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and their combinations [2]. Additionally, some scoring 
systems have been proposed to evaluate patient prog-
nosis [3–6]. In recent decades, the rapid development 
of ICIs has significantly improved the clinical outcomes 
and prognosis of several tumor types [7, 8], especially 
in patients with microsatellite instability-high (MSI-H) 
or mismatch repair deficiency (dMMR) solid tumors [9, 
10]. However, the use of a single ICIs, in the treatment 
of primary and secondary liver cancer has shown dis-
appointing results [11, 12]. Understanding the mecha-
nisms behind immunotherapy resistance in patients 
with liver cancer remains an urgent challenge. Notably, 
locoregional therapies in the liver, such as radiotherapy, 
ablation, chemoembolization, and radioembolization, 
are widely applied in hepatocellular carcinoma (HCC) 
patients. Moreover, ICIs combined with locoregional 
therapies play a crucial role in the treatment of various 
malignancies [13–15]. Currently, several combinatorial 
approaches of locoregional therapies and ICIs are being 
developed or have been published for HCC patients 

Introduction
Liver metastasis originates from primary malignancies in 
other parts of the body, including melanoma, breast can-
cer (BC), non-small cell lung cancer (NSCLC), pancreatic 
cancer, and, more commonly, colorectal cancer (CRC). 
Epidemiologically, approximately 50% of individuals 
with various types of cancer are diagnosed with or will 
develop liver metastases [1]. Various treatment options 
have been explored, including surgery, systemic therapy, 
locoregional therapies, liver transplantation techniques, 
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Abstract
Immune checkpoint inhibitors (ICIs) have achieved remarkable success in clinical research and practice. Notably, 
liver metastasis is not sensitive to ICIs. Liver locoregional therapies can cause irreversible damage to tumor cells 
and release tumor antigens, thereby providing a rationale for immunotherapy treatments in liver metastasis. The 
combination therapy of ICIs with locoregional therapies is a promising option for patients with liver metastasis. 
Preclinical studies have demonstrated that combining ICIs with locoregional therapies produces a significantly 
synergistic anti-tumor effect. However, the current evidence for the efficacy of ICIs combined with locoregional 
therapies remains insufficient. Therefore, we review the literature on the mechanisms of locoregional therapies in 
treating liver metastasis and the clinical research progress of their combination with ICIs.
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worldwide, detailing these treatments in the existing lit-
erature [16]. However, systematic reviews of immuno-
therapy combined with locoregional therapies in liver 
metastases are lacking. Therefore, this article describes 
the underlying mechanisms of liver-induced resistance 
and the effects of locoregional therapies on the immune 
microenvironment of liver metastases. Furthermore, we 
review clinical literature on the use of immunotherapy 
combined with locoregional therapies for the manage-
ment of liver metastases.

Mechanism of immune tolerance in liver metastasis
Role of intrinsic properties in liver
The liver has a unique anatomical structure and dis-
tinctive physiological functions [17]. The blood sup-
ply of the human liver is extremely rich, with a flow of 
1500 to 2000  ml per minute, originating from both the 
hepatic artery (systemic circulation) and the portal vein 
(gastrointestinal tract). The portal vein carries massive 
innocuous nutrients, commensal bacterial antigens, and 
pathogen products, to which the liver’s immune system 
must maintain tolerance. Anatomically, the liver has a 
hexagonal lobular structure with fenestrated capillar-
ies, allowing circulating immune cells to directly con-
tact hepatocytes. In 1969, Calne and co-workers first 
described the unique induction of immunological toler-
ance in the liver through a series of experiments. They 

confirmed that liver allografts mismatched with major 
histocompatibility complex (MHC) antigens could be 
successfully performed [18]. Subsequently, a series of 
studies on this phenomenon were conducted. Avail-
able research suggests that the potential mechanisms of 
hepatic immune tolerance may be closely related to the 
unique immune microenvironment in the liver (Fig. 1).

Liver tissue mainly consists of parenchymal cells (hepa-
tocytes) and nonparenchymal cells, including hepatic 
stellate cells (HSCs), Kupffer cells (KCs), liver sinusoi-
dal endothelial cells (LSECs), and antigen-presenting 
cells (APCs). Due to the presence of these liver-resident 
cells, allospecific T cells in the liver are either tolerized 
or deleted. In vitro models show that LSECs can cross-
present ovalbumin, a mammalian protein with strong 
immunogenicity, to naive CD8 T cells, stimulating them 
but predisposing them to CD8 T cell tolerance through 
the initiation of a tolerogenic cytokine program [19]. 
Located on the inner surface of the hepatic sinusoids, 
KCs induce apoptosis of T cells through TNF-receptor 
(TNF-R) and Fas-ligand (Fas-L), both of which are cas-
pase-3 mediated signals [20]. Similar to other APCs in 
the liver, HSC-presented antigens can suppress T-cell 
immune response through the PD-1/PD-L1 pathway 
and produce tolerogenic mediators, such as transform-
ing growth factor-β (TGF-β) and interleukin-6/10 (IL-
6/10) [21]. Additionally, LSECs, KCs, and HSCs produce 

Fig. 1 The tolerogenic immunity of the liver is achieved through an immunosuppressive network of multiple cell types. Liver tissue mainly consists of 
hepatocytes and NPCs, among which NPCs mainly include HSCs, KCs, LSECs and APCs. These immune cells have immune tolerance mechanisms that 
induce T cell apoptosis and promote the production of Tregs. Abbreviations NPC nonparenchymal cell; HSC hepatic stellate cell; KC kupffer cell; LSEC liver 
sinusoidal endothelial cell; APC antigen-presenting cells; DC dendritic cell; TAM tumor-associated macrophage; M1 TAM M1-type tumor-associated macro-
phage; M2 TAM M2-type tumor-associated macrophage; MDSC myeloid-derived suppressor cell; Treg regulatory T cell; NKC natural killer cell
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IL-10 and TGF-β, promoting the polarization of regula-
tory T cells (Tregs) and suppressing T cell functions [1, 
22, 23]. Moreover, natural killer cells induce Treg cells 
through NKG2A interaction with hepatocytes [24]. Den-
dritic cells (DCs) promote the generation of Tregs and 
T helper 2 cells by secreting high levels of IL-10 in the 
liver [25]. Notably, high levels of IL-10 suppress antigen 
presentation by professional APCs [26], resulting in the 
accumulation of type-1-like regulatory (Tr1) cells [27] 
and regulatory CD4 + T cells [28, 29]. Additionally, liver 
parenchymal cells can make direct contact with T cells 
due to the fenestrated capillaries within the liver. Hepato-
cyte-activated T cells can result in premature T-cell death 
and tolerance in the absence of co-stimulation [30–32]. 
These data cumulatively indicate that the liver’s tolero-
genic immunity is achieved through an immunosuppres-
sive network of multiple cell types.

Liver metastasis environment
Immune cells
Tumor-associated macrophage (TAMs) originating 
from blood monocytes, are recruited into liver metasta-
ses by pro-inflammatory cytokines such as CCL2, CCL5, 
and CCL9 [33]. Blocking the CCL2/CCR2 pathway can 
decrease macrophage infiltration, thereby reducing the 
liver metastatic burden in CRC [34]. TAMs can be divided 
into M1 and M2 phenotypes based on distinct activa-
tion pathways. M1-type TAMs play a role in anti-tumor 
effects by producing factors such as NO and TNF-α, 
while M2-type TAMs mainly promote tumor growth by 
producing IL-6 and growth factors such as vascular endo-
thelial growth factor (VEGF) [35, 36]. In mice with liver 
metastases, metastatic lesions can polarize monocyte-
derived macrophages into mature CD11b + F4/80 + mac-
rophages [37], facilitating angiogenesis by releasing VEGF 
and TGF-β [38, 39]. Additionally, CD8 + cytotoxic T cells 
are well-known critical effectors in the immune response 
against cancer [40]. Tumeh et al. observed a decreased den-
sity of CD8 + T cells in the periphery of aggressive tumors 
in biopsy samples from patients with liver metastases com-
pared to those without liver metastases [7]. Unfortunately, 
immunotherapy relies on the function and state of tumor-
infiltrating effector CD8 + T cells. In preclinical models, 
activated antigen-specific CD8 + T cells siphoned by liver 
metastases from systemic circulation undergo apoptosis 
after interacting with CD11b + F4/80 + monocyte-derived 
macrophages via the Fas/Fas-L signal transduction path-
way, contributing to the systemic absence of CD8 + T cells 
and the formation of an “immune desert” [41]. Peranzoni 
et al. hypothesized that TAMs can limit CD8 + T cell entry 
into tumor nests in lung squamous-cell carcinomas and 
tested this hypothesis in mouse tumor models using the 
colony-stimulating factor-1 receptor inhibitor (CSF-1RI) 
PLX3397 [42]. Similar to what was reported by Peranzoni 

and colleagues, Quaranta et al. found that macrophage-
derived granulin, induced by CSF-1, contributes to cyto-
toxic CD8 + T cell exclusion in liver metastasis. Blocking 
the CSF-1/CSF-1R axis could sensitize metastatic pancre-
atic ductal adenocarcinoma to αPD-1 [43]. Consequently, 
a potential immunotherapeutic strategy that blocks mac-
rophages combined with ICIs may hinder the progression 
of liver metastasis, restoring CD8 + T cell infiltration in 
metastatic liver lesions.

Myeloid-derived suppressor cell (MDSCs) a heteroge-
neous population of CD11b + Ly6C + Ly6G + myeloid cells, 
exert immunosuppressive functions, including recruiting 
Tregs and suppressing CD8 + cytotoxic T cells at sites of 
cancer growth [44]. They are also recruited by chemo-
kines (CXCL1 and CXCL2) secreted by LSECs, KCs, and 
HSCs [45–47], and inhibit T-cell activation and prolif-
eration by producing arginase, ROS, and CCL5. Of note, 
granulocyte-macrophage colony-stimulating factor (GM-
CSF) has been proven to promote the recruitment and 
expansion of MDSCs in tumor models [48, 49]. MDSCs 
co-express GM-CSF receptor, indoleamine 2,3-dioxygen-
ase (IDO), and PD-L1 in the liver [50]. GM-CSF drives 
IDO and PD-L1 expression in MDSCs by activating the 
signal transducer and activator of transcription factor 
3 (STAT3) signaling pathway. Small molecules, such as 
Janus-activated kinase 2 (JAK2) and STAT3 inhibitors, 
can significantly diminish the expression of IDO and 
PD-L1 in hepatic MDSCs. Therefore, blocking the GM-
CSF/JAK2/STAT3 axis may reverse immunosuppression 
and enhance intrahepatic antitumor immunity. Addition-
ally, Milette and colleagues recently found that the recruit-
ment of MDSCs and Tregs into CRC hepatic metastasis 
was TNFR2-dependent in female but not in male mice, 
and experimental liver metastasis was significantly 
reduced when tumor-bearing mice were treated with anti-
sense oligonucleotides targeting TNFR2 [51]. Intriguingly, 
they also showed that estrogen regulates the infiltration 
and function of immune cells in the liver tumor immune 
microenvironment, including MDSC accumulation and 
production of interferon-γ (IFN-γ) and granzyme B (GB) 
in CD8 + T cells [52]. Notably, several MDSC-targeting 
agents and the blockade of MDSC-inducing cytokines or 
chemokines have been confirmed to potentiate antitumor 
immune responses and reverse immune resistance to ICIs 
in patients with cancer [53–55]. In summary, interfering 
with these pathways may become a potential treatment 
strategy to enhance immunotherapy for liver metastasis.

Regulatory T cell As one of the several immunosup-
pressive cell types, Tregs are implicated in ICI resis-
tance in liver cancer, despite the mechanisms of action 
of Tregs within the liver being unknown. Like MDSCs, 
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Tregs also suppress anti-tumor CTLs and curb the effi-
cacy of immunotherapy. Several experimental cancer 
models have demonstrated that the removal of Treg cells 
is crucial in restraining tumor growth and progression 
[56–58]. Tregs can be classified into two types: natural 
(CD4 + CD25 + FOXP3+) Tregs and inducible (FOXP3 + or 
FOXP3-) Tregs [59]. Among them, Tr1 cells are FOXP3- 
Tregs and are a significant source of IL-10 [60]. Addi-
tionally, in a preclinical study, CD29+ (Itgb1, integrin 
β1) Tregs, a liver-specific Treg subset, were found to be 
highly immunosuppressive in mice and mediated ICI 
treatment failure by doubling their number in response to 
anti-PD-1 [61]. Several Treg-targeting strategies are cur-
rently in development, such as using daclizumab (a CD25-
neutralizing antibody) and blocking CCL22. However, 
these therapeutic strategies have shown promise mainly 
in preclinical research and clinical trials for breast cancer 
but have not yet been tested in liver metastasis models 
and clinical settings [62–64]. In addition, experimental 
liver metastasis induced the activation of CTLA-4, PD-1, 
and high inducible costimulatory molecule (ICOS-high) 
Tregs, which could induce coordinated immunosuppres-
sion [29].

Cytokines
Cytokines and chemokines are essential for orchestrat-
ing and shaping the tumor microenvironment. In the 
CT-26 murine model of colon cancer liver metastasis, 
an increase in the expression levels of IL-10 and TGF-β1 
was observed compared to liver tissue in normal mice 
[65]. IL-10 exerts extensive immunosuppressive func-
tions by interacting with its cognate receptors (IL-10R) 
and activating the downstream STAT3 signaling path-
ways. In human CRC patients with liver metastasis who 
are refractory to PD-1 blockade, blocking IL-10 induces 
carcinoma cell death by increasing the frequency of intra-
tumoral CD8 + T cells and the expression of IFN-γ genes 
[66]. TGF-β, a major driver of the immunosuppressive 
microenvironment, plays an important role in the angio-
genic and growth phases of liver metastasis [67]. In the 
tumor microenvironment enriched with TGF-β, TAMs 
and tumor-associated neutrophils (TANs) can be polar-
ized into immunosuppressive phenotypes (M2 and N2) 
[68, 69]. Blockade of TGF-βR signaling can augment the 
cytotoxic activities of CD11b + Ly6G + TANs by increas-
ing the release of proinflammatory cytokines such as 
TNF-α, IFN-γ, IL-12, and CCL5 [70]. Additionally, TGF-β 
blockade can potentially suppress the differentiation of 
CD4 + T cells into Tregs. Interferon-α (IFN-α) is a potent 
cytokine with pleiotropic immunoactivities that modu-
late the anti-tumoral functions of immune cells and tar-
get both neo-angiogenic endothelial cells and tumor cells 
concurrently [71]. In murine models of CRC and PDAC 
liver metastasis [72], Kerzel and colleagues described that 

IFN-α delayed the growth of liver metastasis by increas-
ing the proportion of inflammatory phenotype in TAMs 
concomitant with the infiltration of tumor-associated 
CD8 + T lymphocytes, although a higher percentage 
of LAG3 + CD4 + T cells was also observed. LAG3, an 
inhibitory co-receptor, has previously been reported as 
a surface marker of T cell exhaustion and also of human 
Tr1 cells [73]. Collectively, the co-administration of an 
anti-CTLA-4 antibody with IFN-α may reshape the liver 
metastasis TME and potentially overcome immunother-
apy resistance in the future.

Genes or proteins
Extensive analysis of the genomic, epigenomic, and tran-
scriptomic features of liver tumors has enhanced our 
understanding of liver tumor biology and its stromal 
immune microenvironment, laying the foundation for 
more targeted, subtype-based therapeutic approaches. 
Yang and co-workers discovered that the characteristics 
of T cells were distinctive in different liver cancer types 
[74]. They also revealed a potential mechanism where 
solute carrier family 2 member 1 (SLC2A1, encoding 
glucose transporter type 1 (GLUT1)) could promote 
immunosuppression and an immune desert by increas-
ing the proportion of Spp1 + macrophages, which can 
inhibit interactions with T cells in liver metastatic 
lesions. Recent research suggested that the presence of 
SPP1 + TAMs indicated hypoxic areas due to the enrich-
ment of GLUT1 + cells [75]. Remarkably, hypoxia is a 
factor associated with tumor progression. Fibrinogen-
like protein 1 (FGL1), also known as hepatocyte-derived 
fibrinogen-like protein 1 (HFREP1), was first identified 
in hepatocytes. High expression of FGL1 has also been 
found in cancer cells in recent years. Previous studies 
have shown that the level of FGL1 expression is closely 
associated with tumor therapy resistance [76]. Recently, 
Li and co-workers revealed that FGL1 expression levels 
were upregulated in primary gastrointestinal tumors and 
their liver metastases, which were associated with poor 
outcomes and predicted a diminished response to anti-
PD-1/PD-L1 treatment. They also demonstrated that 
TAMs promoted the stabilization of FGL1 by activating 
nuclear factor kappa-B (NF-κB) through the secretion of 
TNF-α/IL-1β and OTU deubiquitinase 1 (OTUD1) [77]. 
Benzethonium chloride curbs FGL1 secretion, thereby 
inhibiting tumor cell progression in the liver microenvi-
ronment. Therefore, the TAM-OTUD1-FGL1 axis may 
be a potential target for the immunotherapy of liver 
metastases. Glucocorticoid-induced tumor necrosis fac-
tor receptor-related protein (GITR), a co-stimulatory 
receptor belonging to the tumor necrosis factor recep-
tor superfamily, has been widely studied in anti-cancer 
immunotherapy [78, 79]. Its activation has been shown 
to activate effector T cells and hamper Treg functionality 
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[80, 81]. The overexpression of GITR was found on 
CD4 + and CD8 + tumor-infiltrating lymphocytes (TILs) 
from CRC liver metastases [82], and anti-GITR agonis-
tic antibodies can induce efficient anti-tumor responses 
[83]. Overall, the complicated network associated with 
genes and proteins is worth further exploration to guide 
more therapeutic approaches.

Role of the locoregional therapies in liver metastasis
To improve the prognosis of patients with liver metas-
tasis, multidisciplinary treatment approaches have been 
employed, incorporating systemic and locoregional 

therapies. Currently, surgical resection is recommended 
as the first-line treatment. However, for patients with 
inoperable disease, alternative therapeutic strategies may 
be effective in improving clinical outcomes. Although 
local therapies have been extensively studied in liver 
tumors, their role in immunotherapy, particularly check-
point inhibitors, remains not fully understood.

Radiation therapies for liver metastasis
Radiotherapy has been demonstrated to control hepatic 
tumors and stimulate antitumor immunity in both pre-
clinical and clinical research [84–86] (Fig. 2).

Fig. 2 Radiotherapy stimulates antitumor immunity. LegendA: Local microenvironment of liver metastases. B: Radiotherapy activates the cGAS /STING 
signaling pathway to induce IFN-stimulated genes to induce cancer cell death. Additionally, liver-directed radiotherapy can increase hepatic CD8 + T cell 
infiltration and diminish the number of MDSCs. C: LDRT with immunotherapy increased the M1-to-M2 macrophage ratio in comparison with HFRT and 
decreases CAFs, TGF-β, and VEGF. D: HDRT could lead to a significant reduction in multiple T-cell populations and also may result in regulatory inhibition 
of the cGAS/STING signaling pathway. Abbreviations TAM tumor-associated macrophage; MDSC myeloid-derived suppressor cell; M1 TAM M1-type tumor-
associated macrophage; M2 TAM M2-type tumor-associated macrophage; CAFs cancer-associated fibroblasts; cGAS cyclic GMP-AMP synthase; STING 
stimulator of interferon genes; ER endoplasmic reticulum; ICOS inducible costimulatory molecule; GIRT Glucocorticoid-induced tumor necrosis factor 
receptor-related protein

 



Page 6 of 14Zhang et al. Cancer Cell International          (2024) 24:302 

In addition to inducing cancer cell death by mediat-
ing DNA damage [87] and promoting the release of 
dsDNA (double-stranded DNA), thereby activating the 
cGAS/STING signaling pathway to induce IFN-stimu-
lated genes [88], radiotherapy can also modulate immu-
nogenicity by releasing inflammatory mediators and 
increasing tumor-infiltrating immune cells (Fig.  2A). In 
preclinical models, liver-directed radiotherapy has been 
found to increase hepatic CD8 + T cell infiltration and 
diminish the number of MDSCs. The concentrations of 
CCL2, CCL11, and CXCL2 were diminished after irradi-
ation, which may reduce the recruitment of myeloid cells 
into the liver, whereas increased concentrations of che-
mokines CCL5 and CXCL10 were observed, potentially 
recruiting effector T cells to the irradiated liver. More-
over, the expression of ICOS and GITR in inducible T 
cells and the level of PD-1/PD-L1 on the surface of tumor 
cells are higher in tumor tissue following liver metasta-
sis radiotherapy, suggesting that radiotherapy combined 
with immunotherapy may be a potential therapeutic 
strategy for patients with liver metastases [89] (Fig. 2B). 
Radiotherapy combined with αPD-L1 enhanced the lev-
els of Ki67+, IFN-γ+, and GB + CD8 + T cells in the liver 
[41]. Unfortunately, this study only demonstrated that 
hepatic radiotherapy may offer a potential approach to 
overcoming the tolerance of liver metastasis to immu-
notherapy efficacy, but did not specify the radiation dose 
and its effect on the tumor immune microenvironment. 
Indeed, both high-dose radiotherapy (HDRT) and low-
dose radiotherapy (LDRT) exert an impact on the local 
immune microenvironment in the liver and systemic 
immunogenicity. A study by Monjazeb and colleagues 
demonstrated that the combination of LDRT with immu-
notherapy increased the M1-to-M2 macrophage ratio 
compared to HDRT patients [90]. In addition to induc-
ing macrophage repolarization, LDRT decreases cancer-
associated fibroblasts (CAFs), TGF-β, and VEGF [91] 
(Fig. 2C). However, despite its pro-immunogenic proper-
ties, radiotherapy may also produce a variety of immuno-
suppressive effects [85]. It is well known that lymphocyte 
depletion is one of the major adverse consequences of 
irradiation. HDRT can result in a significant reduction 
in multiple T-cell populations in peripheral blood [90]. 
Higher radiation doses are not only associated with aug-
mented side effects such as lymphocyte depletion, but 
they may also result in regulatory inhibition of the cGAS/
STING signaling pathway [85] (Fig. 2D). Therefore, more 
studies are needed to find the balance between radiation 
dose and clinical benefit.

Ablation therapies for liver metastasis
Percutaneous radiofrequency ablation (RFA), microwave 
ablation (MWA), and cryoablation are widely used to 
treat primary and secondary hepatic malignancies. The 

effects of these treatments on the immune microenviron-
ment of the liver are illustrated below (Fig. 3).

Coagulation necrosis occurs in hepatic lesions treated 
with thermal ablation when local temperatures reach 
60–65 °C. The capacity of HCC and CRC cells to stimu-
late CD4 + and CD8 + T cell-specific immune responses 
significantly increased following RFA, including the 
quantity and cytotoxic activity of tumor-specific circu-
lating CD4 + and CD8 + T cells [92]. Additionally, RFA 
can strongly stimulate the proliferation of circulating 
B cells in patients with metastatic liver cancer [93]. The 
levels of IFN-γ, C-reactive protein, and VEGF markedly 
increased after RFA therapy [93, 94]. The number of 
CD3 + T cells, CD56 + NK cells, and CD68 + monocytes 
significantly increased in microwave-ablated tumor tis-
sue in HCC patients [52, 95, 96]. Zhao and colleagues 
observed a significant elevation in serum levels of spe-
cific cytokines, including IL-2 and IL-6, following MWA 
treatment for liver malignant tumors [97]. On one hand, 
IL-6 plays a crucial role in facilitating T-cell infiltration 
into tumors [98], potentially benefiting immunomodula-
tory therapy. On the other hand, IL-6 can stimulate the 
expansion of MDSCs [99], impede the development and 
maturation of DCs [100], and hinder Th1 cell polariza-
tion [101], ultimately exerting an adverse immune regu-
latory effect. Shi and colleagues found that in patients 
with liver metastasis treated with RFA, T cell infiltration 
and tumoral PD-L1 expression increased in CRC tissues 
[15]. However, on day 8 after RFA, the ratio of CD8 + T 
cells to Treg cells significantly decreased compared to 
day 3. Nevertheless, it can be assumed that anti-PD-1/
PD-L1 therapy may potentially benefit from RFA. When 
considering liver local ablation combined with ICI treat-
ment, it is important to take advantage of the positive 
effects of related cytokines while avoiding their nega-
tive effects. Another mode of ablation, cryoablation, can 
lead to direct cell death, releasing abundant antigens and 
cytokines such as IL-2, IL-12, IFN-γ, and TNF-α, which 
facilitate the immune response [102]. After three weeks 
of combined treatment with transarterial infusion of 
pembrolizumab and cryoablation, the population of NK 
cells (CD3- CD16 + CD56+) was significantly elevated, 
whereas the frequency of Treg cells (CD4 + CD25+) was 
markedly reduced in the serum of patients with mela-
noma and multiple liver metastases [103]. Strikingly, no 
direct comparison of the different ablation modalities has 
been performed, and existing studies primarily focus on 
the assessment of immune cell and cytokine infiltration 
in peripheral blood following ablation, while the underly-
ing mechanisms influencing the local liver tumor remain 
elusive.
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Chemoembolization/radioembolization for liver metastasis
Similar to ablation, transarterial chemoembolization 
(TACE) is also an effective treatment approach for local-
ized or regional liver cancer. Studies have shown that 
TACE may decrease the number of immunosuppressive 
Tregs in the peripheral blood of HCC patients [104]. 
Interestingly, TIL numbers and subsets were not sig-
nificantly modified in preoperative TACE compared to 
surgery without preoperative treatment [105]. Addition-
ally, transarterial radioembolization(TARE), especially 
Yttrium-90 radioembolization (Y90-RE), also known as 
selective internal radiation therapy (SIRT), combined 
with ICIs has been successfully applied to achieve dis-
ease control or surgical resectability in HCC and hepatic 
metastases. After undergoing Y90-RE, an enrichment of 
CD4 + T cells, CD8 + T cells, NK cells, and NKT cell sub-
sets was observed in HCC tumor tissue [106]. In addi-
tion, the expression of immune markers such as GB and 
Tim-3 was also found to be elevated in TILs. Despite 
substantial tumor cell necrosis, the intra-tumor expres-
sion of CD8 + TILs, CD4 + TILs, and GB showed no sig-
nificant difference between TACE and the spontaneous 
condition in tumors. This indicates that the induction 

of ischemic cell death by TACE does not significantly 
modify the inflammatory/immunogenic tumor micro-
environment. Interestingly, therapeutic combinations 
of TARE and dual immune checkpoint blockades may 
overcome some resistance mechanisms, at least partially 
[107]. Nevertheless, the majority of the aforementioned 
data comprises HCC-based studies, necessitating further 
investigation into the impact of TACE and TARE on liver 
metastatic tumor tissue. The safety and efficacy of com-
bining immune checkpoint blockade with either TACE or 
TARE remains.

ICIs clinical shreds of evidence of liver metastasis 
treated with ICIS
ICIs alone
Immune checkpoint blockers have provided signifi-
cant long-term clinical benefits across multiple tumor 
types since their introduction as a treatment for meta-
static or unresectable melanoma in 2011 [108]. Com-
pared with vaccines or chemotherapy, improved OS 
with the anti-CTLA-4 monoclonal antibody (ipilim-
umab) was demonstrated in phase II/III clinical stud-
ies on patients with metastatic melanoma [109, 110]. 

Fig. 3 Whether ablation can enhance the sensitivity of liver metastases to ICI drugs is unclear. RFA, MWA and cryoablation all regulate the liver immune 
microenvironment, such as regulating immune cells and releasing cytokines. However, the function of cytokines is complex and may have dual regula-
tory effects of activating immunity and suppressing immunity. Abbreviations RFA radiofrequency ablation; MWA microwave ablation; TME tumor immune 
microenvironment
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Similarly, clinical benefits were confirmed with anti-
PD-1/anti-PD-L1 monoclonal antibodies (nivolumab, 
atezolizumab, pembrolizumab, durvalumab) in NSCLC 
[111], triple-negative breast cancer [112], colorec-
tal cancer with dMMR-MSI-H [113], urothelial carci-
noma (UC) [114, 115], and squamous cell carcinoma of 
the head and neck [116]. Regardless of the primary site, 
tumors with high tumor mutational burden (TMB-high) 
have shown positive responses to ICIs based on findings 
from the phase II KEYNOTE-158 trial [117]. A recently 
published case reported that a woman diagnosed with 
TMB-high gallbladder carcinoma with liver metastasis 
achieved a partial response after pembrolizumab treat-
ment [118]. Nevertheless, it was first observed in 2015 
that the immune-modulatory effect of PD-1 blockade 
was counterbalanced in patients with liver metastasis 
[119]. In a large sample study conducted by Goldinger 
and colleagues, multivariate analysis confirmed these 
findings [120]. Preclinical mouse models and patients 
with liver metastasis have indicated that liver metasta-
sis is associated with a reduced response to anti-PD-1 
monoclonal antibody and diminished OS and PFS [7, 41]. 
Given the immune tolerance of the liver, the combina-
tion of CTLA-4 blockers and PD-1 blockers is promising 
for a synergistic effect. In several cancer types including 
melanoma [121, 122], NSCLC [123], malignant pleural 
mesothelioma [124], renal cell carcinoma [125, 126], and 
colorectal cancer (MSI-H/dMMR) [127], combination 
therapy with anti-CTLA-4 and anti–PD-(L)1 antibodies 
showed higher response rates than monotherapy. Unfor-
tunately, in the CheckMate 277 clinical study, nivolumab 
combined with ipilimumab or chemotherapy in the 
liver metastasis subgroup did not benefit patients with 
advanced NSCLC [123]. Collectively, these publications 
underscore the diminished clinical efficacy of ICIs in 
patients with liver metastases across various tumor types.

ICIs combined with chemotherapy
ICI monotherapies can achieve durable responses. Even 
though combining ICIs with anti-CTLA-4 and anti-
PD-1/PD-L1 has shown higher response rates than 
single-agent treatment, only a small fraction of cancer 
patients respond to ICIs in the clinic. Consequently, the 
identification of novel combination strategies is pressing 
and necessary. Notably, chemotherapy, as a traditional 
anti-tumor treatment, has been combined with other 
treatment methods in almost all tumors. Given that che-
motherapy can inhibit immunosuppressive cells in the 
TME, increase tumor antigen exposure by inducing can-
cer cell death, and promote immune cell infiltration and 
dendritic cell maturation, thereby enhancing the antitu-
mor immune response [128–130], ICIs combined with 
chemotherapy have been tested in various clinical trials. 
In a phase 3 trial, nivolumab plus fluorouracil-cisplatin 

demonstrated significantly longer OS compared to che-
motherapy alone in patients with metastatic esophageal 
squamous cell carcinoma [131]. Similarly, two addi-
tional phase 3 studies showed that the nivolumab plus 
platinum-based chemotherapy group and the carbopla-
tin-etoposide with atezolizumab group had significantly 
longer PFS and OS compared to chemotherapy-alone 
groups in lung cancer [132, 133]. A reported pooled 
analysis that included KEYNOTE-021 cohort G, KEY-
NOTE-189, and KEYNOTE-407 found that the addition 
of pembrolizumab to first-line chemotherapy improved 
survival outcomes for patients with liver metastases; 
however, the observed benefit was comparatively atten-
uated compared to patients without liver metastases 
[134].A recent meta-analysis including eight random-
ized controlled trials showed that PD-1/L1 inhibitors 
combined with chemotherapy reduced the risk of dis-
ease progression by 40% in lung cancer patients without 
liver metastases, compared to only 31% in patients with 
liver metastases [135], suggesting comparable efficacy in 
lung cancer patients with and without liver metastases. 
However, the conclusions are inconsistent. Two phase 
3 clinical studies, IMpower130 [136] and IMpower132 
[137], did not show significant OS benefit in the sub-
group of patients with liver metastases who received 
ICIs plus chemotherapy. Another study found that Cox 
regression analyses showed the HR for OS was 1.55 for 
UC patients with liver metastasis treated with platinum-
based chemotherapy followed by three different PD-L1 
inhibitors (durvalumab, atezolizumab, and avelumab) in 
the second-line treatment [138]. Some scholars consider 
that cytotoxic drugs may potentially compromise the 
anti-tumor functionality of immune cells, thereby dimin-
ishing the efficacy of ICIs. Consequently, novel strategies 
are needed to increase response rates in liver metasta-
ses. A case published online in 2022 indicated that a man 
with MSI-L/p-MMR mCRC showed a partial response to 
Tislelizumab (an anti-PD-1 drug) after systemic therapy 
failure and SBRT (targeting liver metastasis) [139]. There-
fore, the combination of systemic therapies and locore-
gional therapies may open new avenues for the treatment 
of liver metastasis. An ongoing phase II clinical trial is 
examining SIRT of liver metastasis in combination with 
a PD-L1 inhibitor, chemotherapy, and anti-angiogenesis 
therapy in CRC [140].

ICIs combined with radiotherapy
Preclinical studies in subcutaneous tumor models have 
shown that checkpoint blockade and radiotherapy 
can synergistically promote an enhanced ICI immune 
response [141]. However, the sequence and timing of 
immunotherapy and tumor irradiation therapy [142], 
as well as the dose of radiation [143], appear to be 
important. Administering anti-PD-1 antibodies before 
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radiation appears to be deleterious due to the destruc-
tion of immune cells induced by αPD-1 [144]. Preclinical 
data have suggested that abscopal responses are observed 
when αPD-1 antibody is administered after SBRT in 
MC38 colorectal tumor mice [142]. The KEYNOTE-001 
clinical trial also showed that patients with metastatic 
NSCLC who received radiotherapy before immuno-
therapy had better PFS [145]. Unfortunately, combining 
radiotherapy with immune checkpoint blockade (ICB) 
failed to improve clinical efficacy in mNSCLC [146] and 
Merkel cell carcinoma [147].In a recently published clini-
cal trial, liver SBRT combined with ICB appears to be safe 
[148]. A subgroup analysis of a randomized, controlled 
trial suggested that irradiated liver metastasis achieved 
a higher clinical benefit compared to irradiated extrahe-
patic disease (30.8% vs. 15.8%) [149]. A recently reported 
representative case involved a patient diagnosed with 
stage-IV melanoma with multiple metastases, includ-
ing lung, bone, liver, and brain, who received ipilimumab 
and nivolumab followed by liver and lung radiation treat-
ment, resulting in durable and complete responses for 
liver metastasis [150]. However, in a randomized con-
trolled trial, Monjazeb et al. observed that combining 
PD-L1 and CTLA-4 inhibition with targeted low-dose or 
hypofractionated radiation for liver metastasis in mCRC 
had limited effects on improving mPS and mOS [90]. 
Despite promising data from preclinical and clinical tri-
als indicating that radiation can induce tumor-specific 
immune responses [151], the clinical efficacy of radiation 
for liver metastasis combined with systemic immuno-
therapy is indeterminate and incompletely understood. 
In addition to radiation doses, advanced tumor burden 
and prior extensive treatments may also impair patients’ 
immune systems. Thus, optimizing immunotherapy and 
radiotherapy regimens, including the dose and sequence 
of ICI and irradiation, requires further experimental 
studies.

ICIs combined with ablation
RFA, MWA, and cryoablation, as minimally invasive 
approaches for treating primary and secondary liver 
cancer, have demonstrated clinical utility [152]. Much of 
the data regarding immune responses to ICIs and abla-
tion are based on preclinical studies. Several studies have 
reported that ICIs combined with RFA or cryoablation 
synergistically promote systemic antitumor immunity in 
colon cancer, melanoma, and renal cell carcinoma murine 
models [15, 153, 154]. Similar results were reported by 
Chen et al.; the combination of MWA and TIGIT block-
ade increased the anti-tumor immune response [155]. 
Furthermore, the clinical efficacy of argon-helium cryo-
surgery combined with nivolumab in the treatment of 
advanced NSCLC is better than that of argon-helium 
cryosurgery alone [156]. Similarly, case reports have 

shown that cryoablation combined with PD-(L)1 inhibi-
tors may enhance the synergistic anti-tumor immune 
response in clear cell carcinoma and HCC [157, 158]. 
Nevertheless, in a phase Ib/II trial, combining RFA tar-
geting liver metastasis with ipilimumab demonstrated 
limited clinical activity in UM [159]. In another phase 
II trial, durvalumab and tremelimumab combined with 
RFA for unresectable liver metastasis failed to demon-
strate clinical feasibility in mCRC [160]. Based on these 
data, rational treatment strategies deserve further explo-
ration to improve ICI responses in more clinical settings. 
An ongoing non-randomized phase II clinical trial is test-
ing the potential abscopal effect of radiotherapy or ther-
mal ablation followed by pembrolizumab in patients with 
mismatch repair-proficient mCRC [161].

ICIs combined with transarterial chemoembolization/
radioembolization
TACE and TARE are widely utilized liver-directed treat-
ments for regional liver tumors. Yttrium-90 (Y-90) radio-
embolization has been extensively used for both primary 
and secondary liver tumors [162, 163]. Preliminary retro-
spective and clinical trials have shown that the sequen-
tial use of ICIs and Y-90-labeled microspheres achieves 
high local tumor control rates in HCC cases [164–166]. 
Similarly, in cases of uveal melanoma with synchronous 
liver metastasis (UMLM), the sequential administra-
tion of Y-90 microspheres to hepatic lesions and ICIs 
achieved high hepatic disease control rates in both ret-
rospective and prospective studies [167, 168]. Interest-
ingly, a prospective, single-center clinical trial by Wang et 
al. on patients with microsatellite-stable colorectal can-
cer liver metastasis found that durvalumab and tremeli-
mumab, following Y-90 liver radioembolization, did not 
enhance immune responses to liver metastasis, and all 
eligible patients experienced progressive disease [169]. 
Therefore, while Y-90 microspheres targeting liver metas-
tasis are safe and effective, and may improve survival in 
HCC and UMLM, they did not increase the sensitivity of 
colorectal cancer liver metastasis to ICIs. It is reasonable 
to assume that the liver-dependent immune contexture of 
different malignant tumors, including the functional sta-
tus and spatial distribution of immune cells, may underlie 
the inconsistent responses to the combination regimens 
described above. Additionally, percutaneous hepatic per-
fusion with melphalan (M-PHP), a locoregional treat-
ment modality for malignant liver tumors, is a promising 
novel approach. An ongoing study is currently recruiting 
volunteers to evaluate the safety and efficacy of M-PHP 
combined with ipilimumab and nivolumab in individuals 
with unresectable UMLM [170]. In summary, the safety 
and efficacy of TACE in combination with ICIs remain 
unclear, and further studies are needed to validate these 
findings.



Page 10 of 14Zhang et al. Cancer Cell International          (2024) 24:302 

Summary and outlook
Immunotherapy has introduced new hope for achieving 
prolonged survival in cancer patients. However, emerg-
ing evidence indicates that immunotherapy has limited 
efficacy in patients with liver metastases. Treating liver 
metastasis remains an unmet clinical need.

There is no consensus on the safety and efficacy of com-
bining ICIs with locoregional therapies for liver metasta-
ses. Multiple mechanisms have been proposed to explain 
liver-associated immune tolerance, and researchers con-
tinue to explore new treatment methods to improve the 
prognosis of patients with liver metastasis. In this review, 
we elaborate on the influence of locoregional thera-
pies on the liver immune microenvironment. Given the 
potential synergies of different treatments, preclinical 
studies have shown that combining immunotherapy with 
radiotherapy, ablation, and TACE/TARE holds significant 
promise for treating liver metastases.

Clinically, identifying clinical predictive biomarkers is 
crucial for determining which patient groups are likely to 
benefit from ICIs. In this review, we shown that interac-
tions among various cells in the immune microenviron-
ment of liver metastases lead to a reduction in CD8 + T 
cells and an increase in Treg cells, accompanied by an 
abundance of immunosuppressive factors such as TGF-β 
and IL-10. The potential of these immune cell factors and 
immune cells in liver metastases as predictive markers 
warrants further investigation. Additionally, the regu-
latory mechanisms of the immune microenvironment 
in the liver may vary depending on the different locore-
gional therapies applied, and this requires further explo-
ration. Currently, ICIs are mostly used in the later-line 
treatment of patients with liver metastases. It is expected 
that more appropriate treatment opportunities will be 
found to use ICIs to prolong the survival of patients in 
the future. However, our work has limitations. Although 
our paper provides substantial preclinical evidence sup-
porting the role of local treatment in promoting liver 
immunotherapy, there is relatively little direct clinical 
evidence for the combined treatment overcoming liver-
induced immune tolerance. Most prospective studies are 
still ongoing, and the treatment of liver metastases con-
tinues to pose a significant challenge.

In conclusion, given the current scarcity of clinical 
studies on the combination of ICIs and locoregional ther-
apies for liver metastases, it is crucial to conduct more 
prospective clinical and translational studies. These stud-
ies will help optimize immunotherapy strategies through 
a systematic review of treatment regimens.
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