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Abstract

Across many studies, ventromedial prefrontal cortex (vmPFC) activity has been found to correlate 

with subjective value during value-based decision-making. Recently, however, vmPFC has also 

been shown to reflect a hexagonal gridlike code during navigation through physical and 

conceptual space, and such gridlike codes have been proposed to enable value-based choices 

between novel options. Here, we first show that, in theory, a hexagonal gridlike code can in some 

cases mimic vmPFC activity previously attributed to subjective value, raising the possibility that 

the subjective value correlates previously observed in vmPFC may have actually been a 

misconstrued gridlike signal. We then compare the two accounts empirically, using fMRI data 

from a large number of subjects performing an intertemporal choice task. We find clear and 

unambiguous evidence that subjective value is a better description of vmPFC activity in this task 

than a hexagonal gridlike code. In fact, we find no significant evidence at all for a hexagonal 

gridlike code in vmPFC activity during intertemporal choice. This result limits the generality of 

gridlike modulation as description of vmPFC activity. We suggest that vmPFC may flexibly switch 

representational schemes so as to encode the most relevant information for the current task.
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Many studies in decision neuroscience have identified a critical role for the ventromedial 

prefrontal cortex (vmPFC) in decision-making. Specifically, neural activity in the vmPFC 

correlates with the subjective value of expected or experienced outcomes across a wide 

variety of decision-making tasks (Bartra et al., 2013; Clithero and Rangel, 2013; Levy and 

Glimcher, 2012). Neural correlates of subjective value have been found in vmPFC using 

both fMRI in humans as well as single cell recording in non-human animals (Howard et al., 

2015; Kable and Glimcher, 2007; McNamee et al., 2013; Strait et al., 2014; Yamada et al., 

2018). One straightforward interpretation of these results is that vmPFC encodes the 

subjective value of potential outcomes, which is then used to make choices between 

outcomes (Kable and Glimcher, 2009).

However, recent human neuroimaging studies have found that a similar area of vmPFC also 

serves a different function: encoding representational maps that enable navigation through 

physical and conceptual spaces (Constantinescu et al., 2016; Doeller et al., 2010; Jacobs et 

al., 2013). Both intracortical recordings and fMRI studies of humans navigating through 

virtual arenas have shown that activity in vmPFC is modulated in a hexagonal manner by the 

direction of travel, which is a pattern characteristic of grid cells (Bao et al., 2019; Doeller et 

al., 2010; Jacobs et al., 2013; Nau et al., 2018). Grid cells were first discovered in entorhinal 

cortex (ERC) during spatial navigation and provide an efficient representation of two-

dimensional space (Behrens et al., 2018; Doeller et al., 2010; Hafting et al., 2005; 

Whittington et al., 2020). More recently, fMRI signatures of this hexagonal gridlike code 

have been observed in vmPFC during navigation in a purely conceptual space 

(Constantinescu et al., 2016). Specifically, stimuli in that study were defined along two 

dimensions, and when subjects imagined a stimulus transforming through the conceptual 

space defined by those two dimensions, activity in vmPFC showed a similar response pattern 

as that observed during two-dimensional spatial navigation.

These recent results have led some to argue that these hexagonal gridlike codes could serve a 

general role in complex cognition, including decision-making (Bellmund et al., 2018; 

Bongioanni et al., 2021). Many decisions require choosing between options that differ along 

(at least) two dimensions – for example, gambles that differ in risk and payoff, foods that 

differ in health and taste, or goods that differ in quality and price. A gridlike representation 

of such a two-dimensional space could allow, for example, inferences to be made about the 

qualities of novel attribute combinations based on their proximity in this conceptual space to 

attribute combinations that had previously been experienced (Bellmund et al., 2018). 

Recently, hexagonal gridlike modulation has been observed in the vmPFC fMRI signal in 

macaques in response to cues signaling novel combinations of reward attributes (magnitudes 

and probabilities). Based on this observation, the authors argued that gridlike representations 

in vmPFC could underlie a mechanism for making choices between novel (rather than 

highly pretrained) options that is shared across species, especially as most human fMRI 

studies implicating the vmPFC in decision-making involve such choices (Bongioanni et al., 

2021). However, there has not yet been a direct test of whether there is hexagonal grid-like 

modulation, in the vmPFC or elsewhere, during decision-making.

Here we put this idea to the test: does the vmPFC exhibit hexagonal gridlike modulation 

during decision making, thereby reflecting a conceptual map of attribute space? We first 
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show that a hexagonal gridlike modulation signal can in some cases be highly correlated 

with subjective value in the kinds of experimental designs widely used to identify value 

signals, suggesting that previously identified value correlates could have been misconstrued 

gridlike modulation. Combined with recent empirical results (Bongioanni et al., 2021), this 

motivates returning to a large existing intertemporal choice dataset (Kable et al., 2017), to 

empirically test if BOLD activity in vmPFC during this task is better explained by subjective 

value or a hexagonal gridlike code. Across three different analyses, we show unambiguously 

that vmPFC activity in the intertemporal choice task is better described by a subjective value 

signal than by a hexagonal gridlike modulation. This finding limits the generality of 

hexagonal grid representations in vmPFC. Instead, vmPFC may flexibly switch 

representational schemes so as to encode the most pertinent information to the task at hand.

Methods

Dataset

All raw fMRI images and the behavioral responses are available online at openneuro.org 

(DOI: 10.18112/openneuro.ds002843.v1.0.0). All fMRI analyses were performed in FSL, 

which can be downloaded for free (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). All analysis 

codes and interim files are available online at OSF (https://osf.io/78nym/).

We used the fMRI dataset from Kable et al. (2017), as its large number of subjects permits a 

high-powered test between a subjective value and hexagonal grid code during decisions that 

involve a tradeoff between two choice attributes. All participants provided informed consent 

and all procedures were approved by the University of Pennsylvania Institutional Review 

Board. Participants completed two sessions in which they performed an intertemporal choice 

task in the scanner 10 weeks apart. In each scan session, participants made 120 binary 

choices between a smaller immediate reward and a larger later reward, across 4 runs (30 

choices per run). The smaller immediate reward was held constant at $20 today while the 

larger later reward varied in amount (A: $21 ~ $85) and delay (D: 20 days ~ 180 days) from 

trial to trial (Fig. 1). The specific combination of amount and delay of the larger later reward 

were never repeated within the session and were sampled across the entire range for each run 

so that there would be no difference in the range of options between runs. On average, 

participants saw most of the amount and delay range in the task after the first run (96.5% of 

amount range, 97.2% of delay range). Session 2 had the same choice options as session 1, 

but in a different random order. On each trial, the amount and delay of the larger later option 

was displayed on the screen, while the constant immediate option was not displayed. 

Participants used a button pad to indicate whether they would accept the larger delayed 

option shown on the screen or reject it in favor of the smaller immediate option, which was 

not shown on the screen. This design simplifies the identification of neural correlates of 

subjective value, as only the subjective value of the delayed option needs to be considered; 

since the immediate option is fixed, the sum, difference or ratio of the subjective values of 

the two options are all linearly related to the subjective value of the delayed option.

The two hypotheses provide different predictions of the expected signal in this task (Fig. 2). 

Subjective values depend on how individual subjects weight the two attribute dimensions, 

but all subjects prefer larger magnitudes and smaller delays, leading to the highest response 
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in one corner of the two-dimensional attribute space. For hexagonal grid modulation, the 

relevant conceptual navigation in this task involves “traversing” between the two options 

being considered. A gridlike code would lead to peaks in activity when navigating along 

hexagonally symmetric directions spaced sixty degrees apart, with the angle of these peak 

directions (the grid angle) being the one free parameter. For example, a person with a grid-

angle at 0° would have activity peaks at 0° and 60° of traversing angle and troughs at 30° 

and 90°, while another person with a grid angle at 30° would have peaks at 30° and 90° and 

troughs at 0° and 60°. The distribution of potential trajectory angles in this task (between a 

delayed larger monetary option and immediate $20) are shown in Fig. 3a. To verify that our 

chosen task design does not unduly limit the possible trajectories, we also calculated the 

distribution of trajectory angles should one choose two random options in the task space 

(i.e., two of the blue circles in Fig. 1b). After excluding ‘no-brainer’ choices, in which one 

option is stronger than the other on both attributes, the remaining choices offer trajectory 

angles that are similar to what we have in the current design (Fig. 3b).

Of the 160 participants that completed session 1, we excluded participants with any missing 

runs (n = 6), too much head movement (any run out of 4 runs with > 5% of mean image 

displacements greater than 0.5 mm; n = 3), more than 3 missing trials per run for two or 

more runs (n = 2), entirely one-sided choice such that the participant always chose the 

immediate or the delayed option (n = 3), and one participant who expressed knowledge of 

their experimental condition in the original study. This resulted in the final sample size of 

145 participants for session 1. Of these participants, only 114 completed session 2, from 

which we also excluded those with missing runs (n = 3), too much head movement (n = 2), 

too many missing trials (n = 2), or entirely one-sided choices (n = 5). This gave us a total of 

102 participants for session 2. In total, 145 participants’ data were used for session 1 and 

102 participants’ data were used when analyzing both sessions.

Participants were scanned with a Siemens 3T Trio scanner with a 32-channel head coil. T1-

weighted anatomical images were acquired using an MPRAGE sequence (T1 = 1100 ms; 

160 axial slices, 0.9375 × 0.9375 × 1.000 mm; 192 × 256 matrix). T2* -weighted functional 

images were acquired using an EPI sequence with 3mm isotropic voxels, (64 × 64 matrix, 

TR = 3,000ms, TE = 25 ms; tilt angle = 30°) involving 53 axial slices with 104 volumes. B0 

fieldmap images were also collected for distortion correction (TR = 1270 ms, TE = 5 and 

7.46 ms). The datasets were preprocessed via FSL FEAT (FMRIB fMRI Expert Analysis 

Tool). Functional images were skull stripped with BET (FMRIB Brain Extraction Tool), 

motion corrected and aligned with MCFLIRT (FMRIB Linear Image Restoration Tool with 

Motion Correction), spatially smoothed with a FWHM 9 mm Gaussian Kernel, and high 

pass filtered (104 s cutoff). Registration was performed with FNIRT with warp resolution of 

20 mm (FMRIB’s Non-linear Image Registration Tool) to a 2 mm MNI standard brain 

template.

Could a hexagonal grid signal be mistaken for a subjective value signal?

Before any empirical analysis, we asked whether, in theory, hexagonal gridlike modulation 

could mimic or account for activity correlated with subjective value in this task. To do this, 

we simulated a subjective value signal at a given discount rate for a range of amounts and 
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delays, and then estimated the best-fitting gridlike modulation for this signal. For a given 

discount rate, the subjective values of delayed monetary outcomes were calculated using the 

hyperbolic model:

SV  of $A in D days  = A
1 + kD (1)

where k is the individual discount rate. The amount A varied from 20 to 80 in increments of 

2 (31 levels) and the delay D varied from 20 to 180 in increments of 5 (33 levels) resulting in 

a total of 1023 subjective values for a given k. This 1023-element vector (SV) was then 

regressed against two hexagonal grid modulation regressors:

V t = β0 + β1cos 6θt + β2sin 6θt + ϵt, θt = atan At − 20
Dt

(2)

The model contains a linear combination of the sine and cosine of the trajectory angle θ with 

60° periodicity. The trajectory angle θ is taken as the angle between the abscissa and the 

traversing line between the immediate option ($20 now) and the delayed option ($A in D 
days) in the two-dimensional space defined by the amount and delay attributes (e.g., Fig. 1b, 

2b). The linear sum of cosine and sine function acts as a phase shift (i.e., generally: pcosθ + 

qsinθ = kcos (θ + ϕ)) such that we can identify the best phase (i.e., grid angle) of the cosine 

modulation without using a non-linear regression. After fitting the regression, we calculated 

the Pearson correlation between SV and the fitted signal to assess the similarity between the 

two. This procedure was repeated for 51 levels of k whose base-10 log ranged from −5 (i.e., 

k = 0.00001: very patient) to 0 (i.e., k = 1: very impatient) in 0.1 increments. For 

comparison, we also calculated the Pearson correlation between SV and hexagonal grid 

modulation signals for six grid angles uniformly sampled between 0 and 50 degrees and 

report these in the supplemental materials.

fMRI analysis – voxelwise GLM

In empirical fMRI data, we first performed two GLMs in session 1 data to test for activity 

that was correlated with subjective value or hexagonal grid signals. For the subjective value 

GLM, we used two regressors: an event regressor that modeled average activity of all trials, 

and second regressor that modeled activity modulated by subjective value. The subjective 

value of the delayed reward was estimated by fitting a hyperbolic discounting function to 

choice data using a logit choice model (A is the delayed amount, D is the delay, k is the 

discount rate, and β is the scaling factor):

logit(P(cℎoice  =  delayed )) = β A
1 + kD − 20 (3)

Regions correlated with subjective value were identified by performing a sign-flipping 

permutation test on individual beta images of the subjective value regressor. For the gridlike 

modulation GLM, we used three regressors: an event regressor and two hexagonal grid angle 

regressors (n = 6):
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cos nθt , sin nθt , θt = atan At − 20
Dt

(4)

Regions correlated with hexagonal grid signal were identified by first transforming the F-

statistic of the two hexagonal grid regressors to a z-statistic and then by performing a sign-

flipping permutation test on the z-transformed F-stat images (Constantinescu et al., 2016).

fMRI analysis – model comparison

We tested whether vmPFC activity is better described by a subjective value or hexagonal 

gridlike signal in three different ways. First, and most straightforward, we performed a 

model comparison between the subjective value GLM and the hexagonal modulation GLM. 

We compared the Akaike Information Criterion (AIC) scores of the two GLM models in 

each of four ROIs: vmPFC and ventral striatum ROIs from the Bartra et al. (2013) meta-

analysis of subjective value, and two spherical ROIs (radius = 2 voxels) from the peak 

activation coordinates reported by Constantinescu et al. (2016) in vmPFC and ERC.

Second, we assessed if 6-fold grid modulation was the best model out of all n-fold grid 

modulation GLMs. If there is indeed hexagonal grid modulation, a 6-fold model should 

explain the most variance compared to 4-fold, 5-fold, 7-fold, and 8-fold modulation models. 

We repeated the grid-modulation GLM analysis in the four ROIs for 4~8fold regressors: 

cos(nθt), sin(nθt), n = 4 ~ 8. Since all the models have the same number of parameters, we 

compared the 4-fold, 5-fold, 6-fold, 7-fold, and 8-fold models using the z-converted F-

statistics of the grid angle regressors to assess which set of n-fold regressors explain the 

most variance in each ROI. Furthermore, to set up clear expectations of the resulting pattern 

under different hypotheses, we simulated the analysis as closely as possible by generating 

the BOLD signal for each subject and regressing these simulated data with the 4–8fold 

regressors. To simulate the results of the analysis when the signal is subjective value, we 

used the individual’s fitted hyperbolic subjective value as modulators of neural activity that 

were convolved with a double-gamma HRF with autocorrelated noise added (drawn from a 

multivariate Gaussian distribution with inter-TR correlation of 0.12). To simulate the results 

of the analysis when the signal is a hexagonal gridlike modulation, we randomly chose one 

unique grid angle for each subject (between 0° and 60°) and calculated each trial’s neural 

activation according to the alignment between the grid angle and trial angle (n = 6):

cos n θt − ϕ , θt = atan At − 20
Dt

(5)

The resulting hexagonal modulation was also convolved with a double-gamma HRF with 

autocorrelated noise added. The simulated subjective value BOLD signal and the hexagonal 

grid BOLD signal were then regressed against the same regressors used for the real data.

To ensure the robustness of the results, we performed the model comparison analyses above 

in alternatively defined ROIs and also in alternatively scaled attribute spaces. For the former, 

we defined spherical ROIs from peak GLM coordinates closest to the vmPFC and ERC 
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peaks in Constantinescu et al. (2016) and to the vmPFC and VS peaks in Bartra et al. (2013). 

For the latter, we calculated n-fold grid modulation regressors in an attribute space where 

both amount and delay were min-max normalized to have equal range. The model 

comparison results in these alternative ROIs and alternative attribute spaces were the same 

as in the original ROIs and original attribute spaces and are therefore presented in the 

supplemental materials.

fMRI analysis – cross-session consistency analysis

Third, following the methods of previous studies, we tested the consistency of grid angles 

across session 1 and session 2 data. Based on the properties of grid cell representations in 

non-human animals, it is assumed that for a given brain region each person’s hexagonal grid 

is oriented at a unique angle that stays constant across time. For example, when people are 

navigating through a two-dimensional space, one person’s grid may have a 6-fold 

modulating activity that peaks when the person traverses through space at 20 + 60x (x = 0 … 

5) degree angles while another person’s activity may peak at 40 + 60x (x = 0 … 5) degree 

angles. We test for such consistency by first calculating each individual’s unique grid angle 

from the first session’s data using cos(nθ) and sin(nθ) as regressors. The average 

coefficients in each of the four ROIs (βcos,βsin) were used to calculate that individual’s n-fold 

grid angle for that ROI (ϕn = atan βsin/βcos /n). Then, we tested if neural activity in the same 

ROI in session 2 was aligned with this grid angle by using the consistency regressor shown 

in Eq. 5. The average z-statistic of this consistency regressor within the pre-defined ROIs 

was used to measure the consistency effect across sessions. The key test was whether the 

consistency effect was the highest at 6-fold, rather than 4-, 5-, 7-, or 8-fold modulation. In 

addition to examining grid angle consistency, we also examined the distribution of estimated 

6-fold grid angles and report this in the supplementary materials.

Again, to set up clear expectations of the grid angle consistency results under different 

hypotheses, we simulated the results of this grid angle consistency analysis under two 

conditions: when the underlying signal is subjective value, and when the underlying signal is 

hexagonal modulation. For subjective value, we calculated the 102 participants’ subjective 

values in both session 1 and session 2 separately via Eq. 3 and simulated the BOLD 

response by convolving the subjective value modulation with a double gamma HRF. For 6-

fold modulation, we picked a random angle between 0° and 60° for each subject, which 

stayed the same across both sessions, and simulated a 6-fold modulation signal according to 

Eq. 5 (with n = 6). The resulting simulated neural activity were then convolved with a 

double-gamma HRF. After adding autocorrelated noise to both subjective value and grid 

signal, we performed the grid-angle consistency analysis in the same manner as on the real 

data as outlined above.

The grid angle consistency analysis is the only test that uses data from session 2. As reported 

in Kable et al. (2017), after session 1 participants were randomized to either a cognitive 

training intervention or an active control condition. As there were no differences between the 

two groups in brain activity or decision-making in session 2, we combine them in the 

analyses reported below. However, when we performed the consistency analysis in the 

control group only, we found the same results.
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We performed the grid angle consistency analysis across sessions 1 and 2 to maximize 

statistical power. However, since one concern might be that the two sessions are too distant 

in time for any potential grid-like representations to be stable, we also performed the grid 

angle consistency analysis across runs within session 1 data. The within-session cross-run 

results were similar and are provided in the supplemental materials.

Results

Here we compare two potential coding schemes for vmPFC during decision-making, 

subjective value and hexagonal grid modulation, both of which are functions of the two 

attribute dimensions of the choice options. In intertemporal decision-making, the domain we 

study here, the two attribute dimensions are the amount of the money and the delay until its 

receipt. A subjective value code predicts that the activity elicited by an option increases as 

the amount of money increases and decreases as the delay to receipt increases (Fig. 2 a). The 

relative slopes of these changes will vary across people depending on the relative weight 

they place on monetary amounts and delays. On the other hand, a hexagonal gridlike code 

predicts that activity will vary as a function of the angle in two-dimensional attribute space 

between the two options that are being compared, with highest activity when this angle 

matches the person’s unique grid angle (Fig. 2 b). This prediction assumes that comparing 

two options in a choice task is akin to conceptually navigating between them in two-

dimensional attribute space. In contrast to other navigation tasks, in the case of binary choice 

comparisons, it is unknown where conceptual navigation would start and where it would 

end; however, because the hexagonal grid is symmetric, travel in both directions (that is, 

from option 1 to option 2 or vice versa) yields equivalent predictions (e.g., 45° is the same as 

225°).

It is important to note that in decision-making tasks the trajectory angles are necessarily 

constrained to half of the entire possible space because only comparisons between two 

options that involve a tradeoff between the two attributes are non-trivial. That is, most two-

attribute choice problems involve a comparison between one option that is better on one 

attribute and another option that is better on the other attribute; in the intertemporal decision-

making case, this translates to choices between greater amounts of money at longer delays 

versus lesser amounts of money at shorter delays. For example, a choice between $20 today 

and $30 in 10 days involves a tradeoff between more money and a longer delay, while a 

choice between $20 today and $10 in 10 days involves no tradeoffs, the immediate option 

dominates as it is both more money and sooner. Both decision theory and neural evidence 

suggest that such dominated or “no-brainer” choices, in which one option is better than the 

other on both attributes, can use different psychological and neural mechanisms than choices 

that involve tradeoffs between the attributes (Hunt et al., 2012; Kahneman and Tversky, 

1979). Because two quadrants within the two-dimensional attribute space correspond to 

dominated choices (in the examples above, $20 today versus $30 in 10 days corresponds to a 

trajectory angle of 45° while $20 today versus $10 in 10 days corresponds to a trajectory 

angle of 135°), most two-attribute choice tasks, including the choice task we use here, only 

sample the other two quadrants (Fig. 2a–b).
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In the intertemporal choice task we study, one of the two options is fixed, so that participants 

choose on every trial between an immediate option that is always $20 and a delayed option 

that varies from trial to trial in monetary amount and length of delay. This feature of the 

design simplifies testing for correlates of subjective value, as we can now test for signals 

modulated by the subjective value of the variable, delayed larger reward, according to that 

individual’s intertemporal preferences (captured by their discount rate). However, this 

feature does not complicate our ability to test for a hexagonal gridlike code; though it is 

equivalent to restricting the space of choices to one quadrant of Fig. 2a, given the symmetry 

of the hexagonal grid code, it does not further restrict the range of potential trajectory angles 

sampled in our design. As shown in Fig. 3, the distribution of trajectory angles in the current 

task (Fig. 3a) is similar to the distribution of trajectory angles one would get if two options 

are chosen at random with the constraint that there is a tradeoff between the two options 

(i.e., that one option is not both bigger in amount and proximal in delay; Fig. 3b).

We first show via simulation that a hexagonal grid modulation over decision attribute space 

could in theory account for previously observed neural correlates of subjective value in this 

task (Cox and Kable, 2014; Kable et al., 2017; Kable and Glimcher, 2007, 2010). We 

calculated the best-fitting grid angle for different subjective value landscapes generated 

assuming different intertemporal preferences (i.e., different discount rates for delayed 

rewards). Fig. 4 shows subjective value signals and their best-fitting gridlike signals at 

various discount rates. The maximum correlation between the two signals ranges between r 
= 0.5 and r = 0.7 depending on the discount rate. Note that these high correlations occur only 

at specific grid angles and not at others (specifically grid angles around 30–40°, 

Supplementary Fig. 1). Nonetheless, these simulations show that it is possible for hexagonal 

modulation and subjective value to be confused with each other under some conditions and 

help to motivate testing and comparing these two accounts in neural data.

We next test for neural activity correlated with subjective value or gridlike modulation in 

real data. Subjects in our study participated in two imaging sessions separated by ten weeks, 

and we perform this test in session 1 data. Fig. 5 shows significant effects across the whole 

brain for both subjective value and gridlike modulation regressors. Perhaps given the 

statistical power in our dataset (n = 145), we observed significant effects in widespread brain 

regions for both analyses. The subjective value effects, which we have reported previously 

for this dataset (Kable et al., 2017), include peaks in the vmPFC and ventral striatum that 

overlap with previous meta-analyses of subjective value correlates (Bartra et al., 2013). The 

gridlike modulation effects include peaks in the vmPFC and entorhinal cortex (ERC) as 

observed previously during conceptual navigation by Constantinescu et al. (2016).

The widespread effects observed for the gridlike modulation analysis, which encompass 

almost the entire brain, emphasize an important point: given that the angle of grid 

modulation is a free parameter, including between runs, these regressors provides a good 

degree of flexibility to fit a diversity of response patterns. Hence, definitive evidence for a 

hexagonal grid modulation signal requires showing that modulation is stronger at 6-fold than 

at other folds and that the angle of grid modulation is consistent across time. We turn to 

these stronger tests as we next employed three different ways to directly compare subjective 

value and hexagonal gridlike codes as accounts of neural activity in this task.
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First, we simply compare the AICs of the subjective value and hexagonal grid GLMs above. 

We found the subjective value GLM was a better descriptive model of fMRI activity in all 

four ROIs tested (Fig. 6). Most subjects had smaller AICs for the subjective GLM than for 

the hexagonal grid GLM in both the vmPFC and ventral striatum ROIs drawn from Bartra et 

al. (2013), as well as in both the vmPFC and ERC ROIs drawn from Constantinescu et al. 

(2016). We also performed this comparison across all voxels in the brain, and we did not 

find any voxels where the hexagonal grid GLM has significantly lower AIC.

Despite this significant result in all four ROIs, one may wonder if the subjective value GLM 

is favored simply because AIC favors models with fewer parameters. Our next test avoids 

this issue, as we compare different n-fold grid modulation GLMs in the same ROIs. If the 

true signal is a hexagonal gridlike modulation, a 6-fold modulation model should account for 

more variance in the data compared to 4, 5, 7, or 8-fold modulation (Fig. 7). In contrast, if 

the true signal is subjective value, 4-fold modulation should account for the most variance, 

and variance explained should decline across 4–8 folds (Fig. 7; in other words, 4-fold 

modulation best mimics a subjective value signal, which in our task is always highest in one 

corner of the two-dimensional attribute space and lowest in the opposite corner). In none of 

the four ROIs did we find that 6-fold modulation was the best descriptor of the BOLD 

signal. In fact, in both the vmPFC and ventral striatum ROIs from Bartra et al. (2013), and in 

the vmPFC ROI from Constantinescu et al. (2016), we found that 4-fold modulation explains 

significantly more variance than the 6-fold modulation (Fig. 7). This difference was not 

significant in the ERC ROI from Constantinescu et al. (2016). Again, we also performed this 

comparison across all voxels in the brain, and we did not find any voxels where the 6-fold 

model explains significantly more variance than the 4-fold model.

As a third test, we take advantage of the fact that subjects participated in two sessions in our 

study and perform the exact grid angle consistency analysis proposed to be the critical test 

for gridlike responses in Constantinescu et al. (2016). This test fixes the grid angle based on 

the fit of 6-fold modulation GLM in the first session and tests for modulation at that grid 

angle for 4~8 fold-modulation in the second session. Similar to the analysis above, if the 

true signal is hexagonal modulation, we should see the strongest grid-angle consistency 

effect with 6-fold modulation. In contrast, if the true signal is subjective value, we should 

see the strongest grid-angle consistency effect with 4-fold modulation. This analysis of grid 

angle consistency again unambiguously shows that vmPFC activity is consistent with 

subjective value and does not exhibit consistent hexagonal gridlike modulation (Fig. 8). We 

found that the grid-angle consistency effect was significantly larger at 4-fold modulation 

than 6-fold modulation in both the vmPFC ROIs from Bartra et al. (2013) and from 

Constantinescu et al. (2016).

Some readers may wonder about the distribution of estimated 6-fold grid angles. Because 

the correlation between a gridlike modulation signal and a subjective value signal is 

maximized at certain grid angles (Supplementary Fig. 1), if the true signal is subjective 

value, the distribution of estimated 6-fold grid angles should be distinctly non-uniform, with 

more grid angles in the range that maximizes this correlation (depending on the discount 

rate, the maximum occurs between 34° and 44°). In contrast, if the true signal is hexagonal 

modulation, there is no reason to expect any non-uniformity. Observing a uniform 
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distribution is less definitive, though, as grid angles would also be expected to be distributed 

randomly under the null hypothesis. Further, the lack of significant 6-fold grid angle 

consistency suggests that the estimated 6-fold grid angles should be interpreted cautiously. 

Nonetheless, for completeness, we also examine the distribution of estimated 6-fold grid 

angles, and consistent with an underlying signal of subjective value, find a distinctly non-

uniform distribution of 6-fold grid angles with a peak near 40° in both the vmPFC and 

ventral striatum ROIs from Bartra et al. (2013) and in the vmPFC ROI from Constantinescu 

et al. (2016) (Supplementary Fig. 2).

Finally, we perform several additional analyses to demonstrate the robustness of these results 

under different sets of assumptions. First, our ROIs, defined based on past studies, could 

have missed the exact location of gridlike modulation in the current study. If we define 

subjective value and gridlike code ROIs based on the peaks of these analyses in the current 

study, rather than on previous studies, we observe exactly the same pattern of results 

(Supplementary Fig. 3). Second, our gridlike modulation analyses assume that in the scaling 

of two attribute dimensions one dollar is equivalent to one day. If we alternatively assume 

that the two dimensions are such that the range of amounts and delays sampled cover an 

equivalent scale, we again observe exactly the same pattern of results as above 

(Supplementary Figs. 4–5). Third, we examine grid angle consistency across pairs of runs 

within session 1 data, in order to address the concern that gridlike representations were 

present but not stable across the delay between our two sessions. We again observe exactly 

the same pattern of results (Supplementary Fig. 6).

Discussion

During decision-making, vmPFC activity has previously been shown to correlate with 

subjective value; recently, it has been argued that vmPFC represents a hexagonal gridlike 

code for the conceptual space formed by the attributes of the choice options, which enables 

choices between novel attribute combinations (Bongioanni et al., 2021). Here we directly 

compared these two accounts of vmPFC activity in a large fMRI dataset of a standard two-

attribute intertemporal decision task involving two sessions. We found, unambiguously 

across three different tests, that the vmPFC signal during intertemporal decision making is 

better explained by a subjective value than a hexagonal grid-like signal. First, a simple 

model comparison between a GLM that assumed activity was correlated with subjective 

value and one that assumed activity was modulated in a hexagonal gridlike manner favored 

the subjective model in vmPFC. Second, across various n-fold grid modulation models, the 

6-fold hexagonal modulation model was not the best model of vmPFC activity. Rather, a 4-

fold modulation that could best mimic subjective value was the best fitting model. Thirdly, 

we found that the cross-session consistency of an individual’s grid angles was not the 

highest when assuming 6-fold hexagonal modulation. Instead, we again found that the 4-fold 

modulation model resulted in higher cross-session grid angle consistency, matching our 

simulation results for a subjective value signal. Thus, we found strong evidence that BOLD 

activity in vmPFC during intertemporal decision-making is correlated with subjective value 

and does not reflect a hexagonal gridlike code.
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Though there are assumptions in any one of the analyses we performed, the strong 

convergence of results across analyses and robustness checks lends strength to these 

conclusions. For example, the direct model comparison requires a choice about how to 

penalize the hexagonal grid model for its greater number of parameters, the grid model 

requires an assumption about the relative scaling of the two attribute dimensions, and the 

cross-session grid angle consistency analysis assumes stability of this representation across 

ten weeks. However, across three different kinds of tests, for two different methods of 

defining ROIs and for two different assumptions about the scaling of attribute dimensions, 

and examining grid angle consistency both within- and across-sessions, we consistently find 

evidence for a subjective value signal and no significant evidence at all for a hexagonal 

gridlike code in vmPFC.

Our results constrain the implications of Constantinescu et al. (2016) and Bongioanni et al. 

(2021) by limiting the conditions under which a gridlike code is observed in the vmPFC. 

Our intertemporal choice task is different from the tasks used in those studies. Both of those 

studies involved extensive learning of a novel conceptual space by the participants; ours 

takes advantage of a spontaneous conceptual space created by the option attributes as they 

are presented in a choice task. Participants in Constantinescu et al. (2016) imagined the 

visual transformation of a stimulus along a certain trajectory in conceptual space; 

participants in Bongioanni et al. (2021) responded to novel cue combinations to obtain 

outcomes with novel combinations of reward attributes (probabilities, magnitudes); whereas 

we simply ask participants to make a choice. Nevertheless, all three tasks similarly involve a 

two-dimensional space where gridlike representations of the task structure might be 

expected and indeed have been proposed (Bellmund et al., 2018). Our findings suggest that 

the two-dimensional space defined by the option attributes that is available during decision-

making does not necessarily provoke gridlike representations.

In humans, future studies of decision-making should examine a wider range of task designs 

to further test the generality of our conclusions. The potential correlation between subjective 

value and gridlike modulation is specific to the kind of experimental design used here, where 

one option is fixed and the other option is consistently better on one attribute and worse on 

the other attribute. This kind of design has been widely used in decision-making studies, but 

in other designs it is possible to completely orthogonalize value and gridlike modulations, 

which would allow for testing for distinct neural representations of each. For example, in 

intertemporal choice tasks, one could use a fixed reference option that is in the middle of the 

attribute space (e.g., $40 in 40 days), so that there can be feasible tradeoff options in two 

quadrants (i.e., more delay with more amount, or less delay with less amount). Alternatively, 

one could allow both options to vary in amount and delay, which might also lead the 

decision-maker to better represent the attribute space (analogous to starting navigation tasks 

from many different points in space). Finally, it will also be important to investigate 

decision-making tasks involving different reward commodities and attribute dimensions.

In such future studies, there are strong reasons to believe that our results here will 

generalize. Here it is important to consider the behavioral relevance of different 

representations. Behavior in many decision-making tasks, including the current 

intertemporal choice task, can be accounted for by assuming that decision-makers integrate 
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the attributes of each option (e.g., amount and delay) into a single dimension of subjective 

value and choose the option that is highest in value. Subjective value is therefore directly 

linked to behavior, and this simpler representational scheme would nonetheless provide the 

most relevant information for decision-making, the relative ordering of different options in 

terms of a decision-maker’s preferences. In contrast, the metric relationships between 

different choice options in two-dimensional attribute space that gridlike representations 

would provide – distances between any two options, what options lie in between two others, 

and paths that connect the two options – are less clearly relevant for the kind of decision 

tasks we studied here. On this point, notably even the study arguing that gridlike 

representations underlie novel choice did not show evidence of such representations in the 

paradigm where a choice was actually required (Bongioanni et al., 2021). Our results 

suggest that during preference-based choice, activity in vmPFC instead tracks the most 

behaviorally relevant representation of the option space – subjective value.

More broadly, a strong possibility is that representations in vmPFC are flexible, that vmPFC 

represents the relevant cognitive map for the current task (Bernardi et al., 2018; Schuck et 

al., 2016; Wilson et al., 2014), and therefore the nature of the coding scheme in vmPFC may 

depend on the demands of the task at hand. Computational modeling suggests similar 

flexibility in entorhinal cortex representations, that grid cells arise because of the structure of 

navigational tasks, and that different task environments lead to different kinds of entorhinal 

representations (Whittington et al., 2020). A similar account could explain how the vmPFC, 

like the medial temporal lobe, plays an important role in such a wide variety of functions, 

from learning and decision-making to schematic memory and social cognition (Behrens et 

al., 2018; Fehr and Camerer, 2007; Gilboa and Marlatte, 2017; Grabenhorst and Rolls, 2011; 

Janowski et al., 2013; Lieberman et al., 2019; Powell and Redish, 2016; Roy et al., 2012).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Intertemporal choice task design.
Panel a shows an example trial in intertemporal choice task where the delayed larger option 

is shown on the screen (black square). The immediate smaller option, which is the same on 

every trial, is not shown on the screen (dotted square). Panel b shows all 120 choice trials in 

the task. Each choice is between an immediate $20 option (green dot) and a delayed larger 

monetary option (one of the blue circles).
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Fig. 2. Example SV signal and hexagonal gridlike signal in two attribute space.
Panel a shows an example subjective value signal when comparing two options that vary in 

amount and delay. In the choice task used here, an SV signal will vary depending on the 

subjective value of the variable delayed option. Panel b shows an example hexagonal 

gridlike signal when mentally traversing between two points (shown in example is a grid 

angle of 0°, such that the peak activity occurs when traversing at 0° and 60°; this grid angle 

may vary from person to person). In the choice task used here, a hexagonal gridlike signal 

will vary depending on the trajectory angle between the two options.
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Fig. 3. Distribution of trajectory angles.
Panel a shows the distribution of trajectory angles in this task when traveling between the 

immediate option (green dot in Fig 1b) and the delayed options (blue circles in Fig 1b). 

Panel b shows the distribution of trajectory angles if two random options were to be chosen 

from the task space (i.e., two of the blue circles in Fig 1b). Trajectory angles between two 

options with a tradeoff are marked in blue while those between two options with no tradeoff 

(i.e., when one option dominates the other option) are marked in orange.
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Fig. 4. Correlation between SV signal and its most similar hexagonal modulation signal.
The top three panels show simulated subjective value signals for various delayed amounts at 

various discount rates and the next three panels below show their respective best fitting 

hexagonal grid modulations. The correlations between the two signals are provided below in 

dotted lines across various discount rates.
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Fig. 5. Regions with significant subjective value correlation (top) and significant hexagonal 
gridlike modulation (bottom) in session 1.
(p < 0.05 with permutation testing with threshold free cluster enhancement). The rightmost 

brain shows overlays of the two ROIs from Bartra et al. (2013) on top and the two ROIs 

from Constantinescu et al. (2016) on bottom.
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Fig. 6. Model comparison between subjective value GLM and hexagonal grid GLM.
Each of the four panels show the histogram of individual AIC differences between the 

hexagonal grid GLM and the subjective value GLM such that a positive number indicates 

AIC difference favoring the SV model. The top two panels are from the ROIs from Bartra et 

al. (2013); the bottom two panels are from the hexagonal grid ROIs from Constantinescu et 

al. (2016). All four ROIs’ mean AIC difference was significantly different from 0 at p ≪. 

001 with a one-sample t-test.
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Fig. 7. Comparison of n-fold grid modulation GLMs in session 1 data.
The top two panels show simulated results of n-fold grid modulation GLMs when the true 

signal is SV (left) or a hexagonal gridlike code (right). When the true signal is subjective 

value, we expect a descending staircase pattern, and when the true signal is a hexagonal grid, 

we expect a pyramid pattern. The middle two panels show the GLM analysis in SV ROIs 

from Bartra et al. (2013); the bottom two panels show them for hexagonal grid ROIs from 

Constantinescu et al. (2016). The error bars denote the standard errors of the mean. Paired t-

test between 4-fold and 6-fold: * p < .05, ** p < .01, *** p < .001. All 20 bars are 

significantly greater than zero (uncorrected p < .001 for all).
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Fig. 8. Grid-angle consistency analysis in session 2 data.
The top two panels show simulated results of grid-angle consistency analysis when the true 

signal is subjective value (left) or a hexagonal gridlike code (right). When the true signal is 

subjective value, we expect a descending staircase pattern, and when the true signal is a 

hexagonal grid, we expect a pyramid pattern. The middle two panels show the grid-angle 

consistency analysis in subjective value ROIs from Bartra et al. (2013); the bottom two 

panels show them for hexagonal grid ROIs from Constantinescu et al. (2016). Paired t-test 

between 4-fold and 6-fold: ** p < .01. Only 4-fold models are significantly different from 

zero (uncorrected p < .05) in vmPFC ROIs. 4-fold, 5-fold, and 6-fold models are all 

significantly different from zero (uncorrected p < .05) in the ventral striatum ROI. No 

models are significantly different from zero in entorhinal cortex.
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