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Abstract: Research on the pathogenesis of tuberculosis (TB) has been hamstrung for half a century by
the paradigm that granulomas are the hallmark of active disease. Human TB, in fact, produces two
types of granulomas, neither of which is involved in the development of adult type or post-primary TB.
This disease begins as the early lesion; a prolonged subclinical stockpiling of secreted mycobacterial
antigens in foamy alveolar macrophages and nearby highly sensitized T cells in preparation for
a massive necrotizing hypersensitivity reaction, the Koch Phenomenon, that produces caseous
pneumonia that is either coughed out to form cavities or retained to become the focus of post-primary
granulomas and fibrocaseous disease. Post-primary TB progresses if the antigens are continuously
released and regresses when they are depleted. This revised paradigm is supported by nearly
200 years of research and suggests new approaches and animal models to investigate long standing
mysteries of human TB and vaccines that inhibit the early lesion to finally end its transmission.
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1. Introduction

Improved understanding of the pathogenesis of tuberculosis (TB) tops most lists of needs for
developing more effective vaccines and therapies [1]. Today, most pathogenesis research uses
sophisticated technologies to investigate the cells, molecules and pathways in animal models.
Unfortunately, none of the animal models reproduce the entire disease as it occurs in humans. Especially,
none naturally mediate transmission to new hosts and none develop delayed type hypersensitivity
(DTH) reactions with the intensity of tuberculous humans [2–4]. Investigators in the pre-antibiotic era
had materials for research that do not exist today. They observed individual patients or whole families
with TB in specialized sanitaria for months or years. They had astute physical examinations, X-rays,
skin tests and autopsies of patients with untreated TB. Three-dimensional X-ray and clinical findings
were correlated with histologic changes at autopsy. Animal models were developed to specifically
reproduce particular aspects of the human disease. A four year study of caseation used at least
200,000 sections of tissues from human autopsy and surgical cases or tuberculous guinea-pigs [5].

Today, granulomas are almost universally considered the hallmark of TB and cavities are thought
to arise by erosion of granulomas into bronchi. This concept arose from studies in animals in the
late 20th century and has no support among investigators who studied the pathology of developing
post primary TB (PPTB) [6–9]. Arnold Rich said it well “It has been found by all who have studied
early human pulmonary lesions that they represent areas of caseous pneumonia rather than nodular
tubercles” [2]. I have reviewed the pathology of over 200 cases of untreated developing PPTB and have
confirmed that cavities arise from dissolution of caseous pneumonia frequently in people who have
no granulomas in their lungs, Figure 1. The pathology of primary and post-primary TB in humans
has been recently reviewed [9]. Granulomas in PPTB arise only late as a reaction to necrotic caseous
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pneumonia that is not coughed out in formation of cavities. Cavities are a manifestation of the Koch
phenomenon, not of granulomas.
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Figure 1. Human cavity formation. (A) cavity forming by dissolution of caseous pneumonia. The cavity
is lined by softened necrotic lung some of which has already been coughed out. (B) Higher magnification
of surrounding area showing caseous pneumonia. (C) Viable nearby lung with secreted mycobacterial
antigens in alveolar macrophages. These antigens with highly sensitized T cells mediate the disease.
(A H&E 10×, B H&E 100×, C IHC stain for secreted mycobacterial antigens 400×magnification).

In the preantibiotic era, it was widely recognized that the initial infection sensitizes the host so
that subsequent infections produce fundamentally different lesions. “The patient’s reactivity, as far as
tubercle bacilli are concerned, is never the same after his body has once harbored a tubercle; likewise,
the course of the disease, when due to a first infection, is never the same as when due to reinfection” [10].
The first infection of a person produces primary TB that induces immunity to disseminated infection.
Any subsequent infection of a sufficiently sensitized host produces PPTB that is restricted to the lung,
causes much necrosis and cavities that mediate transmission to new hosts [11]. An enduring mystery
is that bronchogenic spread, caseation and cavitation of PPTB are evidence of a considerable degree of
immunity to primary TB [12–15]. Many have been impressed on the one hand by the susceptibility of
infants and young children to infection and on the other hand by the difficulty of demonstrating that
adults exposed to infection acquire the disease [16]. Adults in endemic areas are typically exposed
many times before developing disease and most never do.

Today the research situation has changed completely. Human lung tissue from autopsies is seldom
available. Investigators use animal models that do not produce PPTB. They focus on technological
advances and study patients only briefly before initiating therapy. The primary granuloma is
universally considered to be the hallmark of TB. Investigators of the pre-antibiotic era knew that
this is not true. By study of hundreds or thousands of cases they knew that granulomas are not
involved in the development of PPTB [2,5,10–13]. They had a much more nuanced conception of its
pathogenesis. Recent studies have identified new components that reinforce their observations and
facilitate formulation of more detailed mechanisms. This paper integrates findings from the 19th,
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20th and 21st centuries that support a new paradigm for the pathogenesis of TB that restores the
Koch Phenomenon as the key driver of PPTB.

Mycobacterium tuberculosis (MTB) is not a typical bacterial pathogen. It is a very successful
human parasite that has coevolved with humans for many thousands, if not millions, of years [17].
It can infect many species, but is transmitted in nature only by humans and has no environmental
reservoir. Consequently, its survival depends on transmission from person to person. MTB has evolved
to avoid destruction by our innate and adaptive immune mechanisms and to induce lesions that
facilitate its transmission [18]. It is evolutionarily incentivized not to cause death or disease severe
enough to inhibit transmission as this would lead its extinction [14,19].

MTB does not follow the typical rules of bacterial pathogens. WHO estimates that it infects about
1.8 billion people, 25% of the world’s population, and kills more people than any other infection [20].
Yet, over 90% of those infected never get sick. In the 1920s, apical scars or encapsulated apical TB were
found in most adult Americans who died from causes other than TB, indicating that spontaneous
regression is common and immunity can be highly effective [16]. However, neither immunization,
natural infection nor chemotherapy can produce immunity to recurrent adult TB [18]. Dubos wrote,
“To have passed through a period of high mortality risk confers not protection, but added hazard
in later life” [21]. Humans cured by chemotherapy can become reinfected from the environment
within weeks [22]. In addition, there is no correlation between the degree of hypersensitivity and
degree of acquired resistance in man. In fact, there is an inverse relationship–the greater the degree
of tuberculin hypersensitivity, the greater the susceptibility to disease and death [23,24]. This was
confirmed recently in cancer patients treated with checkpoint inhibitors that both enhanced their
immune responses and produced reactivation of TB [25]. As stated by Robert North, “A central
problem in tuberculosis research is to explain why immunity to infection does not enable mice, guinea
pigs, rabbits or susceptible humans to resolve lung infection and thereby stop development of the
disease” [18]. Using chemotherapy or vaccines to reduce the MTB load in the lungs by 2 logs does not
enable immunity to cause the much lower level of infection to resolve [18].

2. The Koch Phenomenon

While adult pulmonary TB is frequently considered to involve pathological manifestations
of a hyperactive anti-mycobacterial immune response, key details have been lost [26]. The Koch
phenomenon today is largely a historical curiosity that has the potential for causing toxicity of
therapeutic vaccines [27–32]. In the preantibiotic era, it was considered central to the pathogenesis of
TB and responsible for the death of many people. In 1927, Pottenger wrote, “No matter what phase of
tuberculosis one may be interested in, whether clinical, laboratory, experimental or immunological,
he should familiarize himself with the Koch phenomenon; for in the elaboration and accurate
interpretation of this observation lies the understanding of all the reactions which take place between
bacillus and host, after infection is once established” [10].

When Koch discovered tuberculin, he regarded it at first as a specific cure for TB. In early attempts
at therapy, he studied people with lupus vulgaris (skin TB) because he could watch the lesions.
Large doses of tuberculin were injected subcutaneously away from the lesions. A few hours later, TB
skin lesions swell, redden and finally become necrotic. Koch reported that tuberculin did not destroy
the tubercle bacilli, but only the tuberculous tissue. The inflammation was restricted to the diseased
parts only. It did not attack any sound and healthy parts of the body. However, even the smallest
otherwise invisible TB lesions were made perceptible through the inflammation [4]. In further studies,
human patients proved extraordinarily more sensitive to tuberculin than the guinea and patients with
advanced pulmonary TB were far more sensitive than those with lesser tuberculous afflictions [3,4].
It soon became evident that tuberculin therapy was not a cure. The injections induced perifocal
reactions and reactivation of tuberculous lesions in each and every part of the body. In the lung, these
“tuberculin pneumonias” progressed rapidly to caseation and caused death of many patients [33].
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A perifocal reaction is an exudative tissue hypersensitivity reaction that contains few or no tubercle
bacilli that surrounds a tuberculous focus, Figure 2. As discussed later, it is probably a manifestation of
Type IV or delayed type hypersensitivity (DTH) reaction against secreted tubercle proteins. In the
lung, it is composed mainly of alveoli filled with blood plasma, fibrin, red blood cells, relatively
few polymorphonuclear leucocytes, many lymphocytes, desquamated alveolar epithelial cells and
macrophages. The histological character of a perifocal reaction may vary from purely hemorrhagic
perifocal zones to areas of leucocytic infiltrations with marked desquamation and proliferation of
alveolar epithelial cells with lymphocytes and plasma, or there may be merely an exudation of plasma
with a fibrin and a few lymphocytes [34,35]. They typically contain vasculitis and blood vessels
immediately surrounding lesions are thrombosed.
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Figure 2. Perifocal Inflammation is a hypersensitivity reaction to tuberculin that surrounds recent,
but not old, lesions of both primary tuberculosis (TB) and primary TB (PPTB). It consists of edema and
interstitial lymphocytic inflammation. It is a major cause of toxemia and death of adults with acute TB.
It is a toxic edema (delayed type hypersensitivity) that usually contains no acid fast organisms. It is
typically associated with vasculitis (insert) (H&E stain 100×).

Pottenger wrote, “The reaction which results from the escaping bacilli coming in contact with the
immunized cells of the host is not confined to the point of attempted implantation”. Some bacillary
substance is set free which acts upon cells in all parts of the body and which may cause an allergic
response in foci of previous disease. Not infrequently do we find evidence of this focal allergic
reaction manifesting itself as an increased inflammatory activity in foci distant from the point of new
invasion; in distant parts of the same lobe, in other lobes of the same lung, in the other lung, or in
other organs” [10]. Physical manipulation of tuberculous lesions by collapse therapy or surgery can
produce massive perifocal inflammation within 24 h [11,36]. TB progresses if the bacillary antigens are
continuously produced and regresses if these antigens are destroyed [37].

Injections of tuberculin cause perifocal reactions in susceptible patients that are indistinguishable
from those spontaneously arising [34]. The greater the amount of tuberculin injected, the more intense
will be the ensuing perifocal reaction around distant tuberculous foci. This is a well known hazard of
skin tests in tuberculous patients. ‘It is particularly in the recent and in the unstabilized tuberculous
lesions that we must beware of the potential dangers of the Mantoux test. A well-stabilized lesion,
even an extensive one, is much less likely to react unfavorably to a tuberculin test than an unstabilized
lesion, although the latter may be small in extent’ [34]. Caseous lesions, especially those without
fibrous encapsulation, may show extensive perifocal reactions after tuberculin is injected. The perifocal
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inflammatory exudate may then undergo caseation and cause progression of the lesion [34]. The tissues
surrounding a well-encapsulated or well calcified lesion are less sensitive to tuberculin, and because
of this fact a significant perifocal reaction may be absent even after the injection of large doses of
tuberculin [34]. However, it is not rare that upper lobe calcified nodules become reactivated with
perifocal inflammation, especially in adolescents and produce rapid tissue destruction [11].

Perifocal reactions may surround both primary and PPTB lesions and have variable courses.
The age of the subject and size of tuberculin skin test are important [38]. The larger the skin test,
the more likely a severe perifocal reaction will develop. TB of the very young is in general without
very extensive perifocal inflammation. The complication is found more regularly between the ages of
25 and 30 years. It attains extreme degrees at approximately 40 years and diminishes in importance in
the older age group. When patients with perifocal infiltrations on X-ray are put at rest, large areas
of infiltration may disappear quickly and recovery is rapid [39]. The lesions also clear rapidly with
antibiotics [36].

3. X-rays of Developing TB

Recent investigators have proposed that the classification of TB be expanded to include incipient
and subclinical TB in addition to active and latent infection [40,41]. This is based in part on a
high-resolution CT scan that is the method of choice to reveal the tree-in-bud sign of subclinical
TB [42,43]. This sign shows 2 to 4 mm centrilobular nodules and sharply marginated linear branching
opacities around terminal and respiratory bronchioles in a pattern that mimics the branching pattern
of a budding tree, Figure 3 [44]. Far from being new, this was recognized by multiple investigators a
century ago who described it with the terms “studding of bronchi”, “budding twigs,” “raisins on a
stem” or “pussy willows.” [45–47]. While investigators in the pre-antibiotic era lacked technologies
we have today, they had capabilities and resources that no longer exist. The routine followed in
Dunham’s studies was to remove the lungs from the body, inflate them to their normal size and make
stereoscopic X-rays that were compared with histologic lesions and stereoscopic X-ray studies of the
living patient [46]. This made it possible for X-rays to identify in the lungs of children and adults the
various lesions of subclinical and active TB that are recognizable at autopsy [48]. Several generations of
pathologists and clinicians became familiar with the bronchial spread of the infection through the lungs
that led to tuberculous pneumonia, cavitation, post-primary granulomas and fibrocaseous disease as
well as the form of its source as ‘budding twigs’ [49]. Most of this has now been forgotten and replaced
by the fantasy that granulomas are the hallmark of all TB.
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Figure 3. Tree-in-bud sign on CT scans was recently rediscovered as the characteristic early lesion of
PPTB. It was described by Carswell in 1837 and by X-rays in the 1920s [42,46,50]. Today, it is recognized
as characteristic of advancing post-primary TB.
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The differences between the X-rays of tuberculous children and adults were described shortly after
introduction of X-rays into medical practice [46]. Lesions that were incipient to clinicians were already
progressive to the radiologist [45]. The majority of incipient adult lesions were only found by X-raying
apparently healthy persons, particularly among groups exposed to massive infection or circumstances
lowering resistance. These were not rare. Of 3000 unselected necropsies at Stanford University in
1923, 1905 (65%) had TB [51]. This was far beyond the incidence of any other disease. Of these,
there were 525 (29%) active cases of pulmonary TB and 1255 (71%) cases with healed, mostly apical
lesions. Among the active cases the mortality was greatest between ages 20 and 40. Opie reported
that in Philadelphia, 70% of teen age children of a parent with TB and 40% of such children whose
parents were well had pulmonary TB lesions on X-ray and that he could tell months ahead of time
which of these would develop clinical disease [48,52]. Early minimal lesions were always unstable,
most regressed with rest therapy while some progressed [11].

In 1925, Assmann drew attention to a solitary infraclavicular opacity which he had observed in
young adults with slight symptoms, no physical signs and a history of contact with TB. He suggested that
this opacity might represent the early tuberculous focus in adults. One could frequently demonstrate
that they were TB by culture of gastric aspirates. Subsequent development of open TB in many of his
patients substantiated this view [53]. The early pulmonary infiltrate, Assmann’s focus, is the lesion that
represents the onset of PPTB, Figure 4 [54]. Worldwide interest in its significance stimulated numerous
studies and publications through the 1940s and beyond [43,44,46,48,52–59]. Multiple investigations
confirmed that the early pulmonary infiltrate was a common onset of TB. Investigators were able to
longitudinally observe the progression and/or regression of subclinical PPTB for months before the
onset of symptoms. This stimulated the widespread use of X-rays to detect early TB [54].
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Figure 4. The Early Lesion of PPTB begins as an alveolitis with foamy alveolar macrophages behind
an obstructed bronchus (upper arrow) (A). Over a period of months, the macrophages sequester
mycobacterial antigens and host lipids, while the alveolar walls thicken with lymphocytes to produce
obstructive lobular pneumonia (lower arrow and (B)). (H&E, A 10×, B 40×).

Studies of correlation of X-rays of the early lesion with pathological changes in the lung were
conducted by multiple investigators [58,59]. The early infiltrates were shown to be small areas of
exudative bronchopneumonic TB typically near the pleural surface in the upper posterior part of the
lung. Few tubercle bacilli were seen by AFB staining. Using serial X-rays, it was noted that such lesions
frequently resorbed completely [11]. The lesions were shown to be fan or wedge shaped centered
on a bronchus and extending to the pleura. Pathologically, this wedged shaped TB pneumonia was
associated with obstruction of the bronchus and extended to include all of the lung tissue supplied by
that bronchus. Surgical relief of such obstruction frequently caused healing [2]. The discharge of bacilli
into the sputum might be only intermittent because the semisolid caseous material produced bronchial
obstruction that trapped the organisms [54]. Tuberculous bronchopneumonia may exist in a large area
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without causing any signs or symptoms. Many reach maximum density in a few months and then
resolve leaving an apical scar [60]. However, its recognition suggests a grave prognosis. By use of
stereoscopic X-rays, the most vital developmental phase of the disease could readily be followed and
studied in the living human [46].

Perifocal inflammation is often severe and may cause of death. It is most common in the early
phases of tuberculous lesions in patients with strong tuberculin skin test reactions [38]. The larger the
skin test reaction or IGRA response of an individual, the greater the tendency to apical localization,
perifocal inflammation and death [2,24]. Amberson reported that perifocal haziness on X-ray is an
invariable accompaniment of disease found in serial roentgenograms to be progressive [47]. The more
intense and the more extensive the perifocal haziness in the X-ray, the sicker the patient is likely to be
and the more profound the general intoxication. Perifocal haziness is usually most prominent about
bronchopneumonic or pneumonic deposits and, in such circumstances, the patient is usually seriously
ill [47]. The disappearance of perifocal haziness is always the first stage of repair and the subsidence of
constitutional symptoms of intoxication [47]. The comparison between certain non-tuberculous miliary
reactions (silicosis, Boeck’s sarcoid) and acute miliary TB is instructive. The first are well tolerated
because of the absence of perifocal inflammation, while the tuberculous infection may be fatal because
of a diffuse perifocal inflammation. Perifocal inflammation is the best evidence of the activity of a
focus [38].

4. Delayed Type Hypersensitivity (DTH)–Both Protection and Perifocal Inflammation

The tuberculin skin reaction, a localized immune reaction to soluble MTB proteins, is the classic
model of DTH (Type IV hypersensitivity reaction) and host resistance to TB. Mycobacterial antigens
drive the differentiation of CD4+ T cells to Th1 cells. Th1 cells secrete IFN-γ that is responsible
for macrophage activation as M1 cells that control the infection [61]. However, DTH is capable
of much more [62]. The pathology of DTH was studied intensively by Harold Dvorak who used
multiple models [63]. He reported that the effector mechanisms of DTH included the coagulation
and microvascular systems in addition to macrophage activation. DTH increased microvascular
permeability, caused edema, vasculitis, and activation of the clotting system with extravascular
fibrin deposition, thrombosis and systemic coagulopathy in addition to macrophage activation and
lymphocyte infiltration around blood vessels [64]. These are all features of the perifocal reaction to
TB in the human lung; see Figure 2. The deposition of fibrin can account for the gel consistency of
some perifocal lesions [65]. In addition, a large Russian series confirmed that patients with acute
pulmonary TB have a profound coagulopathy that appears to be caused by procoagulant produced by
macrophages under the influence of sensitized T cells [64,66–69].

Dannenberg and others agreed that DTH was important, but had a much more nuanced conception
of its activity than just activating macrophages to kill ingested organisms [70]. He wrote that the
pathological features of TB appear to be determined by the interactions between tissue hypersensitivity
and local mycobacterial antigen load. With insufficient hypersensitivity, infected macrophages are
drawn into granulomas where they die and add to the growing caseum. Where tissue hypersensitivity
is high and antigen load sparse, well-formed granulomas with activated macrophages kill MTB and
contain infection. When both the antigen load and hypersensitivity are high, the result is a perifocal
reaction with massive necrosis that leads to cavitation. Thus, the formerly beneficial DTH reaction that
is responsible activation of macrophages to kill MTB is, with excess bacillary antigen, also responsible
for almost all of the tissue damage produced by this disease, including granulomas, perifocal reactions,
caseation, liquefaction, and tuberculous pneumonia [71,72].

5. Early Lesion of Post-Primary TB (PPTB)

There is a disconnect between the current idea that granulomas are the hallmark of TB and earlier
observations that ‘Granulomas do not play a role in the development of phthisis in the adult’ [2,11].
The distinctions between the lesions of primary TB and phthisis (PPTB) were recognized grossly by
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Laennec [73], microscopically by Virchow [74], immunologically by Koch [3], clinically by Osler [75],
radiologically by Dunham [46], genetically by Alcais [76] and confirmed by many investigations over
nearly two centuries [8,9]. Primary TB produces granulomas are widely studied. PPTB begins as an
infection of alveolar macrophages in people with sufficient immunity to heal caseating granulomas [7,77].
It progresses as an asymptomatic obstructive lobular pneumonia, tree-in-bud sign, that spreads via
bronchi before undergoing caseous necrosis that is either coughed out to form cavities or retained to
become a focus of post-primary granulomas and fibrocaseous disease.

Investigators in the preantibiotic era recognized that caseation necrosis contained much lipid and
was due to hypersensitivity, but they could not identify the sources of lipid or antigen. Since infected
necrotic material was spread through bronchi, they assumed that the offending antigens were discharged
from small necrotic foci into bronchi [2,78]. Recent studies have clarified the situation and led to the
present conception of the pathogenesis of TB as described next.

5.1. Role of Bronchial Obstruction in Cavitation

It has long been known that cholesterol rich lipids accumulate in alveolar macrophages for
months before onset of necrosis to produce caseous pneumonia [5,79,80]. In addition, Osler and others
reported that bronchial obstruction is found in 100% of cases of adult pulmonary TB [2,75,81,82].
Furthermore, surgical relief of obstruction has been reported to cause healing of tuberculous infiltrates [2].
We now know that bronchial obstruction by foreign bodies or tumors causes lipids to accumulate
in post-obstructive lipid pneumonia that has a propensity to cavitate [83,84]. It is known as golden
pneumonia because of the yellow color of large amounts of lipid. The lipid derives from pulmonary
surfactant that is degraded and stored in foamy alveolar macrophages.

We reported a case of a cavity in a patient with cancer that has many similarities to those
produced by TB [85]. Obstructive lipid pneumonia formed behind a bronchus obstructed by cancer.
Chemotherapy caused necrosis of the lipid pneumonia that was coughed out to produce a large cavity.
The man died a few days later. Histologically, the cavity contained areas of lipid accumulation in
necrotic foamy macrophages within alveoli, a fibrinous exudate and lymphocyte infiltration of alveolar
walls. There were even a few giant cells that resembled Langhans giant cells. The walls of the cavity
resembled those of developing cavities of TB. The necrotic material in the wall was lipid rich necrosis
resembling caseation. This case is not unique. Cavitation has been reported in a significant proportion
of cases of obstructive lipid pneumonia suggesting that it is a factor in development of cavities in
PPTB [35,85].

Bronchial obstruction is not the only factor that impedes clearance of materials from bronchi in
the early lesion of PPTB. MTB promotes dysregulated lipid metabolism in macrophages that promotes
foam-cell formation [86]. In addition, the upper lobe has the lowest, movement, ventilation, perfusion
and lymphatic flow of any part of the lung [35,87,88]. Ahoen reported abnormalities of bronchial cilia
in pulmonary TB that would greatly impair their function [89]. The importance of alveolar clearance
by cilia in the defense against TB is supported by the effects of cigarette smoke that paralyzes cilia
and is a significant risk factor for clinical PPTB [90,91]. Another factor may be damage to nerves
supplying cavities that may further impede motion [85]. Finally, alveolar macrophages in normal
individuals carry MTB into the lung interstitium where they establish granulomas. This stops with the
development of hypersensitivity. MTB infected alveolar macrophages then remain in alveoli where
they become foamy due to accumulation of lipids. All of this provides an environment where alveolar
macrophages can be isolated and sequestered for months slowly developing conditions for caseation
pneumonia. Many lesions heal prior to caseation leaving an apical scar (Simons foci) [92]. A few
undergo caseous necrosis and are coughed out to form a cavity or remain to become the focus of
post-primary granulomas and fibrocaseous disease [78].
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5.2. Synthesis of Secreted Mycobacterial Antigens in Alveolar Macrophages

Investigators of the early 20th century recognized that the massive necrosis of PPTB is caused by
hypersensitivity to mycobacterial antigens. Since all non-necrotic lesions in immunocompetent hosts
were paucibacillary, the only sources of MTB organisms and antigens that they could identify were
small necrotic foci of lobular pneumonia and ulcerating hilar lymph nodes. Multiple investigators
proposed that these lesions seeded bronchi to produce spreading bronchogenic disease with the
tree-in-bud pattern [2,49,78,93]. Today, with immunohistochemistry, we can easily identify the source
of mycobacterial antigen, Figure 5. It is found in large amounts in innocent looking, foamy alveolar
macrophages of the early lesion of PPTB. The early lesion is an obstructive lobular pneumonia
with no necrosis and little inflammation that does not begin until after the host has developed
significant hypersensitivity [78]. Most clinical TB today in endemic areas is from recently transmitted
infections [94,95]. This implies that PPTB can begin from newly inhaled organisms in addition to
existing small cavities or reactivation of dormant bacilli. Once started, the infection spreads via bronchi
throughout an entire lobe to produce the wedge or fan pattern on X-ray.
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Figure 5. Sequestration of secreted mycobacterial antigens. Secreted mycobacterial antigens are
asymptomatically produced and sequestered in foamy alveolar macrophages of the early lesion of
PPTB for months before the onset of caseous pneumonia and clinical disease. Simultaneously, the tissue
develops extreme hypersensitivity related to T cells in the alveolar walls. Evidence suggests that this is
the essential developmental lesion of PPTB. Release of this antigen causes inflammation and necrosis.
(Immunostain for mycobacterium tuberculosis (MTB) antigens 400×, Insert 1000×).

5.3. TDM as an Invisibility Cloak for Intracellular MTB

PPTB begins with prolonged asymptomatic accumulation of secreted mycobacterial antigens in
alveolar macrophages in highly sensitized tissue of the early lesion. It accomplishes this with little or
no inflammation even though the antigens reside in highly sensitized tissue and there may be intense
tuberculous inflammation to the same antigens elsewhere in the same lung [35]. We published evidence
that trehalose 6,6′ dimycolate (TDM) or cord factor forms an inert covering of MTB (an invisibility
cloak) that may contribute to its ability to persist in such lesions without producing inflammation [96].

TDM is the most abundant lipid produced by MTB. It is found free on the surface of MTB and is
responsible for the formation of serpentine cords that are an ‘essential accompiant of virulence’ [97–99].
With fatty acid chains of over 70 carbons, TDM is totally insoluble. The fact that MTB is an obligate
human parasite that expends significant resources on its synthesis strongly suggests that TDM is
essential for its survival. TDM is unique in that it has three distinct sets of biologic activities depending
on its physical conformation [100–104]. As a single molecule, TDM stimulates macrophage C-type
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lectin receptors including Mincle. It can also form three crystal-like structures, cylindrical micelles,
intercalated bilayer and monolayer, that have distinct biologic activities. In the monolayer form on
lipid, TDM is highly toxic. It destroys cells in minutes upon contact and induces granulomas [105].

TDM free on the surface of MTB exists as cylindrical micelles or an intercalated bilayer that is
necessary for survival of the organisms in macrophages and in mice [106–108]. Removal of TDM
reduced and adding it back restored survival of MTB in both. In its nontoxic form, TDM inhibits
phagosome/lysosome (P/L) fusion in macrophages [107,108]. TDM on MTB was found to inhibit
multiple other functions as well. It suppressed the ability of viable MTB to stimulate the macrophage
surface antigens MHCII, CD1d, CD40, CD80 and CD86, inhibited stimulation of the cytokines IL-12,
IL-6, TNF-α and IL-12. TDM on the surface of MTB also suppressed antigen presentation [100,109].

A clue to how TDM on the surface of MTB is able to inhibit so many activities of MTB is the ability
of trehalose to simulate water and protect organisms from drying or freezing [96]. The cylindrical
micelles and an intercalated bilayer of TDM that protect MTB from killing in macrophages have
surfaces composed of tightly packed, rigidly immobilized trehalose. Such trehalose surfaces simulate
and bind water far more effectively than free trehalose. We speculated that this barrier of immobilized
water constitutes an ‘invisibility cloak’ that facilitates the persistence of MTB in multiple cell types
without producing inflammation, even in highly immune individuals [96]. Receptors in or on cells
would see only immobilized water rather than any of the ligands present on MTB. This would provide
the organisms with ability to expose only ligands of its choosing and thereby manipulate the host’s
cells otherwise impossible ways.

5.4. Nature of Hypersensitive Tissue–Trm, PD1/PD-L1 and more

Human tissue around foci of developing PPTB is extremely sensitive to tuberculin even when
injected at a distant site. Highly sensitive humans react to 0.1 mL of a 1/1,000,000 dilution of old
tuberculin that is far smaller than the amount required in sensitized guinea pigs or rabbits [2].
Thus, people can develop positive reactions to a billionth of a milligram of PPD as a result of
immunization by multiple asymptomatic infections [110]. These are also the people who experience
the greatest development of the early lesion of PPTB and the greatest risk of clinical TB and death.
Their tissues are asymptomatically synthesizing and storing secreted mycobacterial antigens in close
approximation with highly sensitized T cells. This raises multiple new questions about the nature of
sensitized tissue and what prevents the antigen from stimulating inflammatory reactions at the site of
its storage.

There is growing understanding that pathogen specific T-cell immunity can be localized at the
site of infection due to the existence of tissue resident memory T-cells (Trm) marked by CD69 and
CD103 [111]. These cells do not recirculate in the blood and thus do not contribute to studies of the
systemic immunity [112]. However, they are ideally situated to mediate a local hypersensitive response
in PPTB lesions, the Koch phenomenon [113].

Driven largely by immuno-oncology, much has been learned about the role of PD1/PD-L1 and
other mechanisms of immune regulation in tissues [114]. Sections of characteristic lesions of human TB
were selected for quantitative immunohistochemical studies [115]. Abundant mycobacterial antigen,
but very few AFB, were present in foamy alveolar macrophages of early lesions. Primary granulomas
contained a preponderance of CD4+ T cells while the early lesions contained more CD8+ T cells.
In addition, PD-L1 was highly expressed in foamy macrophages, surrounded by PD-1 expressing
lymphocytes in the alveolar walls of the early lesion of PPTB [116]. A marker of M2 macrophages,
CD163 was found in the same alveolar macrophages as MTB antigen and PD-L1 in developing PPTB.
In another study, tissue-resident memory T cell (Trm) markers, CD 69 and CD103, were found on
PD-1 expressing T cells of surgical resections of pulmonary TB [117]. Markers of mTOR signaling
(pmTOR, insulin-like growth factor-1 receptor and activated Akt) and a second pathway of macrophage
activation, COX-2 [116] were assessed in early lesions of PPTB [116]. The results suggested that foamy
macrophages in early lesions over activate mTORC1, potentially inhibiting autophagy of infected cells.
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Thus, in this critical microenvironment of the early lesion of PPTB, PD1, PD-L1 and two suppressor
host response pathways (mTOR and COX-2) appear active on Trm cells. Further studies of the nature
of localized hypersensitive tissue and the antigen it contains are needed.

6. Later Lesions of PPTB

6.1. Primary and Post-Primary Granulomas

Primary granulomas form in individuals whose macrophages are unable to efficiently kill the
ingested organisms, Figure 6 [37]. Consequently, lipid rich foamy macrophages are continuously
recruited into developing granulomas where they die and contribute to the growing caseation. Within
the caseous tubercle itself, no elements of normal tissue are found. The normal tissue is pushed
away as the granuloma grows [11]. This typically produces spherical granulomas [118]. This process
continues until the epitheloid macrophages gain ability to kill entering organisms and halt growth
of the granuloma. Live MTB may persist within the granuloma for years before they die and the
lesion calcifies.Pathogens 2020, 9, x FOR PEER REVIEW 11 of 25 

 

Figure 6. Granulomas of primary TB have homogeneous caseum with peripheral lipids. Granulomas 

of PPTB consist of ghosts of alveoli (light-colored cracks are alveolar walls) surrounded by 

granuloma. They are found naturally only in human lungs and form to encase to unexpelled 

caseous pneumonia [18]. (H&E stain 4×). 

Post-primary granulomas develop quite differently. They start as the early lesion of PPTB that 

undergoes caseation to produce caseous pneumonia [9,77]. Some material is coughed out to form 

cavities. That which is not coughed out is retained to become the focus of post primary granulomas 

that produce the nodular reverse halo sign on CT [119]. These lesions are not round, but follow the 

branching cylindrical shape of the bronchogenic caseous pneumonia that they surround. In 

describing PPTB, Canetti wrote: “Generally tubercle formation is observed at the periphery of the 

caseum, and does not precede caseation but follows it. A caseum without tubercles at the border is 

often seen, but one hardly ever sees tubercles without some neighboring caseum. Moreover, 

caseum associated with the tubercle is always old and is free of nuclear debris. These two facts 

establish that the caseum precedes the tubercle” [38]. Since post-primary granulomas surround 

preexisting foci of caseous pneumonia, they do not grow as do primary granulomas. Medlar who 

had personally studied thousands of cases wrote “Large numbers, perhaps thousands, of epitheloid 

tubercles have been studied to determine whether any evidence can be found to indicate a 

considerable increase in tubercle bacilli and whether an enlarging necrotic lesion might result from 

a growing tubercle. … In no instance were groups of bacilli found which would suggest either 

active intracellular or extracellular multiplication. … In no instance was evidence found which 

would support the proposition that a tubercle was growing” [49]. 

6.2. Non-Cultivable MTB and Their Resuscitation 

As a human parasite, MTB has coevolved with us for a very long time [17]. Consequently, we 

should expect its gene expression to adapt to conditions in our bodies to ensure its survival [18]. 

MTB must grow rapidly in a cavity to be expelled to infect new hosts. However, if it divides as 

rapidly in any other part of the body, it endangers its host and itself. A person may survive 

tuberculous meningitis, but the organisms never do. There are several examples of MTB modifying 

its behavior in different circumstances of infection [41]. We reported that MTB from pulmonary 

sites (cavities) grows faster and produces more TDM than the same strains isolated from extra 

pulmonary sites (granulomas) [120]. Similarly, Rich reported that one cannot predict how long it 

will take for culture of MTB from extra pulmonary sites [2]. 

An intriguing example takes place in the lung with the onset of caseous pneumonia. As the early 

lesion evolves towards caseation there is a veritable eruption of bacilli so that the onset of caseation is 

associated with a massive increase in the number of acid fast bacilli [38]. However, few or none such 

bacilli in closed lesions of tuberculous pneumonia will grow in routine culture [38]. This is especially 

interesting since virtually all of the bacilli in nearby lesions that open into airways will grow rapidly in 

culture. Similar non-cultivable MTB have been found in sputum samples of sputum culture-negative, 

smear-negative individuals [41]. Some could be resuscitated by exposure to liquid media supplemented 

with fresh MTB culture filtrates. The resuscitation-promoting factors are required for virulence and 

resuscitation from dormancy but are collectively dispensable for growth in vitro [121]. 

Figure 6. Granulomas of primary TB have homogeneous caseum with peripheral lipids. Granulomas
of PPTB consist of ghosts of alveoli (light-colored cracks are alveolar walls) surrounded by granuloma.
They are found naturally only in human lungs and form to encase to unexpelled caseous pneumonia [18].
(H&E stain 4×).

Post-primary granulomas develop quite differently. They start as the early lesion of PPTB that
undergoes caseation to produce caseous pneumonia [9,77]. Some material is coughed out to form
cavities. That which is not coughed out is retained to become the focus of post primary granulomas that
produce the nodular reverse halo sign on CT [119]. These lesions are not round, but follow the branching
cylindrical shape of the bronchogenic caseous pneumonia that they surround. In describing PPTB,
Canetti wrote: “Generally tubercle formation is observed at the periphery of the caseum, and does
not precede caseation but follows it. A caseum without tubercles at the border is often seen, but one
hardly ever sees tubercles without some neighboring caseum. Moreover, caseum associated with the
tubercle is always old and is free of nuclear debris. These two facts establish that the caseum precedes
the tubercle” [38]. Since post-primary granulomas surround preexisting foci of caseous pneumonia,
they do not grow as do primary granulomas. Medlar who had personally studied thousands of cases
wrote “Large numbers, perhaps thousands, of epitheloid tubercles have been studied to determine
whether any evidence can be found to indicate a considerable increase in tubercle bacilli and whether
an enlarging necrotic lesion might result from a growing tubercle. . . . In no instance were groups of
bacilli found which would suggest either active intracellular or extracellular multiplication. . . . In no
instance was evidence found which would support the proposition that a tubercle was growing” [49].
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6.2. Non-Cultivable MTB and Their Resuscitation

As a human parasite, MTB has coevolved with us for a very long time [17]. Consequently,
we should expect its gene expression to adapt to conditions in our bodies to ensure its survival [18].
MTB must grow rapidly in a cavity to be expelled to infect new hosts. However, if it divides as rapidly
in any other part of the body, it endangers its host and itself. A person may survive tuberculous
meningitis, but the organisms never do. There are several examples of MTB modifying its behavior
in different circumstances of infection [41]. We reported that MTB from pulmonary sites (cavities)
grows faster and produces more TDM than the same strains isolated from extra pulmonary sites
(granulomas) [120]. Similarly, Rich reported that one cannot predict how long it will take for culture of
MTB from extra pulmonary sites [2].

An intriguing example takes place in the lung with the onset of caseous pneumonia. As the early
lesion evolves towards caseation there is a veritable eruption of bacilli so that the onset of caseation is
associated with a massive increase in the number of acid fast bacilli [38]. However, few or none such
bacilli in closed lesions of tuberculous pneumonia will grow in routine culture [38]. This is especially
interesting since virtually all of the bacilli in nearby lesions that open into airways will grow rapidly in
culture. Similar non-cultivable MTB have been found in sputum samples of sputum culture-negative,
smear-negative individuals [41]. Some could be resuscitated by exposure to liquid media supplemented
with fresh MTB culture filtrates. The resuscitation-promoting factors are required for virulence and
resuscitation from dormancy but are collectively dispensable for growth in vitro [121].

It is interesting to speculate on the role of non-cultivable organisms in the survival of MTB.
Very few MTB are present in the early lesion of PPTB, but they are actively producing secreted
mycobacterial antigens in preparation for a necrotizing pneumonic reaction sufficient to form a cavity.
Most of these will be coughed out with necrotic lung as the cavity forms. MTB thus has a problem.
If it divides freely and escapes from developing necrosis, it will endanger its host. If it fails to divide,
it risks leaving insufficient organisms to maintain the cavity. The solution is to divide in massive
numbers to ensure that adequate organisms remain, but prevent them from dividing until they sense
appropriate conditions on the cavity wall.

7. Need for a Paradigm Shift

A paradigm is a ‘conceptual world view’ that, for a time, determines the kinds of experiments
scientists perform, the types of questions they ask, and the problems they consider important [122].
The National Research Council published a monograph “A New Biology for the 21st Century” that
explains that challenge of advancing from identifying parts, to defining complex systems is still
well beyond current capabilities [123]. Without an appropriate paradigm, biology ‘hits the wall of
biocomplexity’ [124]. This is the state of much current TB research. Today’s prevailing paradigm
that primary granulomas are the hallmark of TB arose after closure of TB hospitals when interest had
shifted from the disease in humans to studies of the immune stimulating activities of components
of mycobacteria in animal models. When interest in TB resumed in the 1980s, investigators simply
continued with their animal models that made granulomas since they had no experience with and
little access to the actual human disease. Consequently, for the past five decades, modern science has
tried to understand the pathogenesis of TB in animals that do not develop the human disease guided
by a badly flawed paradigm. While such research has made previously unimaginable progress in
defining the parts (the cells, molecules and pathways of TB), it has not been able to put them together
into a coherent explanation of the pathogenesis of the disease. This is usually expressed as a need for
‘correlates of immunity’.

Most paradigm shifts are vigorously opposed [122]. Experimental data rarely challenge established
paradigms and observations that do not fit are typically ignored. Instead, concepts must evolve
and then experiments must investigate these hypotheses [125,126]. The essence of the New Biology,
as defined by the National Research Council, is integration—integrating knowledge from many
disciplines to permit deeper understanding of biological systems [123]. Fortunately, for us most of the
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work of integrating had already been done decades ago [2,49]. In 1927, Pottenger wrote that the Koch
phenomenon was the key driver of TB disease [10]. In 1947, E.M. Medlar, Chief Pathologist, Division of
Tuberculosis of New York State, wrote “several generations of pathologist and clinicians have been familiar
with such important phenomena as the bronchial spread of the infection through the lungs and the form of lesion
acting as its source” [49]. While modern science has gained much from new technologies, it has also lost
much because the prevailing paradigm does not recognize the importance of the Koch phenomenon
or existence of the bronchial spread of the infection through the lungs or the form of lesion acting as
its source.

8. Animal Models

The central message of this paper is that the Koch phenomenon (tissue damage due to tuberculin
hypersensitivity) is central to the pathogenesis of PPTB. It is important to remember that MTB is an
obligate human parasite because no animal can naturally produce lesions like humans that mediate
transmission. However, several animals can be induced to produce components of the human disease
for study. Unfortunately, animal models in use today are seldom designed to produce or evaluate
such lesions. The term post-primary TB refers to the disease that develops in humans following
sensitization by primary TB. Typically, such sensitization in humans is the result of multiple subclinical
infections. Most animal studies today use only a single infection, frequently a low-dose aerosol
exposure. Not surprisingly, this produces only primary TB. Some develop similarities to PPTB,
but they are usually ignored. In addition, bacterial burden has been the gold standard to assess disease
in animals. This is unfortunate since there is no clear correlation between the disease severity in
immunocompetent humans and the numbers of bacteria present [2]. This should be expected in a
disease due to hypersensitivity.

Much evidence shows that the differences between childhood and adult TB are due to prior
sensitization of the adult. Childhood and adult TB resemble the reactions of non-sensitized and
sensitized animals respectively [46,58]. In 1922, Opie wrote “When tubercle bacilli are introduced into
a susceptible animal, a lesion is formed at the site of inoculation and dissemination occurs by way
of the lymphatics and bloodstream. This lesion, even if the lung is the primary site of inoculation,
has little resemblance to the phthisis of adults. If, however, the resistance of the animal is increased
by preceding infection, the modified lesion of the lung often presents a close resemblance to human
phthisis” [16]. Several recent investigators have recognized the problem. “We really need to generate
a better understanding of human TB and identify which aspects can most usefully be modeled in
experimental animals. The route to better animal models is inextricably linked to a better understanding
from direct studies of human infection” [127]. TB research should be an iterative process with improved
understanding of human TB leading to the improved animal models [128]. This happened regularly in
the preantibiotic era when human tuberculous tissues were plentiful, but, unfortunately, it seldom
happens today because of the decline in interest in and availability of autopsies.

Several investigators reported that the principle features of early pulmonary TB in adult humans,
including limitation of the process to the lung, pneumonic and cavitary lesions could be reproduced
in rabbits by prior immunization [129,130]. Medlar spent 25 years and employed many artifices in
pursuit of ways to replicate all features of the human TB in animals [49]. “Although progressive
pulmonary tuberculosis, necrotic lesions, and an allergic state were easily demonstrated, other features
commonly found in human pulmonary disease proved difficult to produce.” More recent publications
report that sensitized rabbits can develop rapid onset exudative lesions reminiscent of PPTB and
granulomas and cavities that develop from alveolitis in a fashion reminiscent to those of PPTB [131,132].
This alveolitis can rapidly progress to pulmonary cavities that share many characteristics with the
human lesions [133].

Several species of animal develop chronic TB disease that has some characteristics of the early
lesion of PPTB. In mice, guinea pigs, and rabbits, immunity succeeds in inhibiting MTB growth and
stabilizing infection at a low stationary level beginning around 20 days after infection [18]. Progressive
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pulmonary TB in these animals is not due to increasing numbers of viable bacilli, but to a continuous
host response to mycobacterial antigens [37]. According to North, ‘A central problem in TB research is
to explain why immunity to infection does not enable these animals or susceptible humans to resolve
lung infection and thereby stop development of the disease’ [18].

A key point is that most immunocompetent humans do resolve the early lesions of PPTB while
most animals eventfully die from them. A perplexing mystery is how strong immunity to primary TB
is actually required to initiate PPTB and why people with the strongest skin test reactions are at highest
risk of clinical disease and death from it [2,24]. Most adults require multiple exposures to MTB before
developing clinical disease perhaps because it takes multiple exposures to develop strong enough
immune responses to promote PPTB [134]. It seems that the early lesion of PPTB actually requires
a strong immune response to be able to synthesize and store mycobacterial antigens in preparation
for a necrotizing hypersensitivity reaction large enough to form a cavity that can transmit infection.
Learning why most such lesions resolve spontaneously in humans, might suggest ways to make them
all regress and thereby drive MTB to extinction.

Mice are widely criticized as a model of TB because they do not produce caseating granulomas
following single infection with MTB. However, we produced classic caseating granulomas in mice by
reproducing the conditions in them that exist in humans during the development of such lesions [135].
This involved injection of MTB or trehalose 6,6′ dimycolate (TDM) in oil emulsions into sensitized
mice, Figure 7. Two mechanisms of necrosis were identified in such lesions. The first was a T cell
reaction specific for TDM. The second appeared to be infarction produced by vascular occlusion as
observed in DTH. By modification of the immunization protocols, dose, route and vehicle of infection,
we produced a series of caseating granulomas, each of which resembled a particular human lesion.
We produced young caseating granulomas in the lung and old encapsulated granulomas with thick
fibrous capsules. Erosion of the capsule of such lesions was associated with reactivation TB in the lung
as a tuberculous pneumonia characteristic of PPTB. As a consequence, we believe that mice are the
best model of caseating granulomas because they can be manipulated to define relevant mechanisms.
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Figure 7. Caseating granulomas in humans and mice. Contrary to widespread belief, mice are able
to develop several types of caseating granulomas each of which resembles a type of human lesion.
This requires that one duplicate the conditions that occur in humans when the lesions develop rather
than the route and dose of infection [135] (H&E stain Left and center) (Connective tissue stain, Right,
showing a fibrous capsule).

Progressive pulmonary TB in rabbits, mice and guinea pigs appear to be models of the early
lesion of PPTB. The disease is not due to increasing numbers of viable bacilli, but to a continuous host
response to mycobacterial antigens [37]. After containing the initial infection, these animals develop a
low level of MTB in their lungs that remains constant for months until the animals die of progressive
pathology. This is characteristic of developing human PPTB.

Slowly progressive pulmonary TB in immunocompetent mice has additional correlates with
the early lesion of PPTB [7,8,136–138]. It is an obstructive pneumonia with sparsely infected foamy
alveolar macrophages that slowly accumulate host lipids and secreted mycobacterial antigens in a
pattern similar to the human disease, Figure 8. The infection is restricted to alveolar macrophages
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even after massive enhancement by i.p. injection of cord factor [139], Figure 9. No organisms were
found in any other part of the bodies of these animals. The murine infection is maintained by the
continuous expression of TH1 immunity as evidenced by the demonstration that depleting mice with
stationary lung infection of CD4+ T cells results in a resumption of MTB growth, as does treatment
with an NOS2 inhibition [140]. Stationary lung infection has been shown to be associated with the
presence in the lungs of replicating CD4+ T cells capable of making IFN-γ in response to MTB antigens.
These lesions expand until the animals rapidly develop symptoms and die of pulmonary failure. There
is no caseation necrosis, so the lesions do not develop as they do in humans. However, they are models
of the early lesion of PPTB.
Pathogens 2020, 9, x FOR PEER REVIEW 15 of 25 

 

Figure 8. Slowly progressive TB in mice and human PPTB. (A) Human early lesion of PPTB (H&E 

200×). (B) Murine slowly progressive TB (H&E 200×). (C) Immunostain of human lesion for MTB 

antigens (400×). (D) Immunostain of mouse lesion for MTB antigens (400×) (E,F) Endobronchial TB 

in human lung showing obstruction of the bronchus by inflammatory tissue (arrow) (H&E 40×) (G) 

Endobronchial TB in mouse lung showing similar bronchial obstruction (H&E 100×). 

 

Figure 9. Exacerbation of Chronic TB by TDM. Mice infected i.v. with 105 MTB Erdman develop a 

chronic interstitial pulmonary infection after several months. This animal was injected i.p. with 100 

ug trehalose 6,6′ dimycolate (TDM) on oil and was sacrificed 8 days later. The interstitial infection 

had been replaced by alveolitis. AFB were found only in alveolar macrophages (AFB stain 1000×). 

This is an extreme example of infection restricted to alveolar macrophages. 

Reactivation TB in mice produced by the Cornell model is an even better model of developing 

human post-primary TB because it begins like the human disease as sub pleura, wedge shaped 

lesions of bronchogenic obstructive lipid pneumonia, Figure 10 [131]. 

 

Figure 8. Slowly progressive TB in mice and human PPTB. (A) Human early lesion of PPTB (H&E
200×). (B) Murine slowly progressive TB (H&E 200×). (C) Immunostain of human lesion for MTB
antigens (400×). (D) Immunostain of mouse lesion for MTB antigens (400×) (E,F) Endobronchial
TB in human lung showing obstruction of the bronchus by inflammatory tissue (arrow) (H&E 40×)
(G) Endobronchial TB in mouse lung showing similar bronchial obstruction (H&E 100×).
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Figure 9. Exacerbation of Chronic TB by TDM. Mice infected i.v. with 105 MTB Erdman develop a
chronic interstitial pulmonary infection after several months. This animal was injected i.p. with 100 ug
trehalose 6,6′ dimycolate (TDM) on oil and was sacrificed 8 days later. The interstitial infection had
been replaced by alveolitis. AFB were found only in alveolar macrophages (AFB stain 1000×). This is
an extreme example of infection restricted to alveolar macrophages.
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Reactivation TB in mice produced by the Cornell model is an even better model of developing
human post-primary TB because it begins like the human disease as sub pleura, wedge shaped lesions
of bronchogenic obstructive lipid pneumonia, Figure 10 [131].
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Figure 10. Reactivationå TB in Cornell Model. A/J mice were infected with MTB Erdman by aerosol
and treated with INH and PZA for 12 weeks to produce latent infection. This is a reactivation lesion at
200 days. Note the wedge or fan shaped alveolitis and bronchial obstruction with no granulomas that
are characteristics of the early lesion of human PPTB. (H&E 4×).

TB in non-human primates requires comment. The statement that TB pathology in macaques
shows a “striking similarity to classical TB histopathology in humans” refers only to primary
granulomas [141,142]. The pneumonia reported in primates resembles a perifocal reaction surrounding a
primary TB granuloma, not an early lesion of PPTB [143]. There is no description of bronchogenic spread
of tuberculous pneumonia, post-primary granulomas or formation of cavities by dissolution of caseous
pneumonia. Finally, non-human primates are reported to produce only weak DTH reactions [144,145].
Since human PPTB is associated with exceedingly strong DTH reactions, this suggests that it might be
difficult to induce such reactions in non-human primates. Nevertheless, there is no reason to believe
that non-human primates cannot be valuable models of some aspects of TB, but, like all other species,
there must be critical examination of what is relevant and what is not.

9. Immunity to Primary and Post-Primary TB

It is necessary to remember that MTB is an obligate human parasite that must protect its host
and develop means to escape to new hosts. These are the functions of primary TB and PPTB,
respectively [7,9,77]. Unlike many infections where strong immunity confers protection, a strong skin
test response to tuberculin is a sign of resistance to primary and extra-pulmonary TB, but increased risk
of severe disease and death from PPTB [21]. Furthermore, the antigens involved are largely secreted
by the organism into its environment [138]. Immunity to primary TB seems adequately explained
by the prevailing dogma that T cells produce IFN-γ that activates macrophages to kill MTB or form
granulomas to isolate them. ‘Immunity’ to PPTB is different and unique. It can be mediated by any
one of a large number of factors that hinder development of the early lesion prior to onset of caseous
necrosis. It seems that Dannenberg was correct. The same beneficial DTH reaction that is responsible
for activation of macrophages to kill MTB is, with excess bacillary antigen, also responsible for almost
all of the tissue damage produced by this disease including granulomas, perifocal reactions, caseation
necrosis, liquefaction, and tuberculous pneumonia [71].

While much remains to be learned, we know that ‘protection’ from clinical PPTB can be provided
by any of several factors that impede development of the early lesion. The most perplexing factor is the
requirement for strong immunity to produce a subclinical early lesion. Weak immune responses due to
young or old age, drugs or infections such as HIV increase susceptibility to primary and disseminated
TB, but reduce it to PPTB. As discussed earlier, PPTB also employs an array of immunoregulatory
functions that serve to maintain both MTB secreted antigens in foamy alveolar macrophages and
highly sensitized T cells in close proximity to one another. Perturbation of these functions by vaccines



Pathogens 2020, 9, 813 17 of 25

or host-directed therapy have shown promise. The early lesion also requires bronchial obstruction
to further isolate it [85]. Relief of obstruction by surgery or regression of an enlarged lymph node
may cause its regression [2]. Another factor is that granulomas of PPTB actually surround and stop
growth of the early lesions. Medlar examined thousands of post-primary granulomas and found no
evidence that any of them grew in size or eroded into anything [49]. Post-primary granulomas begin
by surrounding existing foci of caseous pneumonia and then shrink slightly as the caseation ages.
This process produces the reverse halo sign on X-ray [119,146].

Finally, an intriguing possibility derives from the observation that the majority of immune
dominant epitopes of MTB are hyperconserved meaning that they exhibit less variation than is found
in essential genes [147–149]. This suggests that the exact structure of hyper conserved epitopes is
required for transmission to new hosts. Since there is considerable variation in many aspects of both
the hosts and organisms, it seems unlikely that a change in a single epitope among hundreds could
alter the immune response sufficiently to abort transmission. An intriguing possibility is that the exact
structure of the hyper conserved epitopes is required to keep them sequestered for months in the early
lesion of PPTB. If an epitope caused leakage of antigen during this time, it would initiate a surrounding
granulomatous reaction that would halt progress toward cavitation and transmission.

10. Potential of Advancing Technology

As stated by Douglas Young, Chair of the New Vaccines Working Group of the Stop TB Partnership
“we really need to generate a better understanding of human TB and identify which aspects can most
usefully be modeled in experimental animals. The route to better animal models is inextricably linked to
a better understanding from direct studies of human infection” [127]. However, obtaining informative
human tissue for research is a major problem. Peripheral blood and BAL cannot be expected to
decipher multiple types of lesions that exist simultaneously a lung. The developmental lesions of PPTB
are seldom present in surgical resections because of prior therapy. For practical purposes, autopsies of
people with untreated TB are frequently the only source of tissue. Some have thought that autopsies
contain only advanced lesions. However, lungs of people who die of TB frequently contain multiple
stages of disease including both beginning and advanced lesions. Surgical resections, in contrast,
seldom contain the early lesion because there is no ethical reason to resect them.

The numbers of autopsies and thus the availability of such tissue has declined greatly since the
end of the preantibiotic era. However, around 4000 people still die of TB every day. If there were a will,
surely there would be a way. In addition, with advancing technology, we can now do hundreds of
studies on slides from a single block using recent cases or archives that exist in pathology departments
around the world [150]. The challenge is to make such tissues available so that TB researchers will be
able to relate their results to the actual human disease. O’Garra wrote “Provided that one attempts to
relate findings about the immune responses in experimental models back to the immune response
occurring during the different stages of human TB, we will be able to use the information to increase our
knowledge of this complex disease and to move toward improved diagnosis, prognosis, drug treatment,
and vaccination” [128].

11. Summary

Research on the pathogenesis of TB today is driven by the paradigm that granulomas are the
hallmark of the disease. An extended review of the literature revealed that this is a product of animal
studies of the late 20th century that has no support among investigators who actually studied the
pathology, radiology and clinical course of untreated human TB. An enduring mystery is how the
immune response can simultaneously protect and cause tissue damage. We can understand why
people with weak immune responses develop disease, but not why people with the strongest immune
responses also have greater risk of clinical disease and death?
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As a successful human parasite, MTB has evolved to protect its host and to escape to find new
hosts. These are the functions of primary TB and PPTB respectively. This paper integrates clinical,
X-ray, pathologic and immunologic data from the pre-antibiotic era with recent studies to present
evidence that these two functions require similar, if not identical, immune responses. Primary TB
develops when a person is unable to mount a sufficient immune response. PPTB, in contrast, develops
most severely in people with the strongest immune responses. MTB has developed means to use
our strongest immune response to produce pulmonary cavities from which it can escape to new
hosts while, at the same time, maintain a high degree of immunity in all other parts of our bodies.
It begins as the early lesion; a prolonged asymptomatic stockpiling of secreted mycobacterial antigens
in foamy alveolar macrophages and in close association with highly sensitized T cells in preparation
for a massive necrotizing hypersensitivity reaction, the Koch Phenomenon, that produces caseous
pneumonia that is either coughed out to form cavities or retained to become the focus of post-primary
granulomas and fibrocaseous disease.

The granulomas produced by primary TB and PPTB are morphologically distinct and arise from
different types of lesions, but have similar functions. They both form to surround and isolate infectious
foci and they both protect against disseminated TB. Once primary TB has induced sufficient resistance
to infection, all subsequent infections and spread of infection occur in resistant soil as PPTB. This is a
unique disease process that has no known counterparts in other infections and is not fully reproduced
in any animal model. It is unique to humans and is responsible for 80% of clinical disease and nearly
100% of transmission to new hosts.

In considering animal models, it is important to recognize that the most important factor in
determining the type of disease produced by MTB is prior sensitization to mycobacterial antigens.
Once a person or animal has been sensitized, the nature and course of all subsequent infections will be
profoundly different. This was well known in the preantibiotic era, but has been largely forgotten.
Nevertheless, recent studies have used this principal to produce cavities in rabbits and caseating
granulomas in mice [133,135]. Failure to recognize it has led misinterpretation of primary TB in
primates as being representative of all human lesions. This is important in developing vaccines and
host directed therapies because protection from primary TB and PPTB are mediated by very different
mechanisms. Strong immunity to primary TB is associated with greater risk of disease and death
from PPTB.

The early lesion of PPTB appears to be its Achilles’ heel. The vast majority of such lesions regress
spontaneously in humans. If we knew why, means might be found to make them all regress and thereby
stop transmission and drive MTB to extinction. Available evidence suggests a number of factors
including failure of bronchial obstruction, premature development of granulomas, weak immune
responses and altered macrophage polarization that impede its development. However, much remains
to be learned.

We can now identify components of the early lesion in several animal models as the stationary
level of infection that persists after the primary peak subsides. These are not perfect models since most
animals eventually die of progressive disease whereas most humans resolve the primary infection.
Nevertheless, progressive pulmonary TB is not due to increasing numbers of viable bacilli in rabbits,
mice and guinea pigs, but is due to a continuous host response to mycobacterial products. “Tuberculosis
progresses if the bacillary antigens are continuously produced and regresses if they are destroyed” [37].
This appears to be a common feature of both the human disease and several animal models that could
be exploited as a target for vaccines or host-directed therapies.
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