.598 0.935 0.901 0.958 0.935 0.936

aPPV: positive predictive value.
bNPV: negative predictive value.
cada add: AdaBoost with four additional scores included.
drf add: random forests with four additional scores included.

Pre-computed ensemble prediction scores for all potential sc-
SNVs across the human genome

Using our two retrained models, we pre-computed our en-
semble scores for all potential scSNVs across the human
genome (named ‘ada score’ and ‘rf score’ for prediction
scores computed using AdaBoost and random forests, re-
spectively). Based on RefSeq database release 62 (23) and
Ensembl database release 73 (42), we curated a total of 15
679 428 potential scSNVs; 15 030 435 had prediction scores
and the remaining 4.14% were missing due to annotation
discrepancies. Because the R package ada (used to train the
AdaBoost model) (38) can handle missing values whereas
randomForest (used to train the random forests model) (39)
cannot, all 15 030 435 scSNVs had an ada score, whereas
214 616 scSNVs with missing individual scores did not have
an rf score (missing rate 1.43%). These statistics, as well as
the missing rates of the four splicing prediction scores, are
tabulated in Supplementary Table S5.

Splice-altering scSNVs are enriched in recurrent scSNVs and
in known cancer genes in COSMIC

To illustrate the application potential of our prediction
models, we investigated the distribution of predicted splice-
altering scSNVs extracted from the COSMIC database (19).
We obtained our ensemble scores for all scSNVs in COS-
MIC and considered those with either score >0.6 as splice-
altering. The number of scSNVs and the number of pre-
dicted splice-altering scSNVs that were observed once or
twice, three or four times and five or more times in COSMIC
are summarized in Table 4. It is obvious that as the num-
ber of times scSNVs were observed increases (i.e. the more
likely they were driver mutations), the proportion of pre-
dicted splice-altering scSNVs increases. The Chi-squared
test for trend in proportions showed that this trend is sig-
nificant (P = 0.0004114). We also divided these scSNVs
into two groups: one within known cancer genes (Cancer
Gene Census) (43) and the other within non-cancer genes.
The number of scSNVs and the number of predicted splice-
altering scSNVs within cancer genes or non-cancer genes
are summarized in Table 5. Approximately 79% of scSNVs
within cancer genes were predicted to be splice-altering, ver-
sus 70% within non-cancer genes. Pearson’s Chi-squared

test showed that this difference is highly significant (P <
2.2e − 16). Among the 2025 predicted splice-altering sc-
SNVs within cancer genes (Supplementary Table S6), 58 are
synonymous and 83 are intronic. Because synonymous and
intronic SNVs do not to change amino acids and therefore
might be neglected by most functional prediction tools, fur-
ther studies are needed to investigate the validity of their
probable impact on splicing and their roles in cancer patho-
genesis.

DISCUSSION

Recognizing the interpretation gap of in silico methods for
predicting splice-altering variants, the present study aimed
to (i) compare the predictive performance of some of the
currently available in silico tools; (ii) construct prediction
models that take advantage of multiple tools and provide di-
rectly interpretable scores; and (iii) provide a whole genome
level resource for identifying splice-altering scSNVs discov-
ered from large-scale sequencing studies.

Predictive performance of individual tools and models con-
structed using ensemble learning methods

Our ROC analysis showed that PWM and MES had the
largest AUCs (Figure 1, Table 3), which is in accordance
with the results of two previous studies (22,24). The two
models were initially proposed based on slightly differ-
ent definitions of splicing consensus sequences. PWM was
trained based on sequences from −3 to +6 at the 5′ splice
site and from −14 to +1 at the 3′ splice site (26); MES was
trained based on sequences from −3 to +6 at the 5′ splice site
and from −20 to +3 at the 3′ splice site (12). The sequences
used to train both methods have a large overlap with the
consensus sequences used in the present study (−3 to +8 at
the 5′ splice site and −12 to +2 at the 3′ splice site). There-
fore, it is not surprising to see that they performed better
than other methods. Although all the tools we compared
were developed for prediction of both 5′ and 3′ splice sites,
we explored the possibility that tools may perform differ-
ently for these two sites and better than the overall predic-
tion. Unfortunately, we observed similar or weaker perfor-
mance compared with the pooled analysis. One possible rea-
son is that these methods indeed perform equally well (or
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Table 4. Trend for the distribution of predicted splice-altering scSNVs in COSMIC

No. of times observed No. of scSNVs No. of predicted splice-altering scSNVs Proportion

1 or 2 41 455 29 322 0.707
3 or 4 299 222 0.742
5 or more 129 109 0.845

Table 5. Distribution of predicted splice-altering scSNVs within cancer/non-cancer genes in COSMIC

Gene No. of scSNVs No. of predicted splice-altering scSNVs Proportion

Cancer 2566 2025 0.789
Non-cancer 39 317 27 628 0.703

poorly) for both 5′ and 3′ splice sites. Another possible ex-
planation is that we simply did not have a sufficiently large
sample size to observe differences (especially for the 3′ splice
site because there are relatively few cases compared with
controls in our dataset). Although the predictive perfor-
mances of PWM and MES were already at a high level, our
models still significantly improved predictions by more than
2% in terms of AUC values (Figures 1 and 3, Table 3), in-
dicating that ensemble learning methods have the ability to
take advantage of different aspects of splicing implemented
by different individual tools. The two ensemble learning
methods showed different patterns in the relative impor-
tance of each individual score (Supplementary Table S3).
The frequencies of all individual scores for both AdaBoost
models were ∼0.1, indicating that all scores contributed al-
most equally. By contrast, MES was more important than
other tools for the model constructed using random forests
without additional scores. When adding the four additional
scores, phyloP46way placental shared the most important
individual scores with MES. The differences in relative im-
portance in the two ensemble learning methods reflect their
distinct algorithms used for training.

To further validate our two best models, we made use
of experimentally validated scSNVs from a previous study
(22). Both models achieved 100% sensitivity. Random
forests had higher specificity than AdaBoost (0.88 versus
0.77), but it might suffered from missing scores. To maxi-
mize favorable factors while minimizing unfavorable ones
for both scores, we took into account both scores when pre-
dicting a variant. Conservatively, we considered a variant to
be positive (i.e. splice-altering) only if both scores exceeded
the optimum cutoff value of 0.6. This resulted in only three
false positives, yielding 100% sensitivity and 88.5% speci-
ficity (accuracy = 93.3%). Validation of our models on an
independent test set further confirmed their power in pre-
dicting splice-altering scSNVs.

Application of ensemble prediction scores to scSNVs in the
human genome and in COSMIC

Both ensemble scores computed using AdaBoost and ran-
dom forests are the probabilities of a variant being splice-
altering. Note that as a probability, the score is not a re-
flection of the effect size (e.g. how damaging the variant
is), but rather the confidence that it alters splicing. When
applying our models to the human genome and data from
COSMIC, we defined a variant to be splice-altering if ei-
ther its ada score or rf score was larger than 0.6, the opti-

mum cutoff point identified in our evaluation analysis. For
exploratory purposes, one can choose a lower cutoff point
(e.g. 0.5) to increase sensitivity at the expense of specificity.

One goal of cancer genetics is to distinguish driver mu-
tations from many background mutations that are causal
for the cancer. Recurrent mutations in cancer are consid-
ered more likely to be driver mutations; thus, detecting re-
current mutations in cancer is an important way to iden-
tify cancer driver mutations. Because it has been well doc-
umented that splice-altering mutations can contribute to
cancer pathogenesis (44), it is natural to infer that recur-
rent scSNVs in cancer can be thought of as candidate can-
cer driver mutations by affecting normal splicing (45,46).
The COSMIC database provides the frequency with which
a variant was observed in cancer sequencing studies. Thus,
if our models performed well, we expected that predicted
splice-altering scSNVs should be enriched in recurrent sc-
SNVs. The proportions of predicted splice-altering scSNVs
clearly demonstrated a statistically significant trend (Ta-
ble 4). Cancer genes were identified because their mutations
had been causally implicated in cancer (43). Another infer-
ence we made is that the proportion of splice-altering sc-
SNVs should be larger in cancer genes than in non-cancer
genes. We tested whether our models could correctly pre-
dict this difference, and the result was highly significant (Ta-
ble 5).

Synonymous mutations have long been considered func-
tionally irrelevant to diseases because they do not alter
amino acids. As a result, most functional prediction tools
take little account of such mutations. However, recent anal-
ysis by Supek et al. showed that synonymous mutations can
be oncogenic by affecting splicing (e.g. recurrent synony-
mous mutations in the TP53 gene can inactivate adjacent
splice sites) (47). This emphasized the importance of syn-
onymous mutations, especially those in the vicinity of splice
sites, in altering mRNA splicing in cancer. We identified 58
synonymous scSNVs from cancer genes that are predicted
to be splice-altering using our prediction models (Supple-
mentary Table S6). These may be used as candidates for
further validation. Interestingly, one synonymous scSNV in
the TP53 gene (a C to T single nucleotide substitution at
position 7576853 on chromosome 17) was predicted to be
splice-altering with high confidence (both ensemble scores
are nearly 1), which is in accordance with the finding of Su-
pek et al.
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Strengths

To the best of our knowledge, the current study is by far
the largest evaluation analysis of in silico tools for splicing
defect prediction. The largest previous study that was con-
ducted by Desmet et al., which only included 623 variants
(24) and was subject to more random errors. We collected
almost 3000 variants so that the power of our study was
significantly increased. The variants in our analysis span
more than 1800 genes, resulting in a more universal anal-
ysis. Consequently, our comparison and models based on
these variants should not be gene specific and should be
generalizable to the whole genome. Prior to ROC analysis,
we created a criterion for determining the missing rate of
prediction scores to pre-screen tools to ensure that those
that entered our evaluation analysis were at least able to
predict the true splice site. Using ROC analysis with cross-
validation, we evaluated both the quantitative (measured by
AUC) and the qualitative (measured by accuracy, sensitiv-
ity, specificity, etc.) predictions of these tools, which pro-
vided a complete picture of their performance. Our two best
models were constructed using AdaBoost and random for-
est and significantly outperformed all other individual tools
we evaluated in both quantitative and qualitative predic-
tions. This gave us the opportunity to calculate a directly
interpretable score. As a probability, our ensemble predic-
tion score is straightforward to interpret: it is a ‘per substitu-
tion’ instead of a ‘per nucleotide’ score (which existing tools
output), and the value of the score is a probability so that
one can directly determine the likelihood a variant is splice-
altering. We validated our scores on an independent test set
and the COSMIC dataset. Both results indicated that the
predictions are satisfactory. A recently developed new tool,
MutPred Splice (48), outputs a probability score similar to
that described for the present study, but only for exonic vari-
ants and its performance on our dataset (exonic subset) was
not satisfactory (AUC = 0.715, data not shown). Further-
more, we pre-computed our ensemble scores for all poten-
tial scSNVs across the human genome, which should signif-
icantly facilitate their use in future research, especially for
large-scale sequencing-based studies. We have incorporated
the two scores as well as their corresponding annotation in-
formation as an attached database called dbscSNV into db-
NSFP. dbNSFP is a database for functional prediction and
annotation of non-synonymous and splice-altering SNVs
(49,50). Both dbscSNV and dbNSFP are freely download-
able at https://sites.google.com/site/jpopgen/dbNSFP.

Limitations and future directions

Despite the advantages discussed above, several limitations
of the present study merit discussion. Because we attempted
to recruit as many deleterious splice-altering variants as
possible, it was infeasible to validate every single one in
a wet lab. To minimize misclassification, we implemented
stringent quality control during the filtration step. However,
it was still likely that a small proportion of variants were
false positives. As the scientific literature grows, there will be
an increase in confirmed pathogenic splice-altering variants
available for use. Another limitation is that controlling for
potential confounding effects of alternative splicing on in

silico predictions remains a major problem for selecting neg-
ative variants because alternative splicing is so wide spread
(7). Although we have chosen variants from well-studied
populations and restricted our analysis to genes with only
one annotated transcript, there are still many more exam-
ples of which we are unaware. A possible solution is to take
advantage of the ability of whole transcriptome shotgun se-
quencing (RNA-seq) to detect alternative splicing (51,52)
to recruit variants that do not cause any alternative splic-
ing. Several attempts have been made to integrate RNA-seq
data into in silico tools in order to improve predictions (e.g.
SpliceFinder (53) and Veridical (54)). Although their reli-
ability and ease of use require further evaluation, integra-
tion of multi-information into one single tool has become a
trend.

Our dataset was limited to SNVs because they are the
most common type of genetic variants observed. We also
restricted our analysis to variants within splicing consen-
sus regions, considering that variants that are close to the
splice sites are more likely to affect splicing. Future work
may extend to deeper intronic/exonic variants, as well as
other types of variants such as insertions and deletions. In
the present study, we did not distinguish different outcomes
of splice-altering variants (e.g. exon skipping, intron reten-
tion and cryptic splice site) due to lack of information. As a
result, we can only provide an overall prediction for a vari-
ant (splice-altering or not). Future efforts should be made
for more specific outcomes to make the prediction more in-
formative. We compared eight in silico tools with the pri-
mary goal of predicting 5′/3′ splice sites. Other cis-acting
elements of splicing, such as branch points and ESEs, were
not considered. Because a splicing event is the result of the
interaction between many cis-acting and trans-acting splic-
ing elements and a single tool cannot take all these ele-
ments into account, these tools can only be used as a means
of screening and filtration, and wet lab validation will al-
ways be the gold standard (55,56). A possible way to im-
prove predictions is to include prediction algorithms that
take into account other aspects of splicing (e.g. LaSSO (57)
for branch point prediction and RESCUE-ESE (58) and
ESEfinder (14) for ESE prediction).

An implicit assumption when interpreting prediction
scores is that the mutation has occurred in isolation while
other factors remain normal, although the reality is not that
simple (e.g. other nearby mutations that modify the sec-
ondary structure of DNA may counteract the impact of the
mutation of interest). It is challenging to investigate such
multiple anomalies in a general way because they often oc-
cur case by case. To avoid over-interpretation of the predic-
tion score for a single mutation, one should always put it
into the context of its local environment (including cis- and
trans-acting splicing elements) and make judgments com-
prehensively. As always, the predicted findings should be
validated in a wet lab, if possible.

CONCLUSIONS

In summary, our results support previous findings that
PWM and MES have the best performance in predicting
splice-altering scSNVs. We constructed new models that
further improved prediction accuracy. Application of our

https://sites.google.com/site/jpopgen/dbNSFP
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models to the COSMIC dataset indicated the importance of
splice-altering scSNVs in cancer pathogenesis. The present
study also provided a resource of directly interpretable pre-
diction scores with very high accuracy for all potential sc-
SNVs across the human genome, which will significantly fa-
cilitate splicing defect prediction and detection in both basic
and clinical research, thus contributing to the discovery of
new targets for gene therapy and newborn screening.
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