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Geometric characterization of anomalous Landau
levels of isolated flat bands
Yoonseok Hwang 1,2,3, Jun-Won Rhim 1,2,4✉ & Bohm-Jung Yang 1,2,3✉

According to the Onsager’s semiclassical quantization rule, the Landau levels of a band are

bounded by its upper and lower band edges at zero magnetic field. However, there are two

notable systems where the Landau level spectra violate this expectation, including topological

bands and flat bands with singular band crossings, whose wave functions possess some

singularities. Here, we introduce a distinct class of flat band systems where anomalous

Landau level spreading (LLS) appears outside the zero-field energy bounds, although the

relevant wave function is nonsingular. The anomalous LLS of isolated flat bands are governed

by the cross-gap Berry connection that measures the wave-function geometry of multi bands.

We also find that symmetry puts strong constraints on the LLS of flat bands. Our work

demonstrates that an isolated flat band is an ideal system for studying the fundamental role

of wave-function geometry in describing magnetic responses of solids.
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The geometry of Bloch wave functions, manifested in the
quantities such as Berry curvature and Berry phase, is a
central notion in the modern description of condensed

matter. Due to the significant role of wave-function geometry in
describing the fundamental properties of solids, finding efficient
methods of measuring it has been considered a quintessential
problem in solid-state physics. In this respect, examining the
Landau level spectrum has received particular attention, as one of
the most efficient and convenient methods for detecting the
geometric properties of Bloch states.

A conventional way of determining the Landau levels of Bloch
states is to use the semiclassical approach based on Onsager’s
semiclassical quantization rule given by

S0ðϵÞ ¼
2πeB
_

nþ 1
2
� γϵ;B

2π

� �
; ð1Þ

which is generally valid in the weak-field limits. Here S0(ϵ) is the
area of a closed semiclassical orbit at the energy ϵ in momentum
space, B is a magnetic field, e is the electric charge, ℏ is the
reduced Planck constant, and n is a non-negative integer. The last
term γϵ,B indicates the quantum correction from Berry phase,
orbital magnetization, etc.1–5, reflecting the geometric properties
of solids. A collection of discrete energies (ϵ) satisfying Eq. (1)
forms the Landau levels which critically depend on the geometric
quantity γϵ,B. For instance, in graphene with relativistic energy
dispersion, Eq. (1) successfully predicts the

ffiffiffiffiffiffi
nB

p
dependence of

the Landau levels, where the existence of the zero-energy Landau
level is a direct manifestation of the π-Berry phase of massless
Dirac particles6, 7. Later, this semiclassical approach is generalized
further to the cases with an arbitrary strength of magnetic field8

where the zero-field energy dispersion in Eq. (1) is replaced by the
magnetic band structure with B linear quantum corrections.

The Onsager’s semiclassical scheme has provided a powerful
method of understanding complicated Landau level spectra of
solids intuitively. In usual dispersive bands where B linear
quantum corrections are negligible in weak-field limit, Onsager’s
semiclassical approach in Eq. (1) predicts that the Landau levels
are developed in the energy interval bounded by the upper and
lower band edges of the zero-field band structure. However, there
are a few examples of violating this expectation. Especially, several
systems exhibit anomalous Landau levels appearing in gapped
regions away from the zero-field energy bounds where the
semiclassical orbit, as well as S0(ϵ), cannot be defined, according
to Eq. (1). One famous example is the Landau levels of a Chern
band which appear in an adjacent energy gap at zero-field. Similar
behavior was also recently predicted in fragile topological bands
characterized by nonzero Euler numbers9–11. More recently, it
was shown that anomalous Landau levels also appear in singular
flat bands12, 13, where a flat band is crossing with another para-
bolic band at a momentum14. Interestingly, it is found that the
Landau levels of a singular flat band appear in the energy region
with a vanishing density of states at zero magnetic fields. More-
over, the total energy spreading of the flat band’s Landau levels,
dubbed the Landau level spreading (LLS), is solely determined by
a geometric quantity, called the maximum quantum distance
which characterizes the singularity of the relevant Bloch wave
function14.

In this work, we propose a distinct class of flat-band systems
that exhibit anomalous Landau level structures. The flat band we
consider is isolated from other bands by a gap, which we call an
isolated flat band (IFB). An IFB is generally non-singular as well
as topologically trivial15–17 as opposed to nearly flat topological
bands or degenerate flat bands18, 19, so that it does not belong to
any category of the systems exhibiting anomalous Landau levels
discussed above. However, it is found that the Landau levels of

IFBs are anomalous, that is, unbounded by the original band
structure at zero magnetic fields and developed in the band gaps
above and below the flat band.

In fact, the Onsager’s semiclassical quantization rule in Eq. (1)
generally does not work in flat bands, unless the B linear quantum
corrections are properly included. This is because there are infi-
nitely many semiclassical orbits allowed so that S0(ϵ) cannot be
uniquely determined. Interestingly, after taking into account the
B linear quantum corrections, we find that an IFB generally
exhibits anomalous LLS, and the upper and lower energy bounds
for the LLS are determined by the cross-gap Berry connection
defined as

Anm
i ðkÞ ¼ i unðkÞj∂iumðkÞ

� � ðn≠mÞ; ð2Þ
where un(k) is the periodic part of the Bloch wave function of the
nth band20. This is a multi-band extension of the conventional
Abelian Berry connection and describes inter-band couplings. Let
us note that, unlike the Abelian Berry connection defined for a
single band, the cross-gap Berry connection Anm

i ðkÞ (n ≠m) is
gauge-covariant. We will show that the LLS of an IFB is given by
the product of the x and y components of the cross-gap Berry
connection between the flat band and other bands weighted by
their energy. The LLS of an IFB is strongly constrained by the
symmetry of the system, which is demonstrated in various flat
band models including the Lieb and the Tasaki models as well as
the model describing twisted bilayer graphene (see the “Results”
section and Supplementary Note 4). Our work demonstrates the
fundamental role of wave-function geometry in describing the
Landau levels of flat bands.

Results
Modified band dispersion and the LLS. The original Onsager’s
semiclassical approach predicts IFBs inert under external mag-
netic field, and thus it cannot explain the LLS of IFBs. On the
other hand, the modified semiclassical approach developed by M.-
C. Chang and Q. Niu8 can resolve this problem. Contrary to the
Onsager’s approach, where the band structure at zero magnetic
field εn(k) is used to define the closed semiclassical orbits and the
corresponding area S0(ϵ), the modified semiclassical approach
employs the modified band structure given by

En;BðkÞ ¼ εnðkÞ þ μnðkÞB; ð3Þ
where B ¼ Bẑ is the magnetic field, n is the band index, and μn(k)
is the orbital magnetic moment of the nth magnetic band in the z-
direction arising from the self-rotation of the corresponding wave
packet8. The explicit form of μn(k) is

μnðkÞ ¼
e
_

Imh∂xunðkÞj½εnðkÞ � HðkÞ�j∂yunðkÞi; ð4Þ
where H(k) is the Hamiltonian in momentum space and
∂i ¼ ∂ki (i= x, y). Hence, the second term on the right-hand side
of Eq. (3) indicates the leading energy correction from the orbital
magnetic moment coupled to the magnetic field. In usual dis-
persive bands, the B-linear quantum correction is negligibly small
in weak magnetic field limit compared to the zero-field band-
width. This is the reason why the original Onsager’s semiclassical
scheme in Eq. (1) works well.

In the case of a flat band with zero bandwidth, on the other
hand, the B-linear quantum correction always dominates the
modified band structure En,B(k) in Eq. (3) even in a weak
magnetic field limit. Moreover, the modified band dispersion of
an IFB is generally dispersive so that the relevant semiclassical
orbits can be defined unambiguously. As a result, one can obtain
the Landau levels of the IFB in the adjacent gapped regions by
applying the semiclassical quantization rule to En,B(k), which
naturally explains the LLS of the IFB. Especially, around the band
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edges of En,B(k), one can define the effective mass m*, which is
inversely proportional to B, from which the Onsager’s scheme
predicts Landau levels with a spacing ℏeB/m*∝ B2. The resulting
Landau spectrum is bounded by the upper and lower band edges
of En,B(k). The total magnitude Δ of the LLS is determined by the
difference between the maximum and the minimum values of
En,B(k), namely, Δ ¼ max En;BðkÞ �min En;BðkÞ. This result is
valid as long as the band gap Egap between the IFB and its
neighboring band at zero magnetic field is large enough, i.e.,
Egap � max jEn;BðkÞj. The generic behavior of an IFB under
magnetic field is schematically described in Fig. 1 where one can
clearly observe that the Landau levels of the IFB spread into the
gaps at zero-field above and below the IFB.

Geometric interpretation of the LLS. Interestingly, we find that
the LLS of IFBs is a manifestation of the non-trivial wave-func-
tion geometry of the flat band arising from inter-band couplings.
One can show that the modified band dispersion of the IFB is
given by

En;BðkÞ ¼ �2π
ϕ

ϕ0

1
A0

Im ∑
m≠n

εmðkÞχnmxy ðkÞ; ð5Þ

in which

χnmij ðkÞ ¼ ∂iunðkÞjumðkÞ
� �humðkÞj∂junðkÞi ¼ Anm

i ðkÞ�Anm
j ðkÞ:

ð6Þ
where ϕ0= h/e, ϕ= BA0 is the magnetic flux per unit cell, and A0

is the unit cell area assumed to be A0= 1. Here, we assume that
the nth band is the IFB at the zero-energy without loss of gen-
erality so that εm(k) in Eq. (5) should be interpreted as the energy
of the mth band with respect to the flat band energy. We note that
Anm
i ðkÞ ¼ umðkÞj∂iunðkÞ

� �
indicates the cross-gap Berry connec-

tion between the nth and mth bands (n ≠m) defined above, and
χnmij ðkÞ is the corresponding fidelity tensor that describes the
transition amplitude between the nth and mth bands as discussed
below. See Supplementary Notes 1 for the detailed derivation of
Eq. (5). Hence, Eq. (5) indicates that the modified band disper-
sion of the IFB is given by the summation of the transition
amplitudes χnmxy ðkÞ between the IFB and the mth band weighted
by the energy εm(k) of the mth band as illustrated in Fig. 1. This
means that the immobile carriers with infinite effective mass in an
IFB can respond to external magnetic field through the inter-

band coupling, characterized by the cross-gap Berry connection,
to dispersive bands. The geometric character of the LLS is evident
in our interpretation based on Eq. (5).

Let us discuss the geometric character of the fidelity tensor
χnmxy ðkÞ more explicitly. In general, the geometry of the quantum
state un(k) can be derived from the Hilbert–Schmidt quantum
distance21–23 defined as

s unðkÞ; unðk0Þ
� � ¼ 1� jhunðkÞjunðk0Þij2; ð7Þ

which measures the similarity between un(k) and unðk0Þ. For
k0 ¼ k þ dk, we obtain

s unðkÞ; unðk þ dkÞ� � ¼ G
n
ijðkÞdkidkj; ð8Þ

where Gn
ijðkÞ indicates the quantum geometric tensor24–26 whose

explicit form is

G
n
ijðkÞ ¼ ∑

m≠n
∂iunðkÞjumðkÞ
� �humðkÞj∂junðkÞi ¼ ∑

m≠n
χnmij ðkÞ; ð9Þ

which shows that the quantum geometric tensor Gn
ijðkÞ of the nth

band is given by the summation of the fidelity tensor χnmij ðkÞ over
all m ≠ n. We note that χnmij ðkÞ itself cannot define a distance as
the triangle inequality is not satisfied. However, it is related to the
transition probability or the fidelity F unðkÞ; umðk0Þ

� �
between the

nth and mth bands27 through the following relations:

F unðkÞ; umðk0Þ
� � ¼ jhunðkÞjumðk0Þij2; ð10Þ

F unðkÞ; umðk þ dkÞ� � ¼ χnmij ðkÞdkidkj: ð11Þ
Thus, the geometric interpretation based on Eqs. (5) and (11)
clearly show that the LLS originates from the inter-band coupling.

Symmetry constraints on the LLS. The LLS of an IFB is strongly
constrained by symmetry. First, we consider a generic symmetry σ
whose action on the Hamiltonian is given by

UσðkÞHðkÞsUσðkÞy ¼ pHðOσkÞ; ð12Þ
where s∈ {0, 1}, p∈ {−1, 1}, and Uσ(k) and Oσ are unitary and
orthogonal matrices representing σ, respectively. xs¼1 denotes the
complex conjugation of x while xs¼0 ¼ x. Note that s= 0 and 1
are relevant to the unitary and anti-unitary symmetries, respec-
tively, while p=−1 and +1 correspond to anti-symmetry and
symmetry, respectively.

Among all possible symmetries of the form in Eq. (12), we find
that the modified band dispersion En,B(k) vanishes when the
system respects the chiral C or space–time-inversion IST
symmetries in the zero magnetic flux (see the “Methods” section
and Supplementary Notes 2 and 3 for the detailed derivation). C
and IST are characterized by ðOσ ; s; pÞ ¼ ð1; 0;�1Þ and ð1; 1; 1Þ,
respectively, where 1 is the identity matrix. In the following, we
demonstrate that the LLS is proportional to B2 for a flat-band
system with IST symmetry in the zero magnetic fields, while the
LLS is forbidden in the presence of chiral symmetry. Interestingly,
although IST symmetry would be broken as the magnetic field is
turned on, the LLS is strongly constrained by IST symmetry.

We further find that max En;BðkÞ ¼ �min En;BðkÞ when the
system respects a symmetry satisfying ð�1Þsp DetOσ ¼ �1 and
Oσ ≠1, such as time-reversal T or reflection R symmetry, at the
zero magnetic field (see the “Methods” section and Supplemen-
tary Note 2 for detailed derivations). This implies that the
minimum and maximum values of the LLS have the same
magnitude but with opposite signs. The relevant tight-binding
models are shown in Supplementary Notes 4.

Fig. 1 Landau level spreading (LLS) of an isolated flat band (IFB). a The
band structure of a two-dimensional system in the absence of a magnetic
field. The second band with the energy ε2(k)= 0 corresponds to the IFB.
The inter-band coupling εmðkÞχm2xy ðkÞ of the IFB with the other dispersive
band of the energy εm(k)(m= 1, 3, 4) is indicated by a dashed vertical
arrow. b The modified band dispersion En,B(k)(n= 1,…, 4) in the presence of
the magnetic field. The corresponding Landau levels are shown by red solid
lines. The LLS of the IFB is represented by the green arrow.
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Generic flat-band systems. We first consider the spin–orbit-
coupled (SOC) Lieb model28 as an example of generic flat-band
systems. The lattice structure for this model is shown in Fig. 2a.
The model consists of the nearest-neighbor hopping with the
amplitude 1 and the spin–orbit coupling between the next nearest
neighbor sites, which are denoted as green solid and dashed
arrows, respectively, in Fig. 2a. The tight-binding Hamiltonian in
momentum space is given by

HsocLðkÞ ¼
0 2 cos

ky
2 �4iλsoc sin

kx
2 sin

ky
2

2 cos
ky
2 0 2 cos kx2

4iλsoc sin
kx
2 sin

ky
2 2 cos kx2 0

0
BBB@

1
CCCA;

ð13Þ
where λsoc denotes the strength of spin–orbit coupling. The flat
band’s energy is zero, i.e., εsocL,fb(k)= 0, and the energies of the
other two bands are

εsocL; ± ðkÞ ¼ ± 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2

kx
2
þ cos2

ky
2
þ 4λ2socsin

2 kx
2
sin2

ky
2

s
; ð14Þ

which are plotted in Fig. 2b for λsoc= 0.2. The band gap between
the IFB and its neighboring bands is given by 4∣λsoc∣ if ∣λsoc∣ < 1/2,
and 2 if ∣λsoc∣ ≥ 1/2, thus the flat band is decoupled from other
bands for non-zero λsoc.

The analytic form of the fidelity tensor χnmxy ðkÞ is given by

χfb;þsocL;xyðkÞ ¼ χfb;�socL;xyðkÞ
	 
�

¼ f ðkx; kyÞf ðky; kxÞ
εsocL;þðkÞ
	 
4

ð2þ cos kx þ cos kyÞ
;

ð15Þ
where

f ðkx; kyÞ ¼ 4λsoc sin
kx
2 cos

ky
2 ðcos2 kx

2 þ 1Þ þ iεsocL;þðkÞ cos kx2 sin
ky
2 .

Then, from Eq. (5), the modified band dispersion for the flat band is

given by

EsocL
fb;B ðkÞ ¼ �

2πλsoc 3� cos kx � cos ky � cos kx cos ky
	 


εsocL;þðkÞ
	 
2 ϕ

ϕ0
:

ð16Þ

In Fig. 2c, d, Im χfb;�socL;xyðkÞ and EsocL
fb;B ðkÞ are shown. We note that

max EsocL
fb;B ðkÞ ¼ EsocL

fb;B ð0; 0Þ ¼ 0; ð17Þ

min EsocL
fb;B ðkÞ ¼

EsocL
fb;B ðπ; πÞ ¼ � π

2λsoc

ϕ
ϕ0

ðλsoc ≤ 1
2Þ

EsocL
fb;B ð0; πÞ ¼ �2πλsoc

ϕ
ϕ0

ðλsoc> 1
2Þ

8<
: : ð18Þ

These minimum and maximum values of EsocL
fb;B ðkÞ correspond to the

lower and upper bounds for the LLS of the IFB as illustrated by red
lines in Fig. 2e, f. Interestingly, the fidelity tensors χfb;þsocL;xyðkÞ and

χfb;�socL;xyðkÞ are conjugate of each other. This originates from the anti-
unitary symmetry C∘IST, a combination of chiral C and space–time-
inversion IST symmetries, present in the system (see Supplementary
Note 2 for the details.)

Chiral-symmetric system. We construct a chiral-symmetric Lieb
(c-Lieb) model as a representative example for chiral-symmetric
IFB systems. The c-Lieb is defined on the same Lieb lattice as the
SOC-Lieb model, but with different hoppings. As shown in
Fig. 3a, this model consists only of the nearest-neighbor hop-
pings, denoted by green arrows. The hopping parameter from a
B-site to a C-site is t1 for the rightward hopping, and 1 for the
leftward hopping. On the other hand, the hopping parameter
from a B-site to an A-site is t2 for the upward hopping, and 1 for
the downward hopping. The corresponding tight-binding

Fig. 2 Landau level spreading of a generic system with an IFB. a Lattice structure for the spin–orbit-coupled (SOC) Lieb model composed of three
sublattices, A, B and C. The double-headed green arrows denote the nearest neighbor hoppings, and the single-headed green arrows indicate the spin–orbit
coupling between A and C sublattices. The next-nearest hoppings t between A and C is set to be zero (t= 0.0) in the SOC Lieb model. b The band
structure of HsocL(k) with λsoc= 0.2. c Distribution of Im χfb;�socL;xyðkÞ. Note that Im χfb;�socL;xyðkÞ ¼ �Im χfb;þsocL;xyðkÞ. d The modified band dispersion EsocLfb;B ðkÞ of the
flat band in the presence of magnetic flux. e Landau level spectra of the flat band (black dots) as a function of λsoc for magnetic flux ϕ/ϕ0= 1/500. f
Landau level spectra of the flat band (black dots) as a function of magnetic flux ϕ/ϕ0 for λsoc= 0.2.
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Hamiltonian in momentum space is given by

HcLðkÞ ¼
0 ei

ky
2 þ t2e

�i
ky
2 0

e�i
ky
2 þ t2e

i
ky
2 0 e�ikx2 þ t1e

ikx2

0 ei
kx
2 þ t1e

�ikx2 0

0
BB@

1
CCA; ð19Þ

with energy eigenvalues εcL,fb(k)= 0 and

εcL;± ðkÞ ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ t21 þ t22 þ 2t1 cos kx þ 2t2 cos ky

q
. The chiral

symmetry operator C is given by C=Diag(1,−1,1) which gives a
symmetry relation,

CHcLðkÞC�1 ¼ �HcLðkÞ: ð20Þ
Note that the wave function of the flat band is also a simultaneous
eigenstate of the chiral symmetry having a definite chiral charge
c=+1:

CjucL;fbðkÞi ¼ cjucL;fbðkÞi: ð21Þ
Also, we obtain the fidelity tensor χfb;±xy , expressed by

χfb;þcL;xyðkÞ ¼ χfb;�cL;xyðkÞ

¼ � ð1þ t1e
ikx Þð1� t1e

�ikx Þð1þ t2e
�iky Þð1� t2e

iky Þ
8 εcL;þðkÞ
	 
4 :

ð22Þ
The band structure and Im χfb;�cL;xyðkÞ are shown in Fig. 3b, c.
Equation (22) indicates that the modified band dispersion Efb,B(k)
vanishes for all k because εcL,+(k)=−εcL,−(k), which means that
there is no LLS in the weak magnetic field. Also, we calculate the
Hofstadter spectrum29 for the c-Lieb model. Interestingly, we find
that the LLS is absent even in the strong magnetic field, as shown
in Fig. 3d. The existence of such zero-energy flat bands in the
finite magnetic flux is guaranteed by chiral symmetry C. As
explained in Supplementary Note 3, the minimal number of zero-
energy flat bands is given by jTr½C�j at the zero magnetic flux.

Moreover, when the system has the jTr½C�jð>0Þ number of zero-
energy flat bands at the zero magnetic flux, the LLS of the flat
band(s) is forbidden unless a gap closes at zero energy E= 0 as
the magnetic flux increases (see Supplementary Note 3). In the
c-Lieb model, such a gap closing at E= 0 does not occur at any
magnetic flux. Hence, there is no LLS in all range of magnetic
flux. On the other hand, when a gap closes at E= 0 as the
magnetic flux increases, the LLS is forbidden only in a finite range
of magnetic flux. As an example, in Supplementary Note 4, we
show the Hofstadter spectrum of the ten-band model for twisted-
bilayer graphene proposed in ref. 30.

Space–time-inversion-symmetric system. The LLS of an IFB is
weakly dependent on the magnetic field when the system respects
space–time-inversion IST symmetry at zero magnetic field. We
consider spinless fermions on the checkerboard lattice shown in
Fig. 4a, which is sometimes called the Tasaki or decorated square
lattice31–33. This model respects both time-reversal T and inver-
sion I symmetries. Hence, a combined symmetry, space–time-
inversion symmetry IST= I∘T, exists. We note that the following
discussion holds even if T and I are broken as long as IST is not
broken. The tight-binding Hamiltonian consists of the hopping
processes up to the third nearest-neighbor hopping. In momen-
tum space, the Hamiltonian is written as

HIST
ðkÞ ¼

1 cos kþ2 þ 2t cos k�2

cos kþ2 þ 2t cos k�2 2t cos kx þ 2t cos ky þ cos2 kþ
2 þ 4t2cos2 k�

2

 !
;

ð23Þ

¼ 1

cos kþ2 þ 2t cos k�2

 !
1 cos

kþ
2
þ 2t cos

k�
2

� �
; ð24Þ

where k±= kx ± ky. For t= 1.0, the band structure is shown in
Fig. 4b. This system hosts a flat band with zero energy and a
dispersive band with positive energy. The energy eigenvalues are

given by εIST;"ðkÞ ¼ 1þ ðcos kþ2 þ 2t cos k�2 Þ
2
and εIST;fbðkÞ ¼ 0.

Fig. 3 Landau level spreading of a flat-band system with chiral symmetry. a Lattice structure for the c-Lieb model. The green arrows denote the hoppings.
Note that the direction dependent hopping parameters induce a finite gap between the flat band and other bands. b The band structure for HcL(k) with
t1= t2= 2. c Distribution of Im χfb;�cL;xyðkÞ. Due to the chiral symmetry, Im χfb;�cL;xyðkÞ ¼ Im χfb;þcL;xyðkÞ holds. d The Hofstadter spectrum of the c-Lieb model HcL(k)
with t1= t2= 2. For any value of magnetic flux, the Landau levels of the flat band are fixed to the zero energy.
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In this system, IST is simply given by the complex conjugation,
i.e., IST ¼ K and

ISTjuIST;fb="ðkÞi ¼ juIST;fb="ðkÞi: ð25Þ
Also, explicit calculations show Im χfb;"IST;xy

ðkÞ ¼ 0 and the
vanishing modified band dispersion for the flat band En,B(k)=
0, which results from Eq. (25). In Supplementary Note 2, we have
proved that space–time inversion IST imposes En,B(k)= 0 in
general. We also note that En,B(k)= 0 is consistent with the fact
that the orbital angular momentum, which is proportional to the
orbital magnetic moment, is constrained to be zero in IST-
symmetric systems. Although the LLS is negligible in the weak
magnetic field, it becomes considerably large in the strong
magnetic field as shown in the Hofstadter spectrum in Fig. 4c. As
shown in Fig. 4c, the Landau levels of the flat band acquire or lose
their energy as the magnetic flux increases from 0 to some finite
value much less than 1. This implies that the higher-order
corrections of the magnetic field must be considered. Although it
is out of the scope of this work, we present a fitting of the highest
and lowest Landau levels of the flat band with respect to the
magnetic flux:

Efb;minðϕ=ϕ0Þ ¼ 1:35 ´ 10�5 � 5:51 ´ 10�3ðϕ=ϕ0Þ � 2:53ðϕ=ϕ0Þ2;
ð26Þ

Efb;maxðϕ=ϕ0Þ ¼ �4:56 ´ 10�7 þ 1:82 ´ 10�4ðϕ=ϕ0Þ þ 0:50ðϕ=ϕ0Þ2;
ð27Þ

which is plotted in Fig. 4d where one can observe the dominant
quadratic dependence on the magnetic field.

Finally, we comment on the gap closing at (ϕ/ϕ0, E)= (1, 1.0)
in the Hofstadter spectrum in Fig. 4c. At (ϕ/ϕ0, E)= (1, 1.0), the
Landau levels related to the flat and dispersive bands show a

closing of an indirect gap. We note that there is no closing of
direct gaps in the Hofstadter Hamiltonian. Unlike the inevitable
closing of the direct gap between topological bands in the finite
magnetic flux reported before11, 34, it is not necessary to close a
direct gap in our system.

Discussion
We have shown that the LLS of an IFB is determined by its wave-
function geometry and the underlying symmetry of the system.
The idea presented in this work goes beyond the conventional
semiclassical idea in which the Landau level spectrum is dom-
inantly determined by the band dispersion at zero magnetic fields.
So far, we have focused on cases when the bandwidth of the IFB is
strictly zero. However, in real materials, it is difficult to observe
perfect flat bands due to the long-range hoppings and spin–orbit
coupling35–39. To understand the influence of finite bandwidth of
the IFB, we have studied another tight-binding model defined in
the Lieb lattice including spin–orbit coupling. The hopping
parameters, the band structure, and the LLS of this system are
described in Figs. 2a, 5a–c, respectively. Under weak magnetic
flux with tλsocϕ > 0, the LLS of the IFB cannot be observed
because it is dominated by the energy scale of the bandwidth of
the nearly flat band. However, the anomalous LLS arising from
the wave-function geometry can be observed for the magnetic
flux larger than a threshold value ðϕ=ϕ0Þthres � 8tλsoc=π (see
Fig. 5c). On the other hand, the LLS is not disturbed by the
bandwidth when tλsocϕ < 0, because the nearly flat band has only
positive energy (see Fig. 5c). Such a Lieb lattice model with
spin–orbit coupling hosting a nearly flat band was already rea-
lized in an exciton-polariton system40, and also is expected to be
realized in electronic systems consisting of covalently bonded
organic frameworks41.

Fig. 4 Landau level spreading of a flat-band system with space–time-inversion symmetry. a The lattice structure for the IST-symmetric checkerboard
model. The red and black lines denote the hopping processes between A and B sublattices. b The band structure of HIST

ðkÞ with t= 1.0. c The Hofstadter
spectrum of the IST-symmetric checkerboard model with t= 1.0. d Variation of the lowest and highest Landau levels related to the flat band in the weak
magnetic field (blue and black circles). Efb;minðϕ=ϕ0Þ and Efb;maxðϕ=ϕ0Þ indicate the corresponding fitting functions (red and black solid lines) that exhibit
quadratic magnetic field dependence dominantly.
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Finally, we discuss the influence of disorder on the LLS of an
IFB and the related Landau level fan diagram. The fan diagram is
obtained by calculating the density of states (DOS) of Landau
levels of the disordered SOC Lieb model including a random
impurity potential whose maximum strength is denoted by W
(see the “Methods” section for details). As shown in Fig. 5d, e,
aside from the huge and wide DOS peaks from the dense Landau
levels with higher Landau level indices, one can find small but
sharp peaks corresponding to the LLLs of the IFB, from which the
LLS of the IFB can be determined. While this LLL peak is buried
in the DOS envelope of the higher Landau levels in the weak
magnetic field, it splits away from this envelope as the magnetic
field is large enough as shown in Fig. 5f. From the fan diagram,
one can check the geometric principle described by Eq. (5) by
extracting the slope of the LLL, which is represented by the
dashed guideline in Fig. 5f. Here we considered the magnetic
fluxes ϕ/ϕ0 below 1.25 × 10−2, which correspond to the experi-
mentally accessible region. Note that when the size of a unit cell is
equal to lnm, the relevant magnetic field is about
B ~ 4000 × ϕ/ϕ0 × l−2(T) approximately. For instance, in the case
of the Lieb lattice composed of the covalently bonded organic
frameworks41, ϕ/ϕ0= 1.25 × 10−2 corresponds to B ~ 50 T. We
expect the DOS peak corresponding to the LLL to be detected by
the resistance measurement from magnetotransport experiments
or the dI/dV measurement from the scanning tunneling spec-
troscopy if the magnetic field is strong enough or the system is

sufficiently clean so that the Landau level spacing becomes larger
than the Landau level broadening. Especially, when the LLS
develops asymmetrically, like in Fig. 5b, an overall energy shift of
the DOS from the flat band’s energy appears more prominently,
which provides a direct experimental signature of the LLS even in
disordered systems.

Up to now, our discussion has been focused on conventional
materials to realize flat bands. However, it is worth noting that
there are various artificial systems such as photonic
systems13, 42–44, optical lattices45–50, and systems with synthetic
dimensions51–55, which could offer better opportunities to test
our theoretical prediction. In these systems, band engineering is
relatively easier, and controlled experiments with artificial mag-
netic fields can also be performed. Designing realistic experi-
mental setups for observing LLS of flat bands in such artificial
systems would be one important problem for future study.

Methods
Symmetry constraints on the LLS. In order to derive the symmetry constraints on
En,B(k) and χnmxy ðkÞ, let us consider a symmetry operation σ acting on the Hamil-
tonian,

Uσ ðkÞHðkÞsUσ ðkÞy ¼ pHðOσkÞ; ð28Þ
where s∈ {0, 1}, p∈ {−1,1}, Uσ indicates a unitary matrix representing the sym-
metry σ, and x ¼ x� means the complex conjugation of x. From now on, we use a
compact notation gσ ¼ ðOσ ; s; pÞ to describe the operation of the symmetry σ. For
example, gT ¼ ð�1d ; 1; 1Þ is used for time-reversal symmetry T where d and 1d
denote the dimensionality and the d × d identity matrix, respectively. The

Fig. 5 Influence of finite bandwidth and disorder on the Landau level spreading of IFBs. a–c A nearly flat band in the spin-orbit coupled Lieb lattice where
the dispersion of the FB arises from the next nearest neighbor hoppings between A and C sublattices with the amplitude t (see Fig. 2a). a The band
structure of the nearly-flat-Lieb model with (t, λsoc)= (0, 0.2) and (0.02, 0.2), which are denoted by the black and red lines, respectively. The right side of
the band structure describes the first Brillouin zone and the high-symmetry points. b The Landau levels in the weak magnetic field for t= 0.00 and
λsoc= 0.2. The lowest (highest) Landau level has the energy � π

2λsoc
ϕ=ϕ0 when ϕ > 0 (ϕ < 0). c Similar plot for t= 0.02 and λsoc= 0.2. When ϕ > 0, the LLS

can be observed once the magnetic flux exceeds the threshold value ðϕ=ϕ0Þthres � 8tλsoc
π because of the finite band width 4t. While, the threshold magnetic

flux is zero when ϕ < 0 since the LLS develops only in the negative energy direction. d–f Density of states (DOS) of Landau levels in the presence of
disorder. d DOS of Landau levels in very clean system with W= 0.001. The red (black) line corresponds to ϕ/ϕ0= 1.00 × 10−2 (1.25 × 10−2). The lowest
Landau level (LLL) peaks are denoted by black and red arrows. The energy range of the plot corresponds to the red dashed box in (b). e DOS of Landau
levels for W= 0.02. f The intensity plot of the DOS (or the Landau fan diagram) for W= 0.02 and the iteration number Nitr ¼ 20 as a function of ϕ/ϕ0.
The plot ranges for the energy and magnetic flux correspond to the red dashed box in (b). The black dashed line indicates the LLL peak positions. Note that
the maximum value of DOS in the plotted region is 2.306 × 10−2 (arb. unit).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26765-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6433 | https://doi.org/10.1038/s41467-021-26765-z | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


symmetry constraints on En,B(k) and χnmij ðkÞ derived from Eq. (28) are

En;BðOσkÞ ¼ ð�1Þsp DetOσ En;BðkÞ; ð29Þ

χnmσ
ij ðOσkÞ ¼ ½Oσ �ii0 ½Oσ �jj0 χnmi0 j0 ðkÞ

s
; ð30Þ

where the band indices m and mσ in Eq. (30) are chosen such that
εmðkÞ ¼ p εmσ

ðOσkÞ. Detailed derivation of Eqs. (29) and (30) and comments on
the degenerate bands can be found in Supplementary Note 2. From equation (29),
we obtain two symmetries that give vanishing modified band dispersion,
En,B(k)= 0: gC ¼ ð1d ; 0;�1Þ and gIST ¼ ð1d ; 1; 1Þ which correspond to chiral
symmetry C and space–time-inversion symmetry IST, respectively. On the other
hand, when ð�1Þsp DetOσ ¼ �1 and DetOσ≠1, the modified band dispersion
satisfies En,B(Oσk)=−En,B(k), which implies max En;BðkÞ ¼ �min En;BðkÞ. Time-
reversal T and reflection R symmetries belong to this case. Also, the contribution to
the En,B(k) from each band via the inter-band coupling in Eq. (5) can be sys-
tematically understood by using equation (30) (see Supplementary Note 2 for
details).

Calculation scheme for the Landau levels. We calculate the Hofstadter spectrum
by numerically implementing the Peierls substitution to the tight-binding
Hamiltonian29.

Calculation of Landau fan diagram including disorder. To obtain the Landau fan
diagram including disorder effect, we study a finite-size SOC Lieb model HsocL(k)
composed of 40 by 40 unit cells. Disorder is introduced by the Hamiltonian Hdis

with components Hdis

� �
ij ¼ wiδij , where i, j= 1,…, 4800 denotes the unit cell

index and wi∈ [−W/2,W/2] follows a uniform probability distribution. By diag-
onalizing the disordered Hamiltonian N itr ¼ 200 times and averaging the results,
the density of states (DOS) of Landau levels is obtained. Note that chiral edge states
are found in the gap between flat and dispersive bands. It is because the two
dispersive bands in the SOC Lieb model have the Chern number ±1, respectively
depending on the sign of spin–orbit coupling, despite the topologically trivial
middle flat band. However, the contribution of edge states to DOS is quantitatively
negligible.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
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