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ARTICLE INFO ABSTRACT

Keywords: Apparently random events in nature often reveal hidden patterns when analyzed using diverse and robust sta-

Power law tistical tools. Power law distributions, for example, project diverse natural phenomenon, ranging from earth-

1]\)/[0% F’feha"‘l?‘ quakes to heartbeat dynamics into a common platform of self-similarity. Animal behavior in specific contexts has
ultifractality

been shown to follow power law distributions. However, the behavioral repertoire of a species in its entirety has
never been analyzed for the existence of such underlying patterns. Here we show that the frequency-rank data of
randomly sighted behaviors at the population level of free-ranging dogs follow a scale-invariant power law
behavior. It suggests that irrespective of changes in location of sightings, seasonal variations and observer bias,
datasets exhibit a conserved trend of scale invariance. The data also exhibits robust self-similarity patterns at
different scales which we extract using multifractal detrended fluctuation analysis. We observe that the proba-
bility of consecutive occurrence of behaviors of adjacent ranks is much higher than behaviors widely separated in
rank. The findings open up the possibility of designing predictive models of behavior from correlations existing in
true time series of behavioral data and exploring the general behavioral repertoire of a species for the presence of
syntax.

Scale invariance
Fractal patterns

1. Introduction existence of universal principles within the seemingly arbitrary behav-
ioral repertoire of a species. While specific behavioral categories like

Simon de Laplace, one of the pioneers of probability theory, pro- locomotion, foraging and vocalizations have been subjected to such

pounded that events look random to us only because we are limited by
our ability to grasp the numerous hidden factors that influence, and
thereby affect such events [1]. An interesting commonality that has
emerged across studies on many apparently disparate phenomena, from
the distributions of species in specific habitats, city sizes, world pop-
ulations, web-traffic, words in human languages to connections between
nodes in social networks, is the presence of a power-law distribution [2].
Power-law distributions represent classic cases of order in chaos and are
often considered as a signature for the presence of underlying mecha-
nisms that lead to the observed data [3]. The analysis of power-law and
scaling relationships in behavioral data can be used to identify the
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analysis, to the best of our knowledge, the entire behavioral repertoire of
a species has never been tested for such patterns.

The behavioral repertoire of a species might contain hidden patterns,
which carry important information that is not revealed easily to an
observer. In fact, power-law distributions have been observed in various
behaviors in the context of movement, such as foraging patterns of ani-
mals [4, 5], free-flight of Drosophila [6], swarming behavior [7], and even
human mobility [8]. These behavioral patterns can be approximated by
Lévy flights [5, 7], and also display scale-free characteristics. While the
scale-free nature of power-law distributions in the living world is quite
ubiquitous, a scale invariant fractal-like nature has also been reported in
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a few observations of behavior, such as sleep-wake cycle transitions [9],
social behavior of wild chimpanzees [10], diving patterns in seabird
foraging [11], etc. A study on Japanese macaques showed that the
behavioral patterns of these primates display a fractal nature, and para-
site load affects the level of complexity of their behavior [12].

The fractal nature of behavioral signatures can thus be used to un-
derstand the behavioral patterns of animals, as well as to identify
anomalous behavior in species of interest. However, monofractal mea-
sures that are characterized by a single scaling exponent are rarely
observed in natural phenomena, which rather exhibit more complex
scaling behavior comprising of a multitude of scaling exponents corre-
sponding to many constituent interwoven fractal subsets. This special
class of complex self-affine processes — termed as multifractals [13] —
have been observed and studied in a wide variety of natural phenomena,
structures and processes, which include the physiological time series of
heartbeats [14], the sun's magnetic field dynamics [15], turbulence
phenomenon [16], swimming behavior in zooplanktons [17], and so on.
The signatures of multifractality are more robust in cases where its origin
is due to a broad probability distribution, so that it cannot be removed by
random shuffling of the fluctuation series, as is the case for statistical
fractals. Thus, in the case of the former, the quantification of multi-
fractality provides potentially invaluable information on the underlying
complex correlations and scaling behavior — which can enable entirely
new perspectives in the analysis of any natural phenomena exhibiting
self-similarity [18, 19].

Human languages have been known to demonstrate similar proba-
bilistic distributions. Specifically, the frequency of occurrence of the
words from a piece of text mostly follow a power-law distribution
obeying the Zipf-Mandelbrot law [20]. Interestingly, this trend remains
conserved and consistent across all known human languages and has
been used to assign language-like property or lack thereof to other
analogous datasets as diverse as inscriptions from ancient civilizations
such as the Indus valley script [21], animal vocalizations like dolphin
whistles [22] and bird songs [23], behavioral displays and sequences
pertaining to courtship like the “push-up” displays of lizards [24] and
even genetic distribution in an organism [25]. Animal communication
systems are often a complex mix of visual, auditory, tactile and olfactory
signals, and these modes of communication can be either used singly or
in combination by individuals, depending on context. Behavioral dis-
plays are an important form of animal communication, which have been
extensively studied in the context of mating and aggression in a diverse
range of species [26, 27, 28]. While most mammals and birds are known
to use vocalizations for communication — postures, gaits and other be-
haviors also play important roles, especially in social interactions. For
example, ritualized aggression can be achieved through postures, thereby
avoiding overt display of active aggression, and helping in the mainte-
nance of social hierarchies [29, 30]. We wondered whether the repertoire
of behaviors, both interactive and non-interactive, shown by individuals
of a species, might be the equivalent of a corpus in the context of human
languages, and thus, could be expected to follow the Zipf-Mandelbrot
law. This was a curiosity-driven question, and not an attempt to prove
that behavioral profiles of animals are akin to any spoken or written
language. However, we assumed that if behavioral repertoires indeed
showed language-like tendencies, this could suggest inherent similarities
in communication systems of animals and could lead to further explo-
rations for syntax and similar structures within the behavioral profiles of
species.

In this study, we explore this paradigm in dogs - the first species to
have been domesticated by humans and having a long history of co-
evolution with our species [31]. Free-ranging dogs, which contribute to
nearly 80% of the world's dog population, can provide interesting in-
sights into the biology of dogs in general, and the evolution of the
dog-human relationship in particular [32]. Many studies attempt to un-
derstand the communication between dogs and humans using vocaliza-
tions and gestures [33, 34, 35, 36]. Free-ranging dogs are social, with
groups displaying interesting cooperation-conflict dynamics [37, 38] and

Heliyon 7 (2021) e07243

individuals showing various degrees of socialization with humans [39].
In India, the free-ranging dogs are ubiquitous, experiencing a wide va-
riety of interactions with humans, from very positive to very negative
[36, 40]. They spend a large proportion of time in inactivity [41] and
their activity patterns are not easy to predict.

Using random, population-level sampling of behavior, we investi-
gated whether the free-ranging dog behavioral repertoire has any
inherent language-like pattern and also tested for other properties like
the Pareto Principle and Shannon Entropy which are likely to be found in
such datasets. The Pareto Principle indicates that the majority of the
observed data (80%) is likely to be composed of 20% of the type of ob-
servations, while the Shannon Entropy is a measure of information the-
ory used to estimate the variability in the possible outcomes of such data.
Accordingly, we hypothesized that the higher-ranking behaviors or
rarely sighted behaviors will contribute in lesser proportion to the data
but will provide more information about the system under study. The
study is designed for a better understanding of the non-verbal commu-
nication system of these animals and to gauge its relevance in informa-
tion theory and the possibility of building predictive models through
probabilistic tools and parser evaluation of the observed data.

2. Results

We obtained data on 5669, 1308 and 506 random sightings of free-
ranging dogs during three different sampling bouts in various parts of
India (SupplementaryTable S2). The number of behaviors observed in
these three data sets were 83, 36 and 29 respectively, summing up to a
total of 93 unique behaviors in the combined data set. The frequency of
observed behaviors plotted against their ranks showed power-law dis-
tributions of the nature P(r) = r~¢, with the log-log plots having slopes of
a ~1.73 (Table 1; Figure 1a; 1b). Thus, though the behavioral repertoire
showed a general power-law distribution, it did not follow the Zipf-
Mandelbrot law, which requires the data to fit a slope of -1 in the log-
log scale. Though the data did not seem to follow one of the prime sig-
natures of linguistics, it did show agreement with the Pareto principle
[42], with 80% of the cumulative proportion of the time activity budget
being explained by 20% of the observed behaviors (on a normalized
scale) (Supplementary FigureSla). The Shannon entropy of the behav-
ioral data scaled with the frequency of occurrence of the behaviors
(Supplementary Figure S1b), suggesting that the least frequent behaviors
provided the most information about the system, which is also true for
languages [43].

Since power-laws are typically scale-invariant, we checked for
scaling in our data using the three data sets and all their possible
combinations (Supplementary Table S1). Indeed, our data showed
scale-invariance, with the slopes being very similar (range: -1.717 to
-1.822), in spite of the widely differing population sizes (Figure 1c;
1d). However, the scaling behavior was rather intriguing as the slope
a was not uniform throughout the entire range of rank r (Figure 2a),
with different values for aover three selected r -ranges: low (r =
1to21), intermediate (r = 21 to 56) and high (r = 51 to 93). This is in
contrast to the value obtained for a (~ 1.81)while fitting over the
entire range of the ranks for the combined data set. The corre-
sponding representative behavioral fluctuation series £(n)numerically
generated using a single power-law probability approximation of the
frequency vs rank data was then subjected to MFDFA analysis. The
derived generalized Hurst exponent h(q)exhibited a bi-fractal scaling

behavior | h(q) ~ ¢ for (q(a1)) and h(q) ~ 1y for (q< (a - 1))} (Sup-

plementary FigureS2), which is expected for an uncorrelated random
fluctuation series generated using a power-law probability distribu-
tion [7]. Next, we proceeded to generate a fluctuation series &(n)
numerically using multiple power-law probability distributions (see
Methods) and once again subjected the series to MFDFA analysis. The
observed wide range of large and small fluctuations in the detrended
fluctuation series underscores the complex nature and the overall
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Table 1. This table provides the sample size for each data set used in the analysis,
along with the slope («) and error for each, which suggests scale invariance.

Dataset Sample size Slope Error

Data Set P 506 -1.74309 0.058762
Data Set C 1308 -1.73654 0.088568
Data Set P+C 1814 -1.74122 0.066323
Data Set A 5669 -1.71677 0.072575
Data Set A+C 6980 -1.75794 0.077475
Data Set A+P+C 7482 -1.82206 0.072396
Data Set P+A 6175 -1.76273 0.070593

randomness of the behavioral fluctuations (Figure 2b). The
MFDFA-derived moment (q) dependence of the fluctuation functions
logF,(s)vs logs (Figure 2c) indicates the presence of multifractal
scaling, as the slopes vary significantly for the entire range of q. The
resulting continuous variations of h(q) and z(q) with varying q fur-
nishes concrete evidence of multifractality (Figure 2d), with the
variations of h(g)being more prominent for negative values of q as
compared to positive values. This is in sharp contrast to that observed
for the fluctuation series with single power-law probability (Supple-
mentary Fig. S1c). These multifractal trends suggest that consecutive
occurrence of behaviors of adjacent ranks (representing small fluc-
tuations that are captured by the negativeq) dominate the overall
scaling behavior as compared to the behaviors that are widely sepa-
rated in rank (representing large fluctuations that are captured by the
positiveq). The corresponding strength of multifractality is subse-
quently quantified via the width (Ap) of the singularity spectrum f(5)
(Figure 2e), with the reasonably large magnitude of Ap(=1.12)
clearly demonstrating strong multifractality in the behavioral data of
free-ranging dogs.

3. Discussion

The implication of our findings in the context of the analysis of
behavioral data is rather intriguing. While the data does not follow the
Zipf-Mandelbrot law, commonly exhibited by human languages, it
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projects a strong power-law behavior which retains scale invariant trends
irrespective of spacio-temporal changes and observer bias. The informa-
tion obtained from the multifractal analysis of the behavioral repertoire of
a species is indeed of a richer hue. The multifractal trends gleaned using
the MFDFA analysis indicates dominant self-similarity among the closely
occurring ranks as compared to the distantly placed ranks. In the present
context, these results imply that for a single dog, the probability of
consecutive occurrence of behaviors of adjacent rank is much higher than
behaviors widely separated in rank. This inference is quite remarkable,
given that the data pool is drawn from a large number of randomly sighted
behaviors at the population level. From a purely probabilistic standpoint,
this would demand that the probability of occurrence of a high-frequency
behavior (high rank) would be very large immediately after a low fre-
quency behavior (low rank). Specifically, a behavior such as sleeping
(Rank 1, highly probable) should follow barking (Rank 18, less probable).
However, this is rarely expected to occur in practice, which is also vali-
dated by our multifractal analysis.

The results from the Pareto-plot and Shannon Entropy of the data
complement each other and indicate that the commonly observed be-
haviors, which form the bulk of the data are of the very generic kind and
mostly include passive resting behaviors or maintenance activities like
grooming and foraging, which are not species-specific. This result is in
agreement with other species in which detailed time-activity budgets
have been created, revealing the majority of time in the life of animals
being spent in behavioral “states”, which provide less information about
the species, and a small proportion of time being spent in more energy-
intensive behavioral “events” which carry a high amount of information
about the species, and about individual level variation within the spe-
cies [44]. In the case of the dogs, the higher-ranking behaviors, which
are rarely sighted, include play behaviors, mating related behaviors,
interactions with humans like tail wagging, aggressive and affiliative
interactions, etc and provide more species-specific information about
the system. Such a distribution of observed data is also very charac-
teristic of other power-law distributions exhibited by various analogous
data sets like human languages, courtship displays and animal
vocalizations.

Since the study is based on a random sampling method and deals with
population-level data analysis, it represents a corpus where the entities

a) b)

Figure 1. a) Scatterplots showing the fre-
quency distributions of observed behaviors
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Figure 2. Multifractal patterns in the statisti-
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are drawn out of randomized pools. So, it is noteworthy that, multi-
fractal analysis of languages with word pools drawn from multiple
corpora instead of a single corpus would probably lead to traits similar to
the observations we report here. The statistical significance of such re-
sults is strongly indicative of successful extrapolation of this data into the
construction of probability-based predictive models. The proposed mul-
tifractal analysis in combination with appropriate probabilistic models
may in principle be able to predict a behavior at a later time when the
behavior at a certain time is known. To achieve that goal, we intend to
extend this study towards the true time series of behavioral data of free-
ranging dogs to investigate the existence of possible long and short-range
correlations and their effects on the resulting multifractal trends. The
resulting short-range correlations can be exploited to predict immediate
behavioral responses to certain stimuli, while long-range correlations
might provide insights into personalities of individuals and nuances
layering their behavior. Such information would be of great value in
behavioral studies and prove to be most useful in mitigating dog-human
conflict. Our method is also completely general in nature, and can, in
principle, address similar behavioral questions in any species.

4. Methods
4.1. Sampling

The data was collected through instantaneous scan sampling of free-
ranging dogs in urban and semi-urban habitats. The observer traversed
along a pre-decided route, at random time points during the day, on different
days. Whenever one or more dogs were sighted, the age class (adult/juvenile),
sex, instantaneous behavior at the time of sighting for each dog were recorded
along with the date, time and location of sighting [45]. The behaviors were
noted following the ethogram compiled by the Dog Lab (Supplementary
Table S1). Three data sets, collected at different times from different locations,
were used for this analysis (Supplementary Table S2; Figure S1).

“ " " o fitting) fluctuation series representing the

8 ’ ’ "~ behavioral fluctuations [£(n)]. (c) The log-log
plot of the moment (q = -4 to +4) dependent
fluctuation function Fy (s) vs s. Considerable
variations in the slopes for the entire range of
q values indicate the presence of multifractal
scaling. (d) The variation of generalized
Hurst exponent h (q)(derived from the slopes
of logFy(s) vslog (s)) and 7 (q)(derived using
Eq. (3), shown in inset) with varying q.
Continuous variations of h(q) and 7 (q) with
varying ¢ confirm multifractality. (e) The
corresponding multifractality is quantified
via the singularity spectrum f () (derived
using Eq. 4) and its full width A $ is noted.

4.2. Data analysis

4.2.1. Zipf-Mandelbrot law in behavior

The frequency (number of occurrences) of each behavior was esti-
mated from the data sets. For each data set, the behaviors were ranked
according to their frequencies of occurrence, with the most frequent
behavior being rank 1. The behavioral frequencies were plotted against
their respective ranks, to check for a power law distribution. The fre-
quency and rank were re-plotted on a log-log scale and the slope of the
resulting trend line was considered to check for a fit to the Zipf-
Mandelbrot law [42, 43]. The three data sets and all their possible
combinations were used to check for scale invariance.

The behavioral ranks were normalized on a scale of 1-100 for each
data set separately, and the cumulative time spent in each behavior was
calculated, such that the total time was 1. The behaviors contributing to
the first 80% of time spent were identified for each data set and the
distributions were tested for adherence to the Pareto principle. The
Shannon entropy was estimated for the data sets and plotted against the
ranks of the behaviors to check if the frequency of occurrence influenced
the Shannon entropy.

4.2.2. Generation of the statistically equivalent behavioral random
fluctuation series from the frequency vs rank data

The collected behavioral data of free-ranging dogs were ranked ac-
cording to their frequencies (P)of occurrence, with the most frequent
behavior being ranked r = 1. The corresponding Frequency vs rank data
(for the ranger = 1to93)was first fitted to a single power-law dis-
tributionP(r) ~ r~¢%, yielding a value ofa = 1.81(shown in Figure 2a). A
series of random numbers that statistically represent the random
sequence of different behavioral events (with rank r) were generated
through sampling of the random numbers by the resulting power-law
distribution. The numerical ranks of the representative behaviors in the
series were represented by an appropriately scaled (by the mean and the
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standard deviations of rank) random variable&(n),with nrepresenting any
random sequence of behavioral event.

However, the actual frequency vs rank (P(r))behavioral data exhibited
three different power-law coefficients « for three different range of ranks
(Figure 2a). The corresponding series £(n) was therefore obtained by
sampling the random numbers with power-law distributions with three
different values for 2(0.93, 2.14, 4.98) and then by random shuffling of the
generated sequences. This process of generation of the uncorrelated
random fluctuation series using multiple power-law probability distribu-
tion is specifically applicable here because the behavioral data were not
collected in any given sequence of time rather these were collected at
random time points. Thus, in this scenario, the £(n) series of random
events synthesized using the aforementioned method represents the actual
random behavioral fluctuation data in a statistical sense. The £(n) fluc-
tuation series generated using either a single or multiple power-law
probability distribution were subsequently subjected to multifractal
detrended fluctuation analysis.

4.2.3. Multifractal detrended fluctuations analysis

A statistical monofractal series is one whose variance exhibits a power-
law scaling described by a single scaling exponent, namely, Hurst exponent,
H (0<H < 1) [46]. A multifractal series, on the other hand, exhibits
complex scaling behavior comprising of many interwoven fractal subsets
characterized by different local Hurst exponents [13]. Multifractal
detrended fluctuation analysis (MFDFA) is a generalized approach to
characterize such complex multi-affine processes [47]. Using this approach,
the fluctuation profile &(n) (series of length N, n = 1.....N) is first divided
into Ng = int (N/s) segments m of equal length s. The local trends (yn,(n)) of
each segment m are determined by polynomial fitting. The fitted trends are
then subtracted from the profile to obtain the detrended fluctuations and
the corresponding variance of a segment is subsequently obtained as

s

1
F? ==Y [Y{(m-1 — V()P 1
(m,s) =~ ;[ {m —1)s +n} — ym(n)] (€3]
The variances are then averaged over all the segments to construct the
moment (q) dependent fluctuation function

1 2N; 4 1/q
_ 2 H
Fy(s)= {ZN m; [F (m,s)y} @)

In order to quantify the scaling behavior, the fluctuation function is
approximated to follow a power-law scaling Fqy(s) ~ s"®.The multi-
fractality (if any) of the signal is subsequently characterized via the
moment dependence of the generalized Hurst scaling exponent h(q), the
classical multifractal scaling exponent 7(q), and the singularity spectrum
f(B). These are related as

7(q9)=gqh(q) -1 3

ﬂzj—; £6) = ap —<(q) @

wheref is the singularity strength and the full width of f(5),Ap (taken at
f(B) = 0) is a quantitative measure of the strength of multifractality.
Note that h(q = 2) corresponds to the Hurst exponent (H)of an equivalent
monofractal series.
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