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Abstract: The neuroimmune and neuroendocrine systems are two critical biological systems in the
pathogenesis of depression. Clinical and preclinical studies have demonstrated that the activation
of the neuroinflammatory response of the immune system and hyperactivity of the hypothalamus–
pituitary–adrenal (HPA) axis of the neuroendocrine system commonly coexist in patients with
depression and that these two systems bidirectionally regulate one another through neural, im-
munological, and humoral intersystem interactions. The neuroendocrine-immune network poses
difficulties associated with the development of antidepressant agents directed toward these biological
systems for the effective treatment of depression. On the other hand, multidrug and multitarget
Chinese Herbal Medicine (CHM) has great potential to assist in the development of novel medica-
tions for the systematic pharmacotherapy of depression. In this narrative essay, we conclusively
analyze the mechanisms of action of CHM antidepressant constituents and formulas, specifically
through the modulation of the neuroendocrine-immune network, by reviewing recent preclinical
studies conducted using depressive animal models. Some CHM herbal constituents and formulas
are highlighted as examples, and their mechanisms of action at both the molecular and systems
levels are discussed. Furthermore, we discuss the crosstalk of these two biological systems and
the systems pharmacology approach for understanding the system-wide mechanism of action of
CHM on the neuroendocrine-immune network in depression treatment. The holistic, multidrug,
and multitarget nature of CHM represents an excellent example of systems medicine in the effective
treatment of depression.

Keywords: Chinese herbal medicine; depression; neuroimmune system; neuroendocrine system;
neuroendocrine-immune network; neuroinflammation; HPA axis

1. Introduction

Depression is a persistent and recurring mental illness, affecting more than 264 million
people of all ages worldwide. It is also a major contributor to the global burden [1] and a
leading cause of elevated disability [2]. Depression is clinically characterized by repeated
depressive episodes, including anhedonia, insomnia, decreased speech, loss of interest and
enjoyment, helplessness, and decreased energy [3]. Most researchers view depression as a
multigenetic and multifactorial syndrome, which results from the complicated interplay of
environmental and genetic factors and presents comorbidity with other diseases [4].

While current antidepressant medications, such as selective monoamine reuptake
inhibitors and glutamate transmission-enhanced fast-acting antidepressants, can improve
mental states of depression, these drugs are far from ideal, because they have severe
side effects and low rates of efficacy [5]. Growing evidence suggests that central nervous
system (CNS)-targeted medications alone are insufficient, and the development of novel
medications or approaches for effective and systematic depression treatment is a pressing
task [4,6]. In recent decades, many divergent biological systems have been identified to
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be involved in the pathogenesis of depression. In particular, studies have shown that the
activation of the neuroinflammatory response of the immune system and hyperactivity
of the hypothalamus–pituitary–adrenal (HPA) axis of the neuroendocrine system are two
critical triggers in the etiology of depression [7] (Figure 1). It should be emphasized that
communication or crosstalk exists between the neuroimmune and neuroendocrine systems
and that the neuroendocrine-immune network plays a vital role in the systems biology of
depression [8,9].Pharmaceuticals 2021, 14, x FOR PEER REVIEW 3 of 32 

 

 

 
Figure 1. The neuroendocrine-immune network in the pathogenesis of depression. In response to 
stress, the peripheral or neuroimmune system activates the release of HPA axis hormones, 
whereas the stress-induced hyperactivation of the HPA axis also stimulates a proinflammatory or 
neuroinflammatory response. Intersystem crosstalk occurs at many levels through neural, immu-
nological, and humoral interactions and subsequently results in the dysfunction of the central 
nervous system (CNS) in the pathogenesis of depression. 

2. Inflammation in the Pathogenesis of Depression 
Smith first proposed that inflammation may play a crucial role in the pathogenesis 

of depression in 1991 [18]. Since then, the immune system has been extensively studied to 
explore the mechanism by which the dysfunction of immune system is associated with 
symptoms of depression. Accumulating evidence has demonstrated that the dysregula-
tion of the peripheral or neuroimmune system contributes to the pathogenesis of depres-
sion [19] (Figure 1). Clinical studies have indicated that patients suffering from depression 
showed significantly higher levels of proinflammatory cytokines, including interleukin-
1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), C-reactive protein 
(CRP), and inflammasome, than healthy people [6,20–24]. These studies have also shown 
that patients with chronic peripheral inflammatory diseases have a higher incidence of 
depression [25]. In addition, over 50% of patients suffering from viral infections showed 
a depressive symptomatology after treatment with cytokine interferon-alpha (INF-α) [26]. 
The reciprocal effects were also observed in rodent models. For instance, several studies 
have reported that chronic unpredictable mild stress (CUMS) treatment elevated the pro-
inflammatory or neuroinflammatory response of the immune system in the blood and 
brain [27–29], whereas the administration of endotoxins, such as lipopolysaccharide (LPS), 
caused depressive-like behaviors by activating the indoleamine 2,3-dioxygenase (IDO) 
pathway [30] or proinflammatory cytokines [31]. These studies indicate that bidirectional 
communication exists between proinflammation or neuroinflammation and the CNS. 

It is worth noting that the dysregulation of the peripheral immune system plays an 
important role in the pathogenesis of depression. Peripheral cytokines can be actively 
transported into the CNS through an increase in blood brain barrier (BBB) permeability 
[19,32,33] and, subsequently, a reduction of serotonin neurotransmission and activation 
of the HPA axis [34]. Interestingly, low levels of proinflammatory cytokines regulate 

Figure 1. The neuroendocrine-immune network in the pathogenesis of depression. In response to
stress, the peripheral or neuroimmune system activates the release of HPA axis hormones, whereas
the stress-induced hyperactivation of the HPA axis also stimulates a proinflammatory or neuroin-
flammatory response. Intersystem crosstalk occurs at many levels through neural, immunological,
and humoral interactions and subsequently results in the dysfunction of the central nervous system
(CNS) in the pathogenesis of depression.

Preclinical studies have revealed that hyperactivity of the HPA axis can lead to the
activation of the neuroinflammatory response of the immune system, whereas neuroin-
flammation can also modulate the activity of the HPA axis through various underlying
mechanisms [8]. These findings have provided many novel pharmacological targets in
either the neuroimmune or neuroendocrine system for depression treatment; however,
none of these attempts have succeed in developing new medications directed toward these
systems. Because of the intersystem crosstalk, agents that target one system alone will not
be effective, and an additional medication that directly acts on the other system is also
required to achieve a better treatment. Therefore, an improved approach to achieve an
effective depression treatment should be systems biology-orientated and simultaneously
target several biological systems involved in the pathogenesis of depression.

Traditional Chinese Medicine (TCM) is a holistic medicine that has been developed
in China for centuries. It emphasizes the integration of a variety of biological systems
in the human body and aims to prevent or heal diseases by maintaining or restoring
internal homeostasis [4]. In TCM practice, a combination of multiple herbal drugs, so-
called Chinese Herbal Medicine (CHM), is often used to act on multiple pharmacological
targets simultaneously [10,11]. The systems biology-based, multi-target, and multi-drug
medication is particularly suitable for the treatment of multigenetic and multifactorial
diseases, such as depression [12].

Numerous CHM formulas are currently used for depression treatment in TCM prac-
tice [11,13]. Clinical studies have shown that these CHM antidepressant formulas exert
comparable efficacies to conventional antidepressants, but with few adverse effects [14].
In addition, preclinical studies have demonstrated that CHM antidepressant formulas
exhibit antidepressant-like activities in rodent models through multiple underlying mech-
anisms, and the de-hyperactivation of the HPA axis and anti-inflammation are the most
common actions [15–17]. During the past decade, preclinical studies have extensively been
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performed by employing the molecular or systems pharmacology approach to uncover
the mechanisms of action of CHM antidepressant formulas at both the molecular and
systems levels. These studies have not only remarkably improved our understanding of
the molecular basis and system-wide actions of CHM antidepressant formulas, but also
promoted the development of novel medications for the effective and systematic treatment
of depression [4].

In this narrative review, we aim to conclusively uncover the mechanism of action of
CHM, specifically through the modulation of the neuroendocrine-immune network, by
discussing the recent preclinical studies conducted using depressive animal models. The
most recent literature showing that CHM constituents or formulas exert antidepressant
activity by modulating the neuroinflammatory response of the immune system or the
release of HPA axis hormones were prioritized in the selection of studies for discussion.
According to their mechanisms of action, some representative CHM antidepressant con-
stituents and formulas are summarized in each section, respectively. In addition, we also
discuss the effects of CHM constituents and formulas on the neuroendocrine-immune
network and the systems pharmacology approach in order to improve our understanding
of the system-wide mechanisms of action of CHM formulas.

2. Inflammation in the Pathogenesis of Depression

Smith first proposed that inflammation may play a crucial role in the pathogenesis
of depression in 1991 [18]. Since then, the immune system has been extensively studied
to explore the mechanism by which the dysfunction of immune system is associated with
symptoms of depression. Accumulating evidence has demonstrated that the dysregulation
of the peripheral or neuroimmune system contributes to the pathogenesis of depression [19]
(Figure 1). Clinical studies have indicated that patients suffering from depression showed
significantly higher levels of proinflammatory cytokines, including interleukin-1β (IL-1β),
interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), C-reactive protein (CRP), and
inflammasome, than healthy people [6,20–24]. These studies have also shown that patients
with chronic peripheral inflammatory diseases have a higher incidence of depression [25].
In addition, over 50% of patients suffering from viral infections showed a depressive symp-
tomatology after treatment with cytokine interferon-alpha (INF-α) [26]. The reciprocal
effects were also observed in rodent models. For instance, several studies have reported
that chronic unpredictable mild stress (CUMS) treatment elevated the proinflammatory or
neuroinflammatory response of the immune system in the blood and brain [27–29], whereas
the administration of endotoxins, such as lipopolysaccharide (LPS), caused depressive-like
behaviors by activating the indoleamine 2,3-dioxygenase (IDO) pathway [30] or proin-
flammatory cytokines [31]. These studies indicate that bidirectional communication exists
between proinflammation or neuroinflammation and the CNS.

It is worth noting that the dysregulation of the peripheral immune system plays an
important role in the pathogenesis of depression. Peripheral cytokines can be actively
transported into the CNS through an increase in blood brain barrier (BBB) permeabil-
ity [19,32,33] and, subsequently, a reduction of serotonin neurotransmission and activation
of the HPA axis [34]. Interestingly, low levels of proinflammatory cytokines regulate
PI3K-Akt signaling to support synaptic function; however, abnormally increased proin-
flammatory cytokines contribute to damage, atrophy, and loss of spinal synapses through
the modulation of signaling factors p38 and nuclear factor kappa B (NF-κB) [35].

Preclinical and clinical studies have also demonstrated that stress and depression
are associated with an alteration in the morphology and activation of microglial cells,
which leads to neuroinflammation and neuronal dysfunction [19,36]. In post-mortem
histological and neuroimaging studies on depressive patients, robust changes in the mi-
croglial morphology and density in the prefrontal cortex (PFC) and hippocampus have
been found [19,37,38]. In addition, a peritoneum injection of LPS into chronic neurodegen-
erative mice has been shown to result in a dramatic change in the microglia phenotype,
which can transform into a proinflammatory phenotype through the overexpression of
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proinflammatory cytokines, such as IL-1β, IL-6, and TNF-α [39,40]. Furthermore, the acti-
vation of microglia mediates depressive-like behaviors through the shaping of the dendritic
architecture and synaptic connection [41,42]. Taken together, these findings have provided
evidence that the dysfunction of the neuroimmune system is involved in the pathogenesis
of depression.

3. CHM Regulation of the Neuroimmune System

Many CHM herbal constituents exert anti-inflammation activity through various
underlying mechanisms of action by regulating either proinflammatory cytokines, inflam-
matory signaling pathways or inflammasome [13,43–46]. While these studies have not
revealed the specific drug-target interactions of these herbal constituents with their acting
proteins, they have provided the molecular basis for understanding the mechanisms of
action by which CHM herbs or formulas exert antidepressant activity through the modula-
tion of the neuroimmune system. Figure 2 shows several representative CHM constituents
that have been reported to exhibit antidepressant-like activity in depressive animal models,
specifically by mediating the neuroimmune system. Other herbal constituents that possess
anti-inflammation activity are also shown in Table 1. Some CHM formulas that produce
antidepressant effects through the modulation of the neuroimmune system are listed in Ta-
ble 2. In this section, we discuss the effects of CHM on the neuroimmune system according
to its diverse pharmacological actions.
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Figure 2. Several representative CHM constituents that have been demonstrated to exert antidepres-
sant activity, specifically by mediating the neuroimmune system.

3.1. Proinflammatory Cytokines and Cytokine Receptors

Proinflammatory cytokines are mainly derived from immune cells such as monocytes,
macrophages, lymphocytes, and dendritic cells, acting as important modulators of neu-
roinflammatory response [6]. Recently, several studies have investigated the influence of
peripheral proinflammatory cytokines (e.g., IL-6, IL-1β, and TNF-α) on neuronal synaptic
plasticity, neurogenesis, and neuromodulation, which play critical roles in the initiation, re-
lapse, and progression of depression [47,48]. It is worth noting that these proinflammatory
cytokines are usually maintained at low levels under physiological conditions; however,
its levels are increased by approximately 100-fold under stress-related pathological con-
ditions [6]. In addition, microglia can release proinflammatory cytokines that influence
the neurobiology of depression by decreasing the number and function of astrocytes [19].
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Furthermore, cytokine receptors have also been demonstrated to produce neurobiological
effects on microglia activation and neuroinflammation [19].

Bupleurum chinense DC has commonly been used to treat inflammation and infectious
diseases [49]. Saikosaponin-D, a triterpenoid saponin isolated from Bupleurum chinense
DC, has multiple pharmacological effects, such as anti-inflammation [50] and antidepres-
sant activity [51]. A study has shown that pretreatment with saikosaponin-D (1 mg/kg,
7 days, i.g.) inhibited LPS-induced microglia activation and suppressed the secretion of
proinflammatory cytokines (IL-1β, IL-6, and TNF-α) [52]. Its mechanism of action has
been suggested to inhibit the transportation of high mobility group box 1 (HMGB1), a
late inflammatory factor, into extracellular space, which results in the downregulation of
the Toll-like receptors 4 (TLR4)/NF-κB pathway in both the hippocampus in mice and
primary microglia cells. Saikosaponin-A (50 or 100 mg/kg, 4 weeks, p.o.), a derivative of
saikosaponin-D, has also been demonstrated to exhibit antidepressant-like activity through
its effects on the neuroimmune system by suppressing the CUMS-induced IL-1β, IL-6,
and TNF-α overexpression in the hippocampus in rats [53]. Taken together, these results
indicate that triterpenoid saponins exert antidepressant-like activities in animal models by
reducing proinflammatory cytokine levels; however, further study is needed to explore
their molecular interactions with the potential acting proteins and their pharmacologi-
cal profiles.

While no CHM constituents have been reported to exert a specific action on cytokine
receptors, a CHM formula comprised of eight herbs for the treatment of postpartum
depression, known as the Shen-Qi-Jie-Yu decoction (1.25 g/mL, 1, 2, 4 weeks, i.g.), has
recently been shown to produce antidepressant effects by decreasing the expression of
cytokine receptors, such as IL-1R1 and glycoprotein 130, in the hippocampus in a rat
model of postpartum depression [54]. However, this study did not clarify the molecular
mechanism by which the herbal formula produces profound effects on the expression of
cytokine receptors.

3.2. Proinflammatory Signaling Pathway

Increasing evidence has suggested that proinflammatory signaling pathways, such
as the mitogen-activated protein kinase (MAPK) pathway and NF-κB pathway, influence
BBB integration, microglia activation, and neurogenesis [6,55]. A bioinformatic analysis
has identified that the MAPK pathway is one of the functionally enriched signaling path-
ways in the neurobiology of depression [56]. Extracellular regulated kinases (ERK1/2),
c-Jun N-terminal kinases (JNKs), and p38 MAP kinases are three subfamilies of the MAPK
signaling pathway. It has been demonstrated that the MAPK pathway is involved in
the differentiation of astrocytes and other neuronal cells, synaptic plasticity, and neuron
survival, as evidenced by the robust changes of MAPK signaling in the hippocampus in de-
pressive animal models [6,57–59]. These kinase subfamilies play central roles in the release
of proinflammatory cytokines or the activation of NF-κB, a proinflammatory transcription
factor, in response to various stimuli, such as psycho-emotional stressors, acute alcohol
exposure, pathogenic products, or proinflammatory cytokines [60–62]. NF-κB is abundantly
distributed in the brain, microglia, BBB, and peripheral immune responsive cells [60,61,63],
and it is an essential mediator in several important physiological processes, including synap-
togenesis, neurotransmission, neuroprotection, and neuroinflammation [64–66]. In animal
models, NF-κB activity can be elevated by the degradation of NF-κB kinase inhibitors [67],
and it can also be activated by IL-1β signaling and proinflammatory cytokines released
from both the peripheral immune cells and the brain [68,69]. A study showed that proin-
flammatory cytokine overexpression and behavioral abnormality can be reduced by the
blockade of NF-κB signaling [68]. Hence, these findings highlight the critical roles of the
MAPK and NF-κB signaling pathways in the pathogenesis of depression.

Many CHM herbal constituents have been shown to exert antidepressant-like activities
in animal models by inhibiting the MAPK or NF-κB signaling pathway [70,71]. Ginsenoside
Rg1, a saponin extracted from Panax ginseng C. A. Mey., has been demonstrated to act as
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a potential neuroprotective agent in depression treatment [72,73]. The administration of
ginsenoside Rg1 (20 or 40 mg/kg, 34 days, i.g.) inhibited hippocampal neuroinflammation
and reduced the expression of proinflammatory cytokines and microglial activation through
the inhibition of NF-κB activity by the MAPK and silent information regulator 2 homolog
1 signaling pathways in chronic social defeat stress mice [72]. Additionally, ginsenoside
Rg1 (10 or 20 mg/kg, 3 days, p.o.) has also been revealed to significantly reduce the
p-IκB level in cytoplasm and nuclear translocation of NF-κB in LPS-induced depressive
mice, probably through the suppression of iNOS and TNF-α production in the brain [74].
Moreover, in comparison with the LPS-induced model, the levels of the MAPK subfamily,
such as p38 MAPK, ERK, and JNK, were reversed through treatment with Rg1 [74]. These
studies have indicated that the inhibitory effects of Rg1 are meditated by inhibiting the
NF-κB and MAPK pathways. While these findings have provided novel insights into the
therapeutic implications of ginsenoside Rg1 for depression treatment, further study is
needed to determine if the herbal constituent directly interacts with the neuroinflammatory
signaling pathways and what pharmacological targets it specifically acts on.

3.3. Inflammasome

Inflammasome, a complex of multiple proteins, functions as an intracellular sen-
sor in response to environmental and cellular stress [75–77]. In particular, the NLRP3
inflammasome complex, the well-studied inflammasome member, acts as a key conver-
gent molecular pathway in several mechanisms of peripheral and central inflammatory
responses in neurological and inflammatory diseases [78]. NLRP3 inflammasome can be
released by microglia, macrophages, and astrocytes in the CNS [77]. NLRP3 activation,
induced by the stimulation of either Toll-like receptors (TLRs) or adenosine triphosphate
(ATP), results in caspase-1 activation and IL-1β maturation, which initiate inflammatory
responses [77]. Clinical studies have demonstrated that the gene expression of NLRP3,
caspase-1, and IL-1β are elevated in blood samples of depressive patients [79]. In addition,
it has also been shown that, in rodent models, the NLRP3 inflammasome is significantly
elevated in depressive brain tissues and that the administration of an NLRP3 inhibitor
improves depressive-like behaviors induced by LPS or CUMS [80,81]. Furthermore, Su et al.
has suggested that NLRP3 inflammasome modulates depressive-like behaviors through
the regulating activities of the MAPK and NF-κB pathways [55]. Taken together, these
studies indicate that the activation of NLRP3 inflammasome signaling is involved in the
pathogenesis of depression and that inflammasome serves as a potential pharmacological
target in depression treatment.

Studies have shed light on depression treatments involving CHM constituents that
suppress the overexpression or activation of NLRP3. For example, trans-cinnamaldehyde
(10 µM, 24 h), a bioactive constituent of Cinnamomum cassia Presl, has been shown to inhibit
microglia activation and, subsequently, to alleviate inflammatory responses to various
stressors [82]. The administration of trans-cinnamaldehyde (10 mg/kg, 3 weeks, p.o.) has
been shown to increase sucrose preference and reduce the immobility time in CUMS rats.
The study has also shown that trans-cinnamaldehyde attenuated the expression of NF-κB
pathway components, including TLR-4, IκBα, p65, NF-κB-1, and TNF-α, and downregu-
lated the expression of NLRP3, caspase-1, IL-1β, and IL-18. These observations suggest
that trans-cinnamaldehyde produces antidepressant effects through the inactivation of
the NF-κB/NLRP3 inflammasome pathway in animal models [28]. Moreover, a recent
study has suggested that icariin (20 or 40 mg/kg, 35 days, p.o.), a prenylated flavonoid
extracted from Epimedium brevicornu Maxim, exerts anti-inflammation effects and ame-
liorates oxidative stress-induced brain damage by inactivating the NF-κB signaling and
inhibiting the NLRP3-inflammasome/caspase-1/IL-1β axis in the hippocampus [83]. It
would be interesting to identify their specific targeting proteins in the inflammasome
complex, which would, in turn, improve our understanding of the mechanisms of action
by which CHM constituents modulate the neuroimmune system by specifically interacting
with inflammasomes.
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Table 1. Constituents of CHM that modulate the release of HPA axis hormones and exhibit anti-inflammatory and antidepressant-like activities in animal models of depression.

Herb Herbal Constituent Animal Model Behavioral Test Administration
Dose/Time/Route of Treatment

Effects on Mediators of
Inflammation

Effects on
Hormones of the
HPA Axis

Reference

Fallopia multiflora (Thunb.) Harald. 2, 3, 5, 4′-Tetrahydroxystilbene-
2-O-β-D-glucoside

LPS-induced
depressive mice TPT, FST, SPT 30, 60 mg/kg, 7 days, i.p. ↓ IL-6, TNF-α, IL-1β in

hippocampus and PFC ND [84]

Acanthopanax sessiliflorus
(Rupr. et Maxim.) Seem. Chiisanoside LPS-induced

depressive mice TST, FST 2.5, 5.0 mg/kg, 7 days, i.p. ↓ IL-6, TNF-α in serum
↓ NF-κB in hippocampus ND [85]

Polygala tenuifolia Willd. Senegenin CUMS mice TST, FST, SPT 4, 8 mg/kg, 21 days, i.g. ↓ NF-κB/NLRP3 signal pathway
in hippocampus ND [86]

Gastrodia elata Bl. Gastrodin CUS rats SPT, FST, Morris water test 50, 100, 200 mg/kg, 14 days, i.p. ↓ NF-κB and IL-1β expression
in hippocampus ND [87]

Cinnamomum cassia Presl Trans-Cinnamaldehyde CUMS rats Sucrose consumptions, FST 10 mg/kg, 3 weeks, p.o.
↓ IL-1β, IL-18, TNF-α in serum
↓ NF-κB/NLRP3 in PFC
and hippocampus

ND [28]

Lonicera japonica Thunb. Lonicera
japonicapolysaccharide CUMS mice OFT, EPM, TST, FST 30, 100 mg/kg, 21 days, i.g. ↓ NLRP3, IL-1β, caspase-1

in hippocampus ND [88]

Andrographis paniculata (Burm. f.) Nees Andrographolide CUMS mice FST, SPT, TST, Y maze 2.5, 5 mg/kg, 14 days, p.o. ↓ IL-1β, IL-6, TNF-α, NF-κB
signaling, NLRP3 in PFC ND [89]

Houpoea officinalis (Rehder and E. H.
Wilson) N. H. Xia and C. Y. Wu Honokiol LPS-induced

depressive mice FST, TST, 2.5, 5 10 mg/kg, 11 days, p.o.
↓ NF-κB activation
in hippocampus
↓ IL-1β, TNF-α, IFN-γ in serum

ND [90]

Gardenia jasminoides Ellis
/Crocus sativus L. Crocin LPS-induced

depressive mice SPT, FST, TST, OFT 20, 40 mg/kg, 7 days, i.p.

↓ TNF-α, IL-1β, IL-18 in BV-2
microglial cells and hippocampus
↓ NF-κB and NLRP3
in hippocampus

ND [91]

Perilla frutescens (Linn.) Britt.
Perilla aldehyde

CUMS rats SPT, FST, OFT 20, 40 mg/kg, 3 weeks, i.g. ↓ TNF-α, IL-1β in hippocampus
↓ NLRP3 in hippocampus ND [92]

LPS-induced
depressive mice TST, FST 60, 120 mg/kg, 7 days, i.g. ↓ TNF-α, IL-6 in serum and PFC ND [93]

Essential oil of Perilla frutescens CUMS mice OFT, TST, FST, SPT 3, 6, 9 mg/kg, 3 weeks, g.i. ↓ TNF-α, IL-6, IL-1 in plasma ND [94]

Polygonum aviculare L. Polygonum aviculare L. extract Restraint-stressed
mice FST, SPT, OFT 100, 200 mg/kg, 15 days, p.o. ↓ TNF-α, IL-6, IL-1β in the brain ND [95]

Hemerocallis fulva (L.) L. Ethanol extracts LPS-induced
depressive mice SPT 180 mg/kg, 7 days, p.o. ↓ NF-κB signaling pathway

in PFC ND [96]

Angelica sinensis (Oliv.) Diels Ferulic Acid CUMS mice SPT 20, 40, 80 mg/kg, 4 weeks, p.o.
↓ TNF-α, IL-6, IL-1β, microglial
activation, NF-κB and NLRP3
in PFC

ND [97]

Paeonialactiflora Pall Paeoniflorin IFN-α-induced
depressive mice SPT, OFT, TST, FST 10, 20, 40 mg/kg, 4 weeks, i.g.

↓ TNF-α, IL-6, IL-1β, IL-9, IL-10,
IL-12, MCP-1 in serum, mPFC,
vHi and amygdala

ND [98]
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Table 1. Cont.

Herb Herbal Constituent Animal Model Behavioral Test Administration
Dose/Time/Route of Treatment

Effects on Mediators of
Inflammation

Effects on
Hormones of the
HPA Axis

Reference

Xiaobuxin-Tang Total flavonoid extract LPS-induced
depressive mice TST, FST 25, 50, 100 mg/kg, 1 h, i.p. ↓ TNF-α, IL-1β in the barin ND [99]

Ginkgo biloba L. EGb761 LPS-induced
depressive mice FST, TST, SPT 50, 100, 150 mg/kg, 10 days, p.o.

↓ IL-6, TNF-α, IL-1β, IL-17A
in hippocampus
↑ IL-10 in hippocampus

ND [100]

Pueraria lobate (Willd.) Ohwi Puerarin CUS rats SPT, NSFT, FST 30, 60, 120 mg/kg, 20 days, i.g. ND ↓ CRH, CORT,
ACTH in serum [101]

Tribulus terrestris Linnaeus Tribulus Terrestris Saponins CMS rats OFT, SPT 0.375, 0.75, 2.25 g/kg, 4 weeks, i.g. ND ↓ CRH, CORT
in serum [102]

Rehmannia glutinosa (Gaert.) Libosch.
ex Fisch. et Mey. Ethanol extracts CUMS rats SPT 150, 300, 600 mg/kg, 3 weeks, p.o. ND ↓ CORT in serum [103]

Panax ginseng C.A. Meyer

Ginseng total saponins

LPS-induced
depressive
mice/RAW264.7 cells;
CUMS rats

FST, TST, SPT 200 mg/kg, 7 days, i.g.; 12.5, 25,
50 mg/kg, 6 weeks, i.g.

↓ IL-1β, IL-6, TNF-α, IDO mRNA
in hippocampus

↓ CORT in serum
↑ GR mRNA
in hippocampus

[104,105]

Ginsenoside Rg1 CSDS mice;
CUMS rats

Social interaction test, SPT,
FST, TST

20, 40 mg/kg, 34 days, i.g.; 5, 10,
20 mg/kg, 28 days, i.g.

↓ IL-6, TNF-α, IL-1β, microglial
activation, p-NF-κB
in hippocampus

↓ CORT level
in serum
↑ GR protein in
PFC and hip-
pocampus

[72,106]

Ginsenoside Rg3
LPS-induced
depressive mice;
CUS rats

TPT, FST, EPMT, NSFT,
OFT

20, 40 mg/kg, 3 days, i.g.; 10, 20,
40 mg/kg, 14 days, i.g.

↓ IL-6, TNF-α in plasma
↓ IL-6, IL-1β, IDO, microglial
activation, NF-κB pathway in
brain

↓ CRH, CORT,
ACTH in serum [107,108]

Salvia miltiorrhiza Bunge Salvianolic acid B CMS mice SPT, FST, TST 20 mg/kg, 3 weeks, i.p.

↓ IL-1β, TNF-α in hippocampus
and cortex
↑ IL-10, TGF-β in hippocampus
and cortex

↓ CORT
in plasma [109]

Aquilaria spp. Agarwood
Essential Oil

Restraint
stress-induced mice TST, FST 10, 20, 40 mg/kg, 10 days, i.p. ↓ IL-1β, IL-1α, IL-6 in serum

↓ CRF, CRF
receptor in cortex
↓ CORT, ACTH
in serum

[110]

Chaihu-Shugan-San Saikosaponin A CUMS rats SPT, NPFT, FST 25, 50 or 100 mg/kg, 4 weeks, p.o. ↓ IL-1β, IL-6, TNF-α
in hippocampus

↓ CRH in
hypothalamus
↓ GR mRNA
in hippocampus

[53]

Rhodiola rosea L. Salidroside OBX rats TST, FST, SPT 20, 40 mg/kg, 2 weeks, p.o.; 20,
40 mg/kg, 2 weeks, i.g.

↓ TNF-α, IL-1β in hippocampus
↓ IL-1β, IL-6, TNF-α, NF-κB
activation in PFC

↑ GR in
hippocampus
↓ CRH in
hypothalamus

[111,112]
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Table 1. Cont.

Herb Herbal Constituent Animal Model Behavioral Test Administration
Dose/Time/Route of Treatment

Effects on Mediators of
Inflammation

Effects on
Hormones of the
HPA Axis

Reference

Epimedium brevicornu Maxim. Icariin CMS rats; CSD mice SPT, FST, social avoidance
evaluations

20, 40 mg/kg, 35 days, p.o.; 25,
50 mg/kg, 28 days, i.g.

↓ IL-1β, TNF-α, NF-κB
signaling pathway,
NLRP3/caspase-1/IL-1β axis
activation in hippocampus

↓ CORT, IL-6
in serum
↑ GR in livers

[83,113]

Curcuma longa L. Curcumin CUMS rats; CUS rats SPT, FST, EPM, Shuttle-box
testing

40 mg/kg, 5 weeks, i.p.;
100 mg/kg, 4 weeks, i.g.; 2.5, 5,
10 mg/kg, 21 days, p.o.

↓ TNF-α, IL-1β, IL-6, NF-κB
in mPFC
↓ TNF-α, IL-1β, IL-6 mRNA,
NLRP3 in hippocampus

↓ CORT in serum
↑ GR mRNA
in serum

[114–116]

Polygonum cuspidatum Siebold et Zucc. Resveratrol

Ouabain-induced
depressive mice;
Hippocampal neuron
cells; CUMS rats

OFT, EPM, Barnes maze
performance, object
recognition, passive
avoidance experiments,
SPT, FST

10 mg/kg, 10 weeks, p.o.;
15 mg/kg, 21 days, i.g.

↓ IL-1β, IL-17A, IL-8, TNF-α in
serum and hippocampal
neuron cells

↓ CORT in serum
↓ CRF mRNA
in hypothalamus

[117,118]

Bupleurum chinense DC. Saikosaponin D
LPS-induced
depressive mice;
UCMS rats

SPT, TST, FST, OFT 1 mg/kg, 7 days, i.g.; 0.75,
1.5 mg/kg, 21 days, i.g.

↓microglia activation
in hippocampus
↓ IL-6, TNF-α, IL-1β in vivo
and vitro
↓ TLR4/NF-κB signaling
pathway in hippocampus

↓ CORT in serum
↑ GR in
hippocampus

[52,119]

Scutellaria baicalensis Georgi Baicalin
CUMS mice; CUMS
rats; CORT-induced
depressive-like mice

SPT, OFT, TST FST
60 mg/kg, 14 days, i.g.; 20,
40 mg/kg, i.g., 3 weeks; 10,
20 mg/kg, 21 days, i.g.

↓ IL-1β, TNF-α, IL-6, TLR4 in
the hippocampus
↓ GSK3β/NF-κB/NLRP3 signal
pathway in hippocampus

↓ GR mRNA,
GRα in
hippocampus

[120–122]
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Table 2. CHM formulas traditionally used in TCM for the treatment of depression, which exhibit anti-inflammatory activity and modulate the release of HPA axis hormones.

CHM Formula Plant Name/Ratio in Fixed
Combination Daily Human Dose Animal Model Behavioral Test

Administration
Dose/Time/Route of
Treatment

Effects on
Mediators of
Inflammation

Effects on
Hormones of
the HPA Axis

Reference

Xiaoyao Pills

Bupleurum chinense DC.,
Osmanthus fragrans var.
aurantiacus Makino, Paeonia
lactiflora Pall., Smilax glabra Roxb,
Atractylodes macrocephala Koidz.,
Mentha haplocalyx Briq., Zingiber
officinale Roscoe and Glycyrrhiza
uralensis Fisch.; 3:3:3:3:3:1:2:1.5

2 times/day LPS-induced
depressive mice/rats TST, FST, OFT, NSFT 0.4836, 0.93, 1.86 g/kg,

14 days, i.g.

↓ IL-6 in serum
and hippocampus
↓ TNF-α in
hippocampus and
cortex

ND [123–125]

Mahuang-Fuzi-Xixin
Decoction

Aconitum carmichaeli Pcbx.,
Ephedra sinica Stapf and Asarum
sieboldii Miq.; 3:2:1

3 times/day LPS-induced
depressive mice SPT, OFT, TST, FST 2.5, 12.5, 25 g/kg,

1 week, p.o.
↓ IL-1β, NLRP3
in hippocampus ND [126]

Jieyu Anshen
granule

Bupleurum abchasicum Manden.,
Ziziphus jujuba Mill., Dens
Draconis, Polygala tenuifolia
Willd., Lilium brownie var.
viridulum Baker, Atractylodes
macrocephala Koidz., Triticum
aestivum L., Angelica sinensis
(Oliv.) Diels, Acorus tatarinowii
Schott, Pinellia ternate (Thunb.)
Makino, Glycyrrhiza uralensis
Fisch., Gardenia jasminoides J. Ellis,
Arisaema Cum Bile, Curcuma longa
L., Smilax glabra Roxb., and
Fructus Jujubae.;
4:5:10:4:10:3:10:3:4:3:3:4:4:4:5:3

5 g;
2 times/day PSD rats OFT, SPT, water

maze test 1, 3 g/kg, 4 weeks, i.g.
↓ NF-κB signaling in
PFC and
hippocampus

ND [127,128]

Jiaotai wan Coptis chinensis Franch. and
Cinnamomum cassia.; 10:1 1.5–2.5 g/day LPS-induced

depressive mice TST, FST, SPT, OFT 4.2, 8.4 g/kg,
7 days, i.g.

↓ TNF-α, IL-6
in serum
↓ NF-κB signaling
in brain

ND [129,130]
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Table 2. Cont.

CHM Formula Plant Name/Ratio in Fixed
Combination Daily Human Dose Animal Model Behavioral Test

Administration
Dose/Time/Route of
Treatment

Effects on
Mediators of
Inflammation

Effects on
Hormones of
the HPA Axis

Reference

Shen-Qi-Jie-Yu
Decoction

Astragalus membranaceus (Fisch)
Bunge, Curcuma aromatica Salisb,
Ziziphus jujuba var spinosa
(Bunge) Hu ex HF Chow, Cornus
officinalis Sieb et Zucc
(Cornaceae), Codonopsis pilosula
(Franch) Nannf, Citrus reticulata
Blanco, Citrus medica L, and
Angelica sinensis (Oliv) Diels.;
10:7.5:7.5:7.5:6:5:5:5

1 time/day Postpartum
depressive rat model OFT, SPT, FST 1.25 g/mL, 1, 2,

4 weeks, i.g.

↓ IL-1β and IL-6
in serum
↓ IL-1RI and gp130
in hippocampus

ND [54]

Jieyuanshen
Decoction

Bupleurum chinense DC.,
Scutellaria baicalensis Georgi,
Ziziphusjujuba Mill. var. spinosa
(Bunge) Hu ex H.F. Chou,
Glycyrrhiza uralensis Fisch., Lilium
brownie F.E. Brown var. viridulum
Baker, and Pinelliaternata (Thunb.)
Breit.; 1:1.5:0.5:1:1:3

2 times/day CUS rats SPT, OFT 8.2, 16.3, 32.7 g/kg,
28 days, i.g. ND

↓ CORT, ACTH,
CRH in serum
↑ GR in
hippocampus

[131]

Zhizihoupo
Decoction

Gardenia jasminoides Ellis, Citrus
aurantium L., and Magnolia
officinalis Rehd. et Wils.; 1:1:7

2 times/day CUMS rats SPT, FST, OPT 3.66, 7.32, 14.64 g/kg,
3 weeks, i.g. ND ↓ ACTH, CORT

in plasma [132]

Shuyu San

Bupleurum chinense DC., Curcuma
aromatica Salisb., Mentha
canadensis Linnaeus, Gardenia
jasminoides Ellis, Smilax glabra
Roxb., Polygala tenuifolia Willd.,
Acorus gramineus Soland.,
Ziziphus jujuba var. spinosa
(Bunge) Hu ex H. F. Chow., and
Albizia julibrissin Durazz.;
5:7.5:3:5:5:5:5:7.5:5

2 times/day UCMS rats TST, FST 2.5, 7.5, 25 g/kg,
3 weeks, g.p. ND ↓ CRH, ACTH,

CORT in serum [133]

Chaihu-Shugan-San

Bupleurum chinense DC., Citrus
reticulata Blanco, Ligusticum
sinense ‘Chuanxiong’, Cyperus
rotundus L., Citrus × aurantium
Linnaeus, Paeonia lactiflora Pall.,
and Glycyrrhiza uralensis Fisch.;
4:4:3:3:3:3:1

2 times/day ApoE-/- mice; UMS
rats

SPT, OFT, LDET, TST
3, 9 g/kg, 16 weeks,
i.g.; 5.9 g/kg, 2 weeks,
i.g.

↓ TNF-α, IL-1β, IL-6
in plasma and
hippocampus

↓ CRH, ACTH
in plasma

[124,134–
137]
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Table 2. Cont.

CHM Formula Plant Name/Ratio in Fixed
Combination Daily Human Dose Animal Model Behavioral Test

Administration
Dose/Time/Route of
Treatment

Effects on
Mediators of
Inflammation

Effects on
Hormones of
the HPA Axis

Reference

Kaixin San

Panax ginseng C.A. Meyer, Poria
cocos (Schw.) Wolf, Polygala
tenuifolia Willd, and Acorus
tatarinowii Schott.; 1:1:25:50 or
3:2:2:3 or 1:1:1:2

2 times/day CUMS rats; CUMS
rats SPT

338, 676 mg/kg,
3 weeks, p.o.; 3,
10 g/kg, 6 weeks, i.g.

↓ COX-2, IL-2, IL-6,
TNF-α in serum
and hippocampus
↑ IL-10, IFN-γ in
hippocampus
and serum

↓ CRH, ACTH,
CORT in serum
and organs

[29,138–
140]

Si-Ni San

Citrus aurantium L., Bupleurum
chinense DC., Paeonia lactiflora
Pall., and Glycyrrhiza uralensis
Fisch.; 2:2:3:2

2 times/day Reserpine-induced
rats; Mice FST, SPT, OFT, TST

0.75, 1.5, 3.0 g/kg,
2 weeks, p.o.; 325, 650,
1300 mg/kg, 60 min,
p.o.

↓ IL-1β, IL-6, TNF-α
in serum, liver, and
hippocampus
↓ NF-κB in
hippocampus

↓ CORT
in serum [16,17,141]

Banxia houpo
Decoction

Pinellia ternate (Thunb.) Breit.,
Smilax glabra Roxb, Houpoea
officinalis (Rehder and E. H.
Wilson) N. H. Xia and C. Y. Wu,
Zingiber officinale Roscoe, and
Folium Perillae; 4:4:3:3:2

2 times/day CUMS rats SPT 3.29, 6.58 g/kg,
6 weeks, i.g.

↓ NLRP3 activation
in livers,
hypothalamus, PFC

↓ CORT, CRF
in serum [15,142]

Notes: The conversion ratio of CHM formulas between human and animals should be calculated according to the following formulas: human dose (mg/kg) to mice dose (mg/kg): multiply by 12.3; human dose
(mg/kg) to rat dose (mg/kg): multiply by 6.2 [143]. ↓ means decrease; ↑ means increase. Abbreviation in tables: CUMS, chronic unpredictable mild stress; UCMS, unpredictable chronic mild stress; CSD, chronic
social defeat; CSDS, chronic social defeat stress; CMS, chronic mild stress; SDM, social defeat model; CUS, chronic unpredictable stress; PSD, poststroke depression; LPS, lipopolysaccharides; OBX, olfactory
bulbectomized; CORT, corticosterone; GR, glucocorticoid receptor; ACTH, adrenocorticotropin; CRF, corticotrophin releasing factor; CRH, corticotrophin releasing hormone; SPT, sucrose preference test; TST, tail
suspension test; OFT, open field test; FST, forced swimming test; EMP, elevated plus maze; NSFT, novelty suppressed feeding test; NIHT, novelty induced hypophagia test; LDET, light dark exploration test; IL,
interleukin; TNF-α, tumor necrosis factor-α; IFN-γ, Interferon gamma; NLRP3, NOD-like receptor protein 3; COX-2, cyclooxygenase-2; NF-κB, nuclear factor kappa B; TLR4, toll-like receptor 4; IDO, indoleamine
2,3-dioxygenase; GSK3β, Glycogen synthase kinase-3β; PFC, prefrontal cortex; vHi, ventral hippocampus; ND, not determined; i.p., intraperitoneal; i.g., intragastrically; p.o., peros; g.p., gastric perfusion; g.i.,
gastric intubation.
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4. CHM Modulation of the HPA Axis

It is well known that hyperactivation of the HPA axis in the neuroendocrine system,
induced by acute or chronic stress, is a common feature in depressive patients. In response
to these somatic stimuli, corticotrophin releasing factor (CRF) or corticotrophin releasing
hormone (CRH) is secreted from the median paraventricular nucleus in the hypothalamus
and then activates the pituitary to synthesize and release adrenocorticotropic hormone
(ACTH). ACTH further activates the adrenal cortex to release glucocorticoid (corticosterone
(CORT) or cortisol), which, in turn, regulates the HPA axis through a negative feedback
loop at multiple levels: directly on elements of the axis and indirectly through the PFC,
amygdala, and hippocampus [144–146] (Figure 1). Studies have demonstrated that hyper-
activity of the HPA axis reduces synaptic function, atrophies neurons, and subsequently
results in depressive behaviors [147]. Additionally, excessive CRF secretion induced by the
desensitization of CRF pituitary receptors, leads to high concentrations of CRF in the CNS,
which contributes to the risk of depression [148,149]. Moreover, the abnormal activation
of the HPA axis can also be induced by the downregulation of glucocorticoid receptors
(GR) in the hippocampus [150]. These studies have provided several pharmacological
targets to suppress stress-induced hyperactivation of the HPA axis, but attempts to de-
velop novel agents directed toward the HPA axis in the treatment of depression have not
been successful.

On the other hand, preclinical studies have demonstrated that many CHM herbal
constituents or formulas can attenuate depressive-like symptoms through the modulation
of the activity of the HPA axis in depressive animal models [101,102,131–133]. These
findings have provided the molecular basis for understanding the mechanism of action
of CHM in the treatment of depression, by which CHM constituents or formulas produce
antidepressant activities by specifically acting on modulators of the HPA axis. In this
section, we review the roles that CHM play in the modulation of the activity of the HPA axis.
Several representative CHM constituents that have been demonstrated to target the hormone
receptors in the HPA axis are shown in Figure 3. Other CHM constituents or formulas that
modulate the release of HPA axis hormones are listed in Tables 1 and 2, respectively.Pharmaceuticals 2021, 14, x FOR PEER REVIEW 17 of 32 
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4.1. CRF Antagonists

CRF is commonly considered to be a vital factor in response to stress at the neural,
endocrinological, and immunological levels [9]. It is noticeable that CRF is involved in the
structural integrity of the brain and in the regulation of neurotransmitter transmission [151].
Studies have demonstrated that CRF antagonists could be potential antidepressants that
alleviate depressive symptoms through the suppression of the hyperactivation of the HPA
axis [152].

Quercetin, a flavonoid abundantly distributed in many herbs, has been shown to
exhibit anxiolytic- and antidepressant-like activities in animal models by antagonizing the
effect of CRF [153]. In this study, the administration of quercetin (20 or 40 mg/kg, 60 min,
p.o.) significantly reduced the levels of CORT and adrenocorticotropic hormone in plasma
and the mRNA expression of CRF in the hypothalamic region in water immersion-restraint
rats. It also demonstrated that quercetin suppressed CRF expression, probably through the
modulation of the DNA-binding activity of the glucocorticoid receptor and the phospho-
rylation of the cyclic adenosine 3′,5′-monophosphate (cAMP) response element-binding
protein and extracellular signal-regulated kinase 1/2 in the hypothalamic region [154].
While this study has provided experimental evidence that quercetin acts as a modulator
antagonizing the effect of CRF in the HPA axis, the specific drug–target interaction remains
to be uncovered.

4.2. Corticotrophin Releasing Factor 1 (CRF1) Receptor Antagonists

After its release, CRF binds to two major receptors: CRF1 and CRF2. It is noteworthy
that the CRF1 receptor is widely distributed in the brain, while the CRF2 receptor is highly
expressed in peripheral tissues [9,155]. Increasing evidence has suggested that an elevated
CRF1 receptor function, rather than the CRF2 receptor, is involved in the pathogenesis of
anxiety and depression [156]. Furthermore, several lines of preclinical evidence has shown
that knockout of the CRF1 receptor in mice produces anti-anxiety effects [9], while CRF2
receptor-deficient mice exhibit increased anxiety- and depressive-like behaviors [9,157,158].
Thus, the CRF1 receptor seems to be a key receptor for the HPA axis in the pituitary in
response to stress, and the blocking CRF1 receptor has been proposed to be an effective
therapeutic approach in depression treatment.

In response to stress, CRF initiates the activity of the HPA axis through by binding to
the CRF1 receptor in the anterior pituitary and thus activating adrenocorticotropic hormone
secretion [159]. Clinical studies have suggested that the CRF1 receptor plays a crucial role
in individuals’ risk of developing depression [151]. It is noteworthy that CRF1 receptor
antagonists have been tested for their efficacy in depression treatment, but the results
were inconsistent. One study has shown that the administration of NBI-30775/R121919
(40–80 mg/day for 30 days), a CRF1 receptor antagonist, significantly attenuated depressive
symptoms in patients [160]. However, in another study, the authors did not observe the
antidepressant effects of CRF1 receptor antagonists, such as CP-316311 [161]. It has also
been demonstrated that some CRF1 receptor antagonists, including antalarmin, CP154,526,
and R121919, did not produce antidepressant-like effects in rat models [162]. These studies
have argued that treatment with CRF1 antagonists is only beneficial for depressive patients
with CRF overactivity [160,161].

CHM constituents have been shown to produce antidepressant effects in animal or
cell models by antagonizing the CRF1 receptor [9,110,163]. The activity of three major
constituents isolated from St. John’s wort, hypericin, pseudohypericin, and hyperforin
against the CRF1 receptor has been examined by measuring their effects on CRF-stimulated
cAMP formation [163]. This study showed that only pseudohypericin (10 µM) selectively
inhibits CRF1 receptor activity, but hypericin and hyperforin antagonizes both CRF and
calcitonin [163]. To our knowledge, pseudohypericin is the first herbal molecule to be
identified as a CRF1 receptor antagonist.
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4.3. GR Agonists or Antagonists

GR is a glucocorticoid receptor that is distributed in the HPA axis. Hyperactivation
of the HPA axis can impair GR function because of the elevated cortisol and glucocorti-
coids [164]. Additionally, GR dysfunction may also result from decreased glucocorticoid
binding to GR or decreased GR expression in the HPA axis [165,166]. It has been observed
that, in comparison with healthy controls, GR mRNA levels are decreased in the brain
regions of depressed patients in postmortem studies [167,168]. Another study showed that
treatment with antidepressants can increase GR binding and GR mRNA expression in the
brain, thus ameliorating depressive symptoms [169]. Thus, the upregulation of GR expres-
sion and function through, for example, a GR agonist, has been proposed to be pivotal
for the therapeutic mechanism of antidepressants. However, a clinical study involving
490 patients with depression indicated that either an increased or decreased GR mRNA
results in a greater susceptibility to depression [170]. It is noticeable that polymorphisms
of the GR gene play a critical role in the pathogenesis of depression [170]. Hence, GR
antagonists have also been recognized to be potential modulators in the development of
antidepressants. Clinical studies have shown that a GR antagonist, mifepristone, amelio-
rates psychotic symptoms and cognitive deficits in patients with depression or bipolar
disorders [171,172]. Preclinical studies have also demonstrated that GR deficits in the
PFC of mice resulted in depressive-like behaviors [173], which can be ameliorated by the
administration of mifepristone [173]. However, in a clinical Phase III study, mifepristone
was found to have disappointing effects in terms of the effective reduction of psychotic
symptoms in depression sufferers [174], and its abortifacient properties severely compro-
mised its use in women with depression [175]. Thus, mifepristone has not been recognized
as an antidepressant drug on the market.

CHM herbal constituents or formulas have been reported to attenuate depressive
behaviors through the modulation of stress-impaired GR in animal models. The adminis-
tration of baicalin (20 mg/kg, 21 days, p.o.), a major constituent in Scutellaria baicalensis
Georgi, has been demonstrated to significantly attenuate CORT-induced behavioral abnor-
malities through the upregulation of GR mRNA and GRα expression in the hippocampus
in mice [122]. In addition, a CHM formula, known as the Huang-Qin-Hua-Shi decoction
(1 mL/100 g, 3 weeks, i.g.), has also been shown to block the high-temperature- and
high-humidity-stress-induced upregulation of hypothalamus GR mRNA expression in rats,
which is similar to the action of the GR antagonist, mifepristone [176]. While these studies
have demonstrated that CHM constituents or formulas exert antidepressant-like activities
through their actions on GR, the molecular mechanisms and specific acting proteins are
still poorly understood.

5. CHM Effects on the Neuroendocrine-Immune Network

As mentioned above, either the neuroimmune or neuroendocrine system plays a piv-
otal role in the pathogenesis of depression, but neither of these individual systems is fully
responsible for the pathogenesis of depression. Indeed, clinical studies have demonstrated
that abnormal neuroinflammatory responses of the immune system and dysfunction of
the HPA axis commonly co-occur in depressive patients [177]. In addition, preclinical evi-
dence has suggested that crosstalk exists between two biological systems through neural,
endocrinal, and immunological interactions in the pathogenesis of depression (Figure 1).

Stress activates the HPA axis and sympathetic nervous system, resulting in neuroen-
docrinal and immunological changes, which, in turn, promote detrimental neuroinflamma-
tory reactions [7,177–181]. Glucocorticoid immunomodulatory action is a key interaction
between the HPA axis and neuroimmune system, which allows for coping with any situa-
tion that could challenge homoeostasis in the pathogenesis of depression [182,183]. Specifi-
cally, glucocorticoids exert immunomodulatory effects, primarily through GR-mediated
inflammatory factors, including NF-κB and activator protein-1 [184–186]. Meanwhile,
proinflammatory cytokines can also regulate the HPA axis by disturbing the GR func-
tion mediated by inflammatory signaling components, such as p38MAPK, NF-κB, and
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cyclooxygenase-2 (COX2) [8,47]. All MAPKs are potential targets of the anti-inflammatory
actions of glucocorticoids through the inhibition of their phosphorylation, whereas proin-
flammatory cytokines induce the abnormal activation of MAPK signaling, which results
in the alternation of GR phosphorylation and activity [8]. Furthermore, a chronic block-
ade of GR reverses GR dysfunction and decreases depressive-like behaviors induced by
LPS [187,188].

Additionally, the activity of the HPA axis is also regulated by proinflammatory cy-
tokines, such as IL-6, IL-1β, and TNF-α, which can easily cross BBB and exert their effects
through various cytokine receptors [9]. In Li’s study, elevated CORT levels were observed
in the plasma and hippocampus after the administration of LPS [189]. It has also been
indicated that an intraperitoneal injection of IL-1 administered to rats activated the HPA
axis by increasing the ACTH and corticosterone levels in plasma [190]. On the other
hand, it has been demonstrated that the levels of TNF-α and IL-6 were upregulated by
an intraperitoneal injection of CRF [191]. It is noteworthy that neuroinflammation in
stress-induced animal models can be attenuated by the CRF1 antagonist, SSR125543 [192].
These findings have suggested that the release of CORT, ACTH, and CRF can be induced
by proinflammatory cytokines and, conversely, proinflammatory cytokines can also be
regulated by the modulation of HPA axis hormones.

The HPA axis has been shown to be involved in microglial activation. Both CRF recep-
tors and GR are abundantly distributed in microglial cells [193–195], and CRF stimulates
release of TNF-α in cultured microglial cells [196]. High levels of glucocorticoids have been
shown to participate in both proinflammatory cytokine production and the sensitization
of microglial cells [6,197]. In addition, glucocorticoids induce microglial proliferation in
restraint stress-induced mice [197]. However, due to a lack of correlation between the HPA
axis and immune measures, the specific function of the HPA axis in microglial physiology
and the mechanism by which chronic cytokine exposure influences the HPA axis function
remains to be uncovered [198,199]. Overall, these studies have indicated that the reciprocal
regulation between the HPA axis and neuroimmune system represents a common feature
in the pathogenesis of depression.

It has often been reported that a CHM herbal constituent exhibits multiple effects in the
pathogenesis of depression [200–202]. Several representative CHM constituents that have
been shown to exert multiple actions on the neuroendocrine-immune network are shown
in Figure 4. Ginsenoside Rg3 (20 or 40 mg/kg, 3 days, i.g.) was isolated from Panax ginseng
C.A. Meyer has been shown to effectively suppress LPS-induced neuroinflammation by
reducing the proinflammatory cytokines (IL-1β, IL-6, and TNF-α), NF-κB signal pathway,
and microglial activation in the brain [107]. It has also been reported that Rg3 (20 or
40 mg/kg, 14 days, i.g.) attenuated the hyperactivation of the HPA axis by reducing CRH,
CORT, and ACTH in CUS rats [108]. Furthermore, it has been shown that total ginsenosides
(200 mg/kg, 7 days, i.g.) significantly decrease serum CORT levels, increase GR mRNA
expression, and reduce IL-1β, IL-6, TNF-α, and IDO in the hippocampus of LPS mice or
CUMS rats [104,105].

Curcumin, a diarylheptanoid from Curcuma longa L., is another example of CHM
constituents that possess multiple actions on the neuroendocrine-immune network. Xu et al.
showed that curcumin (5 or 10 mg/kg, 21 days, p.o.) produces antidepressant activity by
suppressing the aberrant activation of the HPA axis caused by an elevated serum CORT
level and GR mRNA expression in CUS rats [116]. Interestingly, a recent study has shown
that curcumin (100 mg/kg, 4 weeks, i.g.) significantly reduces the mRNA expression
of proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, and suppresses the
activation of NF-κB signaling and the NLRP3 inflammasome in CUMS rats [115].

The phenomenon that one CHM constituent exerts multiple actions on several biolog-
ical systems has been understood poorly because of the lack of experimental evidence to
define its pharmacological profiles and specific interactions with its targeting proteins [12].
It is most likely the case that crosstalk exists between these biological systems or that one
CHM constituent acts non-selectively on multiple targets [12]. This makes it difficult to
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understand the mechanisms of action of CHM constituents at the molecular level. Thus,
more in-depth studies are required to uncover the specific interactions between these CHM
constituents and their targeting proteins. Nevertheless, multi-target actions of these CHM
constituents provide the scientific basis for interpreting their system-wide mechanisms
of action.
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In addition to these CHM constituents, many CHM antidepressant formulas have
been shown to possess multiple underlying mechanisms of action, particularly on the
HPA axis and neuroimmune system (Table 2). This is shown in the studies on Kai-Xin-
San (KXS), an empirical antidepressant formula, which consists of Panax ginseng C.A.
Meyer, Poria cocos (Schw.) Wolf, Polygala tenuifolia Willd, and Acorus tatarinowii Schott [203].
A chronic administration of KXS (338 or 676 mg/kg, 3 weeks, i.g.) has been shown
to produce antidepressant-like activity in CUMS-induced animal models through the
reduction of COX-2, IL-2, IL-6, and TNF-α expression levels and increase in IFN-γ and
IL-10 production [29,138,204]. Notably, in other studies, KXS (0.9 or 2.7 g/kg, 5 weeks, i.g.)
has also been reported to modulate the activity of the HPA axis by reversing the elevated
ACTH level in CMS-induced mice [138,205]. Taken together, these studies indicate that the
underlying mechanisms of KXS, as an antidepressant formula, include its actions on the
neuroendocrine-immune network.

In comparison with single CHM herbal constituents, the multidrug feature of a CHM
antidepressant formula confers its pharmacological actions on multiple targets toward di-
verse pathological systems. The antidepressant actions of KXS are triggered by its numerous
bioactive constituents within the formula. For instance, ginsenosides Rg1, Rg3, Rh1, Rh3,
Rb1, Rk1, and Rf from Panax ginseng C.A. Meyer have been demonstrated to exhibit dual
actions against neuroinflammation and hyperactivation of the HPA axis [106,108,206–215],
while 3,6’-disinapoyl sucrose and the oligosaccharide esters-enriched fraction, YZ50, from
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Polygala tenuifolia Willd have been shown to possess bioactivity that de-hyperactivates the
HPA axis [216–218]. Additionally, poricoic acid A, isolated from Poria cocos (Schw.) Wolf,
has been reported to produce anti-inflammatory effects by inhibiting prostaglandin E2
and NO production through a decrease in COX-2 and iNOS expression, respectively [219].
β-Asarone, a major bioactive constituent of Acorus tatarinowii Schott, has also been demon-
strated to be an anti-inflammation agent, as it downregulates TNF-α, IL-1β, and IL-6
expression [220]. While the molecular interactions between these herbal constituents and
their pharmacological targets remain to be uncovered, multiple actions of these constituents
in KXS toward multiple biological systems, such as the neuroendocrine-immune network,
represent an excellent example of CHM antidepressant formulas in the systematic treat-
ment of depression. Likewise, many other CHM antidepressant formulas have been shown
to possess multiple mechanisms of action on diverse biological systems, particularly the
neuroendocrine-immune network, in the pathogenesis of depression (Table 2).

Dysfunction of the neuroimmune or neuroendocrine system results in profound effects
on the CNS through the neuroendocrine-immune network. To uncover the system-wide
mechanism of action of KXS, a study has been conducted to assess the protein expression
in serum samples of depressive patients, before or after Shen-Zhi-Ling (a proprietary tablet
formulated from KXS) treatment (3.2 g/day, 8 weeks, i.g.), using quantitative proteomic
analysis [221]. Of a total of 878 serum proteins, the abnormal expression of 12 proteins in
depressive patients could be reversed by treatment with KXS. Functional analysis further
revealed that these proteins are implicated in platelet activation, immune regulation, and
lipid metabolism. Moreover, a quantitative proteomic study has also been performed to
evaluate the hippocampal proteins of CMS-induced rats in response to KXS administration
(0.6 g/kg, 14 days, i.g.) [222]. This study identified 33 hippocampal proteins that are
associated with KXS treatment. Protein–protein interaction network analysis showed
that these proteins can be classified into several categories that participate in glutamate
signaling, synaptic plasticity, the metabolic process, the cell survival process, and the BDNF,
mTORC1, and cAMP pathways. These studies indicated that KXS exhibits antidepressant
actions through targeting numerous proteins across multiple biological systems, providing
a network or systems pharmacology approach to understanding the mechanism of action
of KXS at the systems level.

6. Discussion

Numerous empirical CHM antidepressant formulas are often used in clinical practice
for the treatment of depression (Table 2). To elucidate the mechanism of action by which
a CHM formula exhibits antidepressant-like activity through the modulation of multiple
biological factors across divergent systems is an important research direction. Two major
pharmacological approaches are commonly employed in the analysis of the mechanism of
action of a CHM formula on the biological factors in the pathogenesis of depression. One
is the molecular approach, which uses single bioactive constituents from an herb used in a
CHM antidepressant formula to explore their specific actions on potential pharmacological
targets. The studies that employ the molecular approach have provided a scientific basis
for revealing the mechanism of action of a CHM antidepressant herb or formula at the
molecular level (Figures 2–4 and Table 1). Because the constituent complexity and drug–
drug interactions of an entire formula often prevent the molecular mechanism of action
from being uncovered, the molecular approach plays a critical role in our understanding
of the drug–target interactions in depression treatment. However, the effects of single
molecular constituents cannot exactly reflect the action of a CHM composite formula,
which contains numerous bioactive constituents that are proposed to simultaneously act
on diverse pharmacological targets across biological systems. Hence, it is necessary to
integrate the mechanism of action from the molecular level into the systems level in order
to understand the role of CHM in depression treatment.

Another approach is the systems pharmacology approach, which involves uncovering
the system-wide mechanism of action of an entire CHM antidepressant formula. Systems
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pharmacology studies drugs, drug targets, and drug effects at the systems level and
reveals all responses to the pharmacological actions of drugs across various biological
systems [223]. The systems pharmacology approach has recently been applied in studies
of CHM antidepressant formulas and shown to be a powerful tool for understanding the
system-wide mechanism of action (Table 2 and Section 5). It aims to create a network of
the biological factors within a specific system or across diverse systems in response to the
pharmacological actions of an entire CHM formula. Several advanced analysis techniques,
including DNA or RNA microarray [200,224–228] and quantitative proteomics [229], have
been used to identify the potential targeting proteins that are associated with a typical
CHM formula. While systems pharmacology-based studies provide a holistic point of view
on the pharmacological actions of a given CHM formula, they cannot provide detailed
information on molecular drug–target interactions. In addition, the targeting protein
candidates resulting from the system pharmacology-based analysis still require further
validation by the molecular approaches. While these two approaches are commonly used
in preclinical studies, neither can provide a holographic picture of the mechanism of action
of a CHM formula in the treatment of depression. Therefore, it is vital to integrate the two
approaches into the study of CHM in order to understand the mechanism of action of a
CHM antidepressant formula in its entirety.

In summary, the neuroimmune or neuroendocrine system not only exhibit profound
effects on the CNS, but also reciprocally regulate one another through the neuroendocrine-
immune network. Thus, the effective approach to the treatment of depression induced
by the dysfunction of the neuroendocrine-immune network should concurrently target
multiple pathological factors across these biological systems. Preclinical studies have
demonstrated that the holistic, multidrug, and multitarget CHM represents an excellent
example of systems medicine in the treatment of depression. Therefore, we expect that
CHM antidepressant formulation will be accepted broadly as an effective medication for
the systematic treatment of depression.
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