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ABSTRACT Water hypoxia (DO , 2 mg/L) is a growing global environmental concern
that has the potential to significantly influence not only the aquatic ecosystem but also
the benthic sedimentary ecosystem. The Changjiang River Estuary hypoxia, classified as
one of the world's largest seasonal hypoxic water basins, has been reported to be
expanding rapidly in recent decades. However, the microbial community dynamics and
responses to this water hypoxia are still unclear. In this study, we examined the abun-
dance, community composition, and distribution of sedimentary archaea, one important
component of microbial communities in the Changjiang River Estuary and the East China
Sea (ECS). Our results indicated that Thaumarchaeota and Bathyarchaeota were predomi-
nant archaeal groups in these research areas, with their 16S rRNA gene abundance
ranged from 8.55 � 106 to 7.51 � 108 and 3.18 � 105 to 1.11 � 108 copies/g, respec-
tively. The sedimentary archaeal community was mainly influenced by DO, together with
the concentration of ammonium, nitrate, and sulfide. In addition, distinct differences in
the archaeal community's composition, abundance, and driving factors were discovered
between samples from hypoxia and non-hypoxia stations. Furtherly, microbial networks
suggest various microbes leading the different activities in hypoxic and normoxic environ-
ments. Bathyarchaeota and Thermoprofundales were “key stone” archaeal members of the
low-DO network, whereas Thaumarchaeota constituted a significant component of the
high-DO network. Our results provide a clear picture of the sedimentary archaeal commu-
nity in coastal hypoxia zones and indicates potential distinctions of archaea in hypoxia
and non-hypoxia environments, including ecological niches and metabolic functions.

IMPORTANCE In this study, the sedimentary archaeal community composition and
abundance were detailed revealed and quantified based on 16S rRNA genes off the
Changjiang River Estuary. We found that the community composition was distinct
between hypoxia and non-hypoxia regions, while Thaumarchaeota and Bathyarchaeota
dominated in non-hypoxia and hypoxia samples, respectively. In hypoxia regions, the
sedimentary archaea were mainly affected by salinity, ammonium, and nitrate, whereas
total organic carbon, total nitrogen, and sulfide were major influencing factors in non-
hypoxia regions. The distinct microbial network may suggest the niche difference of
archaeal community under various oxygen level.
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Because archaea were proposed as the third domain of life by Carl Woese (1, 2),
they have been observed in a wide variety of habitats, encompassing both terres-

trial and marine ecosystems (3–5). Although only few archaeal species are cultured to
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date, the cultivation-independent techniques, including metagenomics and single-cell
genomics have offered a more comprehensive picture of archaea diversity, metabolic
potential, and ecological significance (6, 7). For example, two archaeal phyla, Thaumarchaeota
and Bathyarchaeota, are repeatedly detected in estuarine and coastal surface sediments,
where they play a significant role in the sedimentary nitrogen and carbon cycles, respectively
(8–11). Marine sediments are one of the greatest reservoirs of prokaryotic cells (5, 12).
Notably, archaea are estimated to constitute approximately 40 and 12.8% of prokaryotic cells,
respectively, in sediments of marginal regions and open ocean sites (13), highlighting their
potential importance in these regions.

Marine Group I archaea (MG-I) are regarded to be the most abundant and wide-
spread Thaumarchaeota in marine and coastal environments (3, 14, 15). Nitrosopumilus
maritimus SCM1 (SCM1), one typical species of MG-I, is the first isolate of ammonia oxi-
dizing archaea (16). Subsequent studies have revealed the widespread distribution of
this ammonia oxidizing archaea (AOA) based on amoA (the gene coding for the a-sub-
unit of the ammonia monooxygenase of ammonia oxidation) genes survey, thus high-
lighting their critical role in worldwide nitrification processes (8, 17). Bathyarchaeota
(Miscellaneous Crenarchaeotal Group, MCG), as a cosmopolitan archaeal lineage with
high degree of phylogenetic diversity, are found abundant in sediments ranging from
organic-rich coastal locations to pelagic oceans (9, 18–20). Genomic evidence suggests
that members of Bathyarchaeota might utilize a diverse range of organic molecules
heterotrophically, including as detrital proteins, aromatic compounds, and plant-derived
carbohydrates (18, 19). Based on genomic studies, Bathyarchaeota members have
recently been proposed to have metabolic capacities for methanogenesis and acetogen-
esis (21–23), highlighting their potential contribution to benthic carbon cycles. As a
result, it is vital to conduct a thorough examination of both Thaumarchaeota and
Bathyarchaeota to better understand their roles in biochemical cycles.

Dissolved oxygen (DO) concentrations in natural waters, which are regulated by ox-
ygen supply and removal processes, are critical for regulating nutrient fluxes, driving
biotic interactions, and shaping microbial communities in aquatic ecosystems.
Previous studies have explored the long-term hypoxia in bottom-water layers of the
East China Sea (ECS) (24–26). Coastal hypoxia can occur naturally as a result of upwel-
lings, algae blooms, or natural occurrences (e.g., storms), which are more prevalent in
still basins, fjords, and estuaries (27, 28). However, more frequently, anthropogenic
impacts appear to have a significant effect on coastal hypoxia, for example, eutrophica-
tion (29, 30). In addition, global warming may decrease oxygen solubility and decrease
water column ventilation, resulting in oxygen minimum zones enlargement (31, 32).

The marginal zone of the ECS is confronted with numerous environmental prob-
lems, including terrigenous anthropogenic inputs and eutrophication (33, 34), heavy
metal pollution (35), and water hypoxia (36). Water column hypoxia persists and
becomes severe in summer off the Changjiang River Estuary (CRE) and ECS, primarily
due to eutrophication (37, 38). According to previous research, various archaeal groups
were observed in the estuarine surface sediments (39–42). However, their distribution
and abundance in hypoxic zones have been mostly unknown, particularly for
Thaumarchaeota and Bathyarchaeota. The purpose of this study was to determine the
composition and quantity of the archaeal community in surface sediments of the ECS
off the CRE mainly based on the 16S rRNA genes, focusing on Thaumarchaeota and
Bathyarchaeota. The high-throughput sequencing and cultivation-independent techni-
ques have greatly broadened the understanding of archaeal diversity and distribution,
including the usage of 16S rRNA genes. However, technical biases, such as sampling
methods, library construction approaches, and different usage of primers, might bring
uncertainty on the microbial community composition. Although it is difficult to mea-
sure the contribution of all variables, a precise and lucid understanding relies on con-
sidering different aspects as much as possible. In this study, the archaeal community
differed significantly across hypoxic and normoxic zones, and DO was a significant driv-
ing force influencing the distribution pattern of Thaumarchaeota and Bathyarchaeota.
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Our findings provide a more comprehensive picture of the archaeal community in hy-
poxia sediments and propose possible explanations for their ecological roles in hypoxia
habitats.

RESULTS
Characteristics of archaeal community in samples. DO saturation in bottom-

water layers ranged from 1.13 to 104.63%, establishing three hypoxic areas in the ECS
from north to south, comprising stations N1, N3, N5, J1, J3, J5, C3, C5, E3, and F3
(Table S1 in the supplemental material; Fig. 1). Besides, the NO3

2, NO2
2, and NH4

1 con-
centrations were highest at stations B2, A3, and N1, respectively. Total organic carbon
(TOC) and total nitrogen (TN) concentrations were highest near the coast, most likely
due to anthropogenic inputs from the land, and gradually reduced in the outer
regions.

Archaeal read numbers ranged from 32,702 (at station J5) to 58,647 (at station A1)
in the 30 samples (Table S3 in the supplemental material). The rarefaction curve sug-
gests that the depth of the sequencing is sufficient (Fig. S3). Table S3 presents the di-
versity index for each sample, including the observed operational taxonomic unit
(OTU) counts, as well as the Shannon and Simpson indices. This investigation identified
3,350 archaeal OTUs in total, with the lowest number being 145 at station J5. Notably,
the archaeal community diversity index does not differ significantly across the low-
and high-DO samples (Fig. S4).

The composition of the archaeal community at the phylum level for each sample is
depicted in Fig. 1. Thaumarchaeota and Bathyarchaeota were the most abundant arch-
aeal taxa in the surface sediments, accounting for approximately 63.3 and 22.2% of all
archaeal readings, respectively (Table S4 in the supplemental material). Specifically, the
majority of thaumarcheotal sequences belonged to Ca. Nitrosopumilus, which was
classified into three groups (i.e., N1, N2, and N3) (Fig. S5). Although Bathy-15, -17, -1, -8,
and -6 were major subgroups of Bathyarchaeota, accounting for . 90% proportion of
the bathyarchaeotal community (Fig. S4). In addition, sequences of Euryarchaeota,
Hydrothermarchaeota, Lokiarchaeota, and Odinarchaeota were also identified. Low- and
high-DO samples were clustered together respectively based on archaeal community

FIG 1 Location, the archaeal community composition (in phylum level), and the abundance of 16S rRNA genes in different categories of samples. Square
stands for low-DO samples, solid circle stands for high-DO samples. The map was generated with Ocean Data View software.
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composition, and the proportion of Thaumarchaeota, Bathyarchaeota, Euryarchaeota,
Lokiarchaeota, and Odinarchaeota in the two groups was significantly different (P , 0.05)
(Fig. S6). Despite belonging to distinct DO groups, samples J5 and A3, as well as N7 and J1
had a similar community composition in phylum-level, while their detailed community
composition was still quite different (Fig. S5). The core metabolic potentials of low- and
high-DO samples were predicted and compared (Fig. S7). In terms of general metabolic of
carbon, sulfur, and nitrogen, the differences were not obviously in different DO conditions.
Although high-DO samples had higher fractions of metabolic potentials related to carbo-
hydrates, amino acids, and nucleotides.

The total prokaryotes (bacteria and archaea) and total archaea were measured using
16S rRNA gene qPCR analysis (Table S3 in the supplemental material). The abundance of
16S rRNA gene of bacteria and archaea ranged from 2.44 � 108 to 5.31 � 109 copies/g.
The abundance of archaeal 16S rRNA gene ranged from 7.95 � 107 to 1.81� 109 copies/g.
Besides, the abundance of 16S rRNA gene of Thaumarchaeota and Bathyarchaeota was
also quantified via qPCR analysis with specific primers (Table S3), with the abundance
range from 8.55 � 106 to 7.51 � 108 copies/g, and from 3.18� 105 to 1.11 � 108 copies/g,
respectively. There were no significant variations in the abundance of total prokaryotes
and archaea between the low- and high-DO groups (Fig. S4). However, the 16S rRNA gene
abundance of Thaumarchaeota was significantly higher (P , 0.05) in high-DO samples
than in low-DO samples, while Bathyarchaeota were significantly more abundant
(P , 0.05) in low-DO samples than in high-DO samples (Fig. S4). The results corroborate
previous findings that Thaumarchaeota and Bathyarchaeota were enriched in samples
with high and low DO, respectively (Fig. S5).

The phylogenetic tree depicts the phylogeny of representative archaeal OTUs
(Fig. 2). Bathyarchaeota accounted for roughly half of the representative OTUs, with a
total of 20 subgroups (Fig. S5 in the supplemental material). Thaumarchaeotal OTUs
were more abundance than others, and the majority were observed in both low- and
high-DO samples, representing the study's key components. Nevertheless, the DO
demand for bathyarchaeotal OTUs was so varied that several OTUs were only detected
in low- or high-DO samples.

Relationships between the community properties and physicochemical factors.
PCoA diagrams delineating the distinct community composition of archaea in low- and
high-DO samples, with the first and second axis explained 33.22 and 17.76% of the var-
iation, respectively (Fig. S8 in the supplemental material). The PCoA results showed
that there were no distinct borders for samples with different DO. Similar patterns
were observed for the thaumarchaeotal and bathyarchaeotal community. Besides, sig-
nificant differences (P , 0.05) were identified in terms of the community composition
of Thaumarchaeota and Bathyarchaeota between the two groups.

Further, the db-RDA demonstrated that DO, NH4
1, NO3

2, and sulfide were the
most important contributing factors that influenced the archaeal community,
explaining 23.8, 12.5, 11.6, and 10.3% (P , 0.05) of total variation (70.0%), respec-
tively (Fig. 3). Among the major archaeal phyla, Thaumarchaeota was closely associ-
ated with DO and NO3

2, whereas Bathyarchaeota was mainly affected by sulfide. The
NH4

1 was the most influential factor in low-DO samples, explaining 23.7% (P , 0.05)
of the total community variation (Fig. S9a). Sulfide was the most influential factor in
high-DO samples, explaining 37.2% (P , 0.05) of the total community variation
(Fig. S9b).

Pearson correlation analysis was employed to describe the relationship between the
environmental factors and the archaeal community properties of the low- and high-DO
sample groups (Fig. S10). Salinity, DO, and NO3

2 were positively correlated with the diver-
sity index in high-DO samples but showed opposite relationships in low-DO samples. TOC
and sulfide had positive correlation to the abundance of Bathyarchaeota in high-DO sam-
ples but did not reveal strong correlations in low-DO samples. Besides, most subgroups of
Bathyarchaeota were strongly affected by NH4

1 (positive) and salinity (negative) (P, 0.05)
only in low-DO samples. Further, the influence of environmental factors on major
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archaeal OTUs was illustrated as well (Fig. 4). Most thaumarchaeotal OTUs were posi-
tively partitioned by DO, pH, and NO3

2 yet negatively correlated with NH4
1 (all

P , 0.05). As for Bathyarchaeota, they were mainly affected by DO, salinity, TOC, TN,
and NH4

1.
The co-occurrence patterns of major archaeal groups are revealed by the network analy-

sis (Fig. 5a). The network comprised of 122 nodes, representing the major archaeal OTUs,
with 276 edges in total. Clearly, OTUs of Thaumarchaeota had relatively simple interactions,
largely containing the positive associations with other thaumarchaeotal OTUs. Conversely,
Bathyarchaeota revealed complicated interconnections. Except that they were negatively
correlated with Ca. Nitrosopumilus or positively related to other Bathyarchaeota, members
of Bathyarchaeota showed positive interactions with Thermoprofundales (Marine Benthic
Group D [MBG-D]), Hydrothermarchaeota, and Lokiarchaeota. Further, the network is classi-
fied into 12 modules to designate the potential ecological niches (Fisher’s test, P , 0.001)
within the archaeal community in this study (Fig. 5b). Thaumarchaeota were observed in 8
modules, among which 5 modules solely constituted by Thaumarchaeota, whereas
Bathyarchaeota were found in 6 modules with 1 module entirely consisting of them.
Notably, the co-occurrence of Bathyarchaeota and Thermoprofundales were found in four
modules showing a relatively close ecological connection. Besides, the interactions between
Bathyarchaeota, Hydrothermarchaeota, and Lokiarchaeota, between Thaumarchaeota and
Hydrothermarchaeota, and between Thermoprofundales, Lokiarchaeota, and methanogens,
were displayed in more than one module.

FIG 2 The phylogenetic tree of representative archaeal OTUs. The inner ring stands for the taxonomy information. The middle ring stands for the average
relative abundance of each OTU in samples. The outer ring shows that the OTU was only observed in low- (light green) and high-DO (dark green) samples
or was found in both sample groups (green).
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Furthermore, possible microbial networks in low- and high-DO environments were
also reconstructed (Fig. S11 in the supplemental material). The low-DO network fea-
tured more complicated interactions than the high-DO network, however they consti-
tuted less modules (8 modules) than the high-DO network (11 modules). Most interactions
in the low-DO network were associated with Bathyarchaeota and Thermoprofundales, while
they had less interactions in the high-DO network where Thaumarchaeota were discovered
in practically all modules (9 out of 11 modules).

DISCUSSION
The archaeal community composition and differences in the low- and high-DO

sediments. According to a recent study, archaea cells formed a considerable part of micro-
bial cells in marine sediments (approximately 37.3%), with a notably higher abundance in
marginal areas (approximately 40.0%) than in open-ocean sites (approximately 12.8%) (13).
Previous research indicates that archaea form a significant component of the micro-
biological population in the Changjiang River Estuary (CJE) and ECS surface sedi-
ments (39, 40, 42). Archaeal 16S rRNA gene accounted for 19.6–65.2% of the total
prokaryotic community, wherea Thaumarchaeota (dominated by Ca. Nitrosopumilus)

FIG 3 RDA results for the relationship between the environmental factors and the major archaeal phyla. Red arrows
represent the factors, blue arrows represent the taxa. Dark-blue points represent the high-DO samples, and light-blue
points represent the low-DO samples.
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and Bathyarchaeota (dominated by Bathy-15, -17, -1, -8, and -6) were prominent arch-
aeal groups in the current study (Fig. S4 in the supplemental material). Seasonal var-
iances of archaeal communities in sediments were reported in different habitats (43–
45). A recent study revealed that the archaeal 16S rRNA gene was more abundant in
winter than in summer of sediment samples from Chinese marginal regions, includ-
ing the CJE and ECS, whereas MG-I and Bathyarchaeota dominated in both seasons
(39). Besides, the more distinct intra-area variation in archaeal abundance in summer
than in winter, especially for estuarine samples, which may indicate the niche parti-
tioning within a small spatial scale in summer (39). Hence, it is crucial to investigate
and compare the abundance and distribution patterns of archaea in different seasons
to better understand their ecological functions and niches.

The diversity index, the abundance of prokaryotic and archaeal 16S rRNA gene did
not show significant differences between the low- and high-DO samples (Fig. S4 in the
supplemental material). However, considerable changes in the composition of archaeal
communities were detected. Thaumarchaeota 16S rRNA genes were abundant in high-
DO samples, whereas Bathyarchaeota were on the opposite. This is because their life-
styles and oxygen requirements are distinct (17, 46). Ca. Nitrosopumilus are the most
prevalent AOA found in a wide variety of environments (8, 11, 47, 48). They contribute sig-
nificantly to aerobic ammonia oxidation and are involved in a wide variety of biochemical
cycles (16, 49, 50). Different AOA species or ecotypes may have varying oxygen tolerance

FIG 4 Relationships between the major archaeal OTUs and the environmental factors based on Pearson’s correlation coefficient. Only the jcoefficientj . 0.7
with P , 0.01 are showed in the network.
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ranges (51), and the low-oxygen and micro-aerobic condition may benefit the growth of
certain members. Bathyarchaeota are reported to have potential anaerobic lifestyles in
sediments with the ability of degrading organic compounds, such as carbohydrates and
proteins (9, 18, 52). Apart from heterotrophic degradations, most Bathyarchaeotamay gain
energy via the anaerobic Wood–Ljungdah pathway, and certain individuals encode genes
related to the Calvin-Benson-Bassham cycle (23, 53). As a result, they were more abundant
in the low-DO samples than high-DO samples in this study.

The OTU numbers of Thaumarchaeota and Bathyarchaeota were significantly greater
(P , 0.05) in high- than low-DO samples. This may indicate a high diversity of them in
high-DO environments. While the majority of Thaumarchaeota and Bathyarchaeota OTUs
were recognized in both sample groups, many were found to reside in low- or high-DO
samples, implying that they have a distinct ecological niche and adaptations for each
DO state. Besides, the differences of archaeal community composition were also appa-
rently illustrated in the sample clustering result and the PCoA plot. Therefore, it is vital to
elucidate the mechanisms that contribute to the archaeal community distribution pat-
terns in low- and high-DO samples, as well as to emphasize the potential influence of
environmental factors.

Driven factors of the archaeal distribution in low- and high-DO environments.
Bottom-water hypoxia may have an effect on the physicochemical properties of surface
sediments, modify biogeochemical processes, and consequently, on benthic commun-
ities (28, 54). As indicated earlier, DO was a significant environmental factor dividing the
archaeal community, impacting the abundance and diversity of Thaumarchaeota and
Bathyarchaeota in the surface sediments. Several studies revealed that DO may be one

FIG 5 Microbial co-occurrence networks (a) and predicted module composition (b) of the archaeal community represented by major OTUs. Only OTUs
observed in $15 samples, and interactions with P , 0.01 are showed in the network.
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of the key factors influencing microbial community spatial structure, also regulating nitri-
fication and denitrification potentials in the CRE (41, 55, 56). The habitat expansion of
AOA from terrestrial to marine environments may be mainly driven by oxygen (57).
Besides, AOA was thought as major ammonia oxidizers in sediments of the CRE (56, 58).
Recent reports indicated the metabolic potentials of estuarine AOA in utilizing carbohy-
drates (59, 60). The high abundance of Thaumarchaeota (mainly consisted of Ca.
Nitrosopumilus) observed in the high-DO samples may highlight their contribu-
tions in the benthic nutrient cycles.

The concentrations of NH4
1, NO3

2, and sulfide also shaped the archaeal community
(Fig. 3). Ammonium is an indispensable component of microbial communities because
it serves as a critical substrate in the nitrogen cycle. According to metagenomics, mem-
bers of the Bathy-6, -8, -15, and -17 encode genes associated to ammonium transport-
ers, and may produce urea by utilizing diverse nitrogen compounds (23), which may
be responsible to the positively correlation with ammonium. Similar patterns between
Bathyarchaeota and ammonium were also reported in other estuarine (61), mangrove
(62), and karstic limnic sediments (63). Certain AOA OTUs showed negative correlations
to ammonium, possibly because to their predilection for low-ammonium environments
and high-affinity of ammonium (64). In addition, some OTUs belonging to the
Thermoprofundales, Methanosarcinales, and Lokiarchaeota showed positive correlations
(P , 0.05) with the ammonium concentration, as reported and explained in a recent
study in the Pearl River Estuary (61).

Members of Bathyarchaeota (65), Thermoprofundales (66), and Hydrothermarchaeota
(67) all encode nar (nitrate reductase) genes. This may account for the positive associa-
tion identified in this study between nitrate and them (Fig. 4). Besides, they showed a
positive correlation with TOC and TN, which may be explained by their predicted meta-
bolic capability for decomposing organic molecules. Further, the concentration of TOC
and TN was positively correlated with the 16S rRNA gene abundance of Bathyarchaeota
(Fig. S10 in the supplemental material), which was consistent with earlier studies (62, 68).
Bathyarchaeota and Hydrothermarchaeota are reportedly to participate in a variety of sul-
fur metabolisms (23, 67), which may explain their tight association with sulfide. Other
variables, such as salinity, were primarily associated with Bathyarchaeota, whereas pH
and phosphate were primarily associated with Thaumarchaeota. These findings empha-
size the critical function of archaea in sedimentary nitrogen cycling and shed light on
the ecological niches of various archaeal groups.

Potential microbial interactions within the archaeal community. Liu et al. (39)
observed clear spatiotemporal patterns of the sedimentary archaeal community structure
while stochasticity had a greater role than determinism in structuring this distance-decay
pattern. However, their results also indicated that the archaeal co-occurrence relationships
changed over seasons, with closer inter-taxa connections observed in winter than in
summer. Their findings may suggest highly complex dynamics of sedimentary archaeal
communities and inter-taxa interactions. In the current study, within Bathyarchaeota, inter-
actions between OTUs from various subgroups were extremely complicated, showing
high diversity and niche variations. Conversely, the relatively simple interactions among
Ca. Nitrosopumilus may be consistent with their unitary ammonia oxidation metabolic
capacity.

Bathyarchaeota are believed to be capable of decomposing a wide variety of or-
ganic molecules, including carbohydrates, fatty acids, aromatic compounds, and pro-
teins, as well as urea, acetate, methane, and methylation compounds (20, 22, 65, 69).
Bathyarchaeota various metabolic capabilities underscore their critical role in benthic
carbon cycles. Metagenomics indicates that the majority of Bathyarchaeota members
are capable of acetogenesis and fermentation (9, 21, 53). Metagenomic analysis also
illustrated variations in metabolic capacities, substrate preferences, and ecological
niches of bathyarchaeotal subgroups (18, 21, 23), underlining their metabolic flexibil-
ity. Thermoprofundales is another important sedimentary archaeal group ubiquitously
distributed in diverse ecosystems (5, 66). Similarly, based on genomic inferences,
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Thermoprofundales may be capable of exogenous protein mineralization, acetate and
ethanol generation via fermentation, also fixing CO2 through the Wood–Ljungdahl
pathway (20, 65, 66). As a result, they may act as substrates for heterotrophic micro-
organisms and acetoclastic methanogens in sediments, as well as assist carbon trans-
formation in the ecosystem. Thermoprofundales interacted closely with methanogens
(including Methanofastidiosales and Methanosarcinales) in the current investigation,
which may imply a syntrophic connection for them. It is suggested that members of
the Hydrothermarchaeota and Lokiarchaeota encode genes involved in acetate or
ethanol fermentations (67). Besides, Bathyarchaeota and Thermoprofundales share
similar metabolic pathways through genomic comparisons (66). This may account for
the tight contacts identified in this study, indicating probable symbiotic or synergis-
tic relationships among Bathyarchaeota, Thermoprofundales, Hydrothermarchaeota, and
Lokiarchaeota. The high abundance and diverse metabolic potentials of Bathyarchaeota
and Thermoprofundales may imply their significance in benthic biogeochemical cycling,
especially in the low-DO regions.

Intriguingly, in the low-DO samples, the distribution of archaeal community was
mainly influenced by NH4

1, NO3
2, and salinity, whereas sulfide, TN, and TOC were

the most important driven factor in high-DO samples (Fig. S9 in the supplemental
material). This could indicate that microbial activities differed between low- and
high-DO settings, as well as the community composition. NO3

2 and NH4
1 were fre-

quently used by microbes in reductions and anaerobic metabolisms in dysoxic or
anoxic environments, whereas oxidation of organic molecules may be prevalent in
microbial communities with an adequate supply of oxygen. Additionally, microbial
interactions varied according on DO level (Fig. S11). Denitrifying microorganisms
and anammox bacteria were previously reported to be significant contributors in
the ECS hypoxic region's surface sediments, contributing to benthic nitrogen cycle
(26, 70). Although the capacities of Bathyarchaeota and Thermoprofundales for deni-
trification and dissimilatory NO3

2 reduction to NH4
1 are still theoretically inferred

via metagenomic analysis, their close relationship with NO3
2 and NH4

1 may shed
light on their importance in the nitrogen cycle and provide possible clues for future
explorations.

Conclusions. In summary, this study examined the abundance and community
composition of sedimentary archaea in hypoxic and normoxic sections off the CRE and
the ECS. Except for DO, the concentration of ammonium, nitrate, and sulfide were iden-
tified as significant factors affecting archaea abundance, diversity, and distribution.
There were apparent variations in the archaeal community between hypoxia and non-
hypoxia locations. Thaumarchaeota and Bathyarchaeota were found to be enriched in
samples with high and low DO, respectively. In addition, the key driving variables were
different in hypoxic and normoxic conditions, which may have resulted in the initiation
of distinct metabolic processes. In addition, possible microbial interactions were differ-
ent in low- and high-DO samples, indicating a niche difference in the archaeal commu-
nity under differing oxygen levels.

MATERIALS ANDMETHODS
Study area, sampling, and physicochemical measurements. The study region is located in the

coastal ECS off the CRE and Hangzhou Bay, with latitudes ranging from 121.87° E to 124.15° E and longi-
tudes ranging from 28.92° N to 32.82° N, totaling 30 stations (Fig. 1). Surface sediments of each sampling
station were collected during a cruise in 13–26 August 2016. The sediments were sealed in 50 mL tubes
immediately after grabbed from the water bed, stored in liquid nitrogen on board, and then transferred
to a 240°C fridge in the laboratory before further analysis. Environmental factors of the bottom water
above sediments of each site, including salinity, pH, DO, and the concentration of ammonium, nitrite, ni-
trate, and phosphate were measured. Briefly, water salinity, pH, and DO saturation were measured by
the CTD (Sea-bird, America) on board. The concentrations of nutrients (NO3

–, NO2
–, NH4

1, and PO4
3–)

were determined using an auto-analyzer (QuAAtro, Germany) in library. Besides, the concentration of
TOC and TN were analyzed using TOC-LCPH/CPN (Shimadzu, Japan), whereas sulfide was determined
using a silver-sulfide electrode (Thermo Scientific, America). All physicochemical factors were listed in
Table S1 in the supplemental material.

DNA extraction, sequencing, and data processing. The PowerMax soil kit (Qiagen) was used
according to the manufacturer's instructions to extract DNA from 10 g of wet sediments in triplicate for
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each sample. Triplicates of each sample were combined and well mixed prior to sequencing and analysis.
The archaeal 16S rRNA gene amplification was performed using the primer pair Arch524F/Arch958R (F: 59-
TGYCAGCCGCCGGTAA-39 and R: 59-YCCGGCGTTGAVTCCAATT-39), as previously described (61). PCR-free
libraries were constructed from the 16S rRNA gene amplicons and sequenced using Illumina HiSeq2500
(USA) PE250 by Novogene (China) according to standard protocols.

The QIIME2 pipeline (version 2019.1) was used to analyze the sequence data, which included quality
filtration, demultiplexing, denoising with dada2, taxonomy assignment, and phylogenetic and diversity
analysis (71, 72). Taxonomic assignment of the representative archaeal sequences was achieved using
the SILVA database (release 132) (73). Besides, based on recent studies, the detailed subgroup composi-
tions were categorized of Bathyarchaeota (9) and Thermoprofundales (66). The OTU table was normalized
by setting the uniform sequence number to 32702 for each sample to generate the alpha diversity index
(i.e., the Shannon index, Simpson index, and the number of observed OTUs) of archaeal community and
the Bray-Curtis dissimilarity between samples. Tax4Fun2 (version 1.1.14) was used to predict the func-
tional profiles of low- and high-DO samples, and calculated the metabolic potential by linking the 16S
rRNA gene abundance profile to Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO)
database (74).

Quantitative PCR Analysis. The 16S rRNA gene copy numbers of total prokaryotes (bacteria and
archaea), total archaea, Thaumarchaeota, and Bathyarchaeota were quantified using real-time quantita-
tive PCR (qPCR) via the QuantStudio3 instrument (Thermo Fisher Scientific) with standard protocols, and
the primer pairs 515F/806R (75), Arch519F/Arch908R (76, 77), Thaum494/958R (78, 79), and MCG242dF/
Bathy442R (62) were used respectively (Table S2 in the supplemental material). For the analysis, a 20-mL
qPCR was prepared, containing the following: 10 mL of PowerUp SYBR green master mix (Applied
Biosystems), 2 mL of DNA template, 1 mL each of the forward and reverse primers (10 mM), and 6 mL of
ddH2O. The standard qPCR curves were generated using sequential 10-fold dilution series of the
pMD19-T vector, and detailed methods to calculate the gene copy number of each qPCR experiment
were based on a recent study (61). Gel electrophoretograms and melt curves were presented to verify
the results of all qPCR experiments (Fig. S1 and S2).

Statistical analysis. Samples were categorized in two groups based on the DO value of each sam-
ple. In water columns of estuarine and coastal regions, DO , 2 mg/L (DO saturation , 25%) is usually
defined as hypoxia (37, 38, 80). Thus, in the current study, samples with DO% , 25% were the low-DO
group and others were the high-DO group. Besides, archaeal OTUs with average abundance
fraction . 0.01% (776 OTUs in total, representing . 93.3% sequences) were selected for further analysis.
The phylogenetic tree of representative was constructed using IQ-TREE (version 1.6.12) (81) and visual-
ized in the online platform iTOL (version 4) (82). Sample clustering was employed using R (version 3.5.0)
at archaeal OTU level and the unweighted pair-group method with arithmetic means (UPGMA). Analysis
of similarities (ANOSIM) and the t test were implemented using IBM SPSS Statistics (version 20.0) without
outliers to test the significance of differences in archaeal community between the low- and high-DO
group, including the community composition, the diversity index, and the abundance of 16S rRNA
genes. Principal coordinate analysis (PCoA) was employed to delineate the dissimilar relationship
between samples based on the OTU composition for the total archaeal community, Thaumarchaeota,
and Bathyarchaeota. Variance inflation factor (VIF) was used to verify the linearity relationship between
all environmental factors, and to selected non-linear factors for further analysis (i.e., TOC, TN, sulfide, sa-
linity, pH, NO3

2, NO2
2, NH4

1, and PO4
32). The result of detrended correspondence analysis (DCA) sug-

gested that redundancy analysis (RDA) was better to depict the influence of environmental factors on
the ordination of samples and the compositional archaeal taxa based on the Bray-Curtis’s distance (db-
RDA). Variation partitioning analysis (VPA) was employed to quantify the most contributing factors by
RDA ordination. The analysis and visualization of PCoA, VIF, RDA, and VPA results were conducted via
the vegan package (version 2.4–3) in R (version 3.5.0).

The normality of physicochemical parameters was examined using the Kolmogorov–Smirnov test.
As all environmental factors were normal distribution, Pearson correlation analysis was used to
describe the correlative relationship between environmental factors and the relative abundance,
quantity, and diversity index in the current study through IBM SPSS Statistics (version 20.0).
Besides, the Pearson correlation between the abundance of major OTUs (average abundance
fraction . 0.05%, 217 OTUs in total, representing . 80.7% sequences) and environmental factors
was illustrated by a network via Cytoscape (version 3.7.2). To depict the co-occurrence of different
archaeal groups and predict potential microbial interactions, major OTUs were selected in network
construction based on Pearson correlation using MENA online platform (http://ieg4.rccc.ou.edu/
mena), and only edges with the jcoefficientj . 0.7 and P , 0.01, were retained and visualized
through Cytoscape (version 3.7.2).

Data availability. The raw HiSeq sequencing data for 30 archaeal 16S rRNA gene libraries in this
study were deposited in the National Omics Data Encyclopedia (NODE) database with the BioProject
accession number OEP001115 and the BioSample accession number from OES045981 to OES046010.
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