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(is paper presents the application of adaptive fuzzy sliding mode control (AFSMC) for the respiratory system to assist the
patients facing difficulty in breathing. (e ventilator system consists of a blower-hose-patient system and patient’s lung model
with nonlinear lung compliance.(eAFSMC is based on two components: singleton control action and a discontinuous term.(e
singleton control action is based on fuzzy logic with adjustable tuning parameters to approximate the perfect feedback line-
arization control. (e switching control law based on the sliding mode principle aims to minimize the estimation error between
approximated single fuzzy control action and perfect feedback linearization control. (e proposed control strategy manipulated
the airway flow delivered by the ventilator such that the peak pressure will remain under critical values in presence of unknown
patient-hose-leak parameters and patient breathing effort. (e closed-loop stability of AFSMC will be proven in the sense of
Lyapunov. For comparative analysis, classical PID and sliding mode controllers are also designed and implemented for me-
chanical ventilation problems. For performance analysis, numerical simulations were performed on a mechanical ventilator
simulator. Simulation results reveal that the proposed controller demonstrates better tracking of targeted airway pressure
compared with its counterparts in terms of faster convergence, less overshoot, and small tracking error. Hence, the proposed
controller provides useful insight for its application to real-world scenarios.

1. Introduction

Several new viruses, epidemics, and even pandemics have
emerged in the past 20 years. 774 people have been killed by
the severe acute respiratory syndrome (SARS) that first
emerged in mid-November 2002 in the Guangdong prov-
ince, China [1]. In 2009, the World Health Organization
(WHO) had declared a new global pandemic called H1N1
influenza. Although the confirmed number of deaths by
WHO are 18,500, Dawood [2] in his studies estimates the
actual number should be between 151,700 and 575,400. (e
most recent is the Middle East respiratory syndrome
(MERS-CoV) in 2012 with 806 associated deaths reported in

December 2018 mostly in Saudi Arabia [3]. Before the
pandemic COVID-19 where to date, over 50 million people
have been contacted with the disease with over 1 million
deaths recorded since its discovery in the Wuhan province,
China, in December 2019. (e common cause of death for
patients who contracted these diseases are acute respiratory
distress syndrome (ARDS) where according to a study, 40
percent of critically ill COVID-19 patients developed this
respiratory failure [4–7]. In most cases of ARDS, patients
will have to be supported with mechanical ventilation to
assist or replace their spontaneous breathing [8].

(e earliest usage of mechanical ventilators as a device to
provide ventilatory assistance can be traced back to the 18th
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century. However, it was only in the 1950s that the first
closed-loop system for mechanical ventilation was intro-
duced. During this time, mechanical bellows and valves were
used in mechanical ventilators to cycle gas into the lung,
while pneumatic components were used to implement
simple proportional (P) or proportional integral (PI) con-
troller [9]. Microprocessors were eventually used to im-
plement those controllers, and since then, many types of
closed-loop controls have been proposed.

Walter and Leonhardt [10] classify the different levels of
automatic control in artificial ventilation into three cate-
gories according to the amount of interaction between the
patient and medical devices. In class 1 control loops called
device-internal control loops and class 2 control loops called
patient-oriented control loops, control signals are measured
inside the device. (e difference between both classes is that
the interaction between the patient and device is possible in
class 2, while there are no such features in class 1 control
loops. Instead of using physical parameters, a class 3 control
loop used physiological parameters as its control variable
and for that it is called physiological compensatory control
loops. In this paper, a pressure-based ventilation controller
under the class 2 category is developed where the control
objective is to track a set-point of target airway pressure.

One type of controller that has been used widely in
mechanical ventilation is the PID controller. One of its
earliest implementation since the introduction of the mi-
croprocessor can be found here [11]. (is type of controller
is however known for its poor performance on a system
where its dynamic is not constant, which is the case for
mechanical ventilation. (e lung compliance and resistance
are two parameters in the mechanical ventilation system that
are changing according to the lung volumes and are different
from patient to patient. Many researchers have proposed
improvement to the PID controller in mechanical ventila-
tion, which includes the addition of an adaptive mechanism
[12], an optimization technique [13], and automatic tuning
of PID gains [14].

(e accurate information of the system dynamics is quite
essential for designing nonlinear control systems. Model-based
controllers [15, 16] are employed, which aremore transparent as
they are developed from themathematical models derived from
physiological processes. A slight disadvantage could be in
obtaining the precise mathematical model required for a good
performance especially as patient dynamics are uncertain,
which is the same case as inverse dynamic controller [17]. Other
types of controller implemented in mechanical ventilation from
our literature searches are model predictive control [18], var-
iable-gain control [19], and repetitive control [20].

(ere are nonlinear control strategies available in the lit-
erature that does not require exact knowledge of the system
dynamics [21, 22]. Among these controllers, sliding mode
control (SMC) is a powerful method with inherited robust
attitudes to control complex dynamical systems [23, 24].
However, conventional SMC may potentially experience
chattering problems in the control command, which degrades
the control performance by exciting unmodeled high-frequency
dynamics, which may lead to instability [25]. Noninteger
control, or fractional-order control (FOC), has received

significant attention in control engineering due to its ability to
tune time-varying systems while remaining controllable
[26, 27]. Noninteger calculus significantly improves the per-
formance of PID controllers. (e fact has been investigated in
previous studies [26–29].

In literature, fuzzy logic control (FLC), which falls under
the category of intelligent control, has been widely used as an
alternative to control the nonlinear system in presence of
unknown dynamics and external perturbations [30, 31].
(ere were also attempts of using FLC in mechanical
ventilation [32, 33], which is easy to implement as it does not
require explicit mathematical models. However, traditional
FLC may require some systematic mechanism for mapping
the expert knowledge into the rule base of fuzzy interference
system [34, 35]. Hence, the subject control strategy could
have limited transparency. (us, extensive testing with
hardware will be required for its validation and verification
such that closed-loop stability is guaranteed. To cope with
this, it is preferable to augment some adaptive mechanism
for adjusting the control parameters automatically while
guaranteeing closed-loop stability. In adaptive fuzzy, there
are two widely used control approaches: direct and indirect.
(e former approach is based on adjusting the control
parameters with changing dynamics, whereas the later in-
direct approach is responsible to identify the unknown
system parameters [4]. As a result, both of these strategies
are striving to achieve the desired system performance by
adjusting the fuzzy rules accordingly [36–39].

In literature, various combinations of SMC and FLC
have been proposed to handle complex and unmodeled
dynamics [40, 41] and have been applied to various non-
linear systems [42–44] including microelectromechanical
system (MEMS) resonators [45]. In prior studies [46–48],
the authors have implemented fuzzy double hidden layer
recurrent neural network to approximate the SMC-based
equivalent control, eliminating the unknown disturbance
while reducing the impact of switching gain. Similarly,
Poursamad and Davaie-Markazi [49] have implemented a
variant of hybrid FLC and SMC control titled robust
adaptive fuzzy control for Duffing oscillators and atomic
force microscopes. (e later methodology has been adopted
in this article to approximate the ideal control law based on
fuzzy approximation theory while handling modeling un-
certainties and disturbances through augmentation of SMC-
based switching control law.

(is paper deals with a design of direct form of adaptive
fuzzy sliding mode control (AFSMC) by exploiting the
potential of both SMC and FLC strategies to handle complex
and unmodeled dynamics. (e resultant control expression
comprised singleton fuzzy control action, which adjusts
itself based on Lyapunov energy function, and switching
control element, which aims to minimize the approximation
error between fuzzy control and perfect feedback lineari-
zation control law. (e resultant controller drastically en-
hances the robustness while guaranteeing the asymptotic
stability of the closed-loop system. As a case study, the
proposed AFSMC controller is employed for pressure
control of the well-known mechanical ventilator system. To
visualize the performance attributes, a simulation model of
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the mechanical ventilator system is modeled in Simulink/
MATLAB environment. Numerical simulations reveal that
the direct form of AFSMC is quite effective by steering the
pressure in the closed vicinity of the desired pressure curve.

(e rest of this paper is organized as follows: the detailed
mathematical modeling of ventilator system is given in
Section 2. (e description of AFSMC controller is presented
in Section 3 with detailed stability proof in the sense of
Lyapunov. Simulation results of AFSMC along with its
comparison with classical PID and SMC are depicted in
Section 4. Finally, the paper is concluded in Section 6.

2. Artificial Ventilator Modeling

In this paper, a blower-hose-patient systemmodel introduced in
[50] consists of 3 main components—the blower, the hose, and
the patient—is used to represent the respiratory system model
as shown in Figure 1. (e function of the blower is to generate
the desired pressure po by compressing the atmospheric air,
while the hose links the respiratory module to the patient. A
single compartmental model presented in [19] is used to rep-
resent the patient’s lung model. (e aim of the controller is to
track the airway pressure paw that is measured by a sensor
positioned inside the module so that it follows the target set-
point pt. With that, we can describe the error equation as
follows:

e � pt − paw. (1)

During the inhalation process, the patient will inhale the
air from the blower (Qo) into the lung (Qp), then exhale back
to the hose. To avoid the patient from taking the exhaled air
back in the next cycle, a leak is positioned before the end of
the tube to release the exhaled air (Qleak). Hence, we can
write the patient flow dynamic as follows:

Qp � Qo − Qleak. (2)

(e airflow is derived from the pressure differences over
resistance; thus, in this model, resistance in the hose (Rh), in
the leak (Rleak), and in the patient’s lung (Rl) must also be
taken into account. We can therefore describe the rela-
tionships between blower flow, leak flow, and patient flow
with the resistances as follows:

Qo �
po − paw

Rh

, (3)

Qleak �
paw

Rleak
, (4)

Qp �
paw − pl

Rl

. (5)

(e lung pressure can be depicted by the following
differential equation:

_pl �
1
Cl

Qp, (6)

where Cl denotes the lung compliance. Combining equa-
tions (3)–(6) results in the following lung dynamics:

_pl �
paw − pl

ClRl

. (7)

We can derive the formula for airway pressure by
substituting equations (3)–(5) into (2) as shown below:

paw �
1/Rl( 􏼁pl + 1/Rhpo( 􏼁

1/Rl( 􏼁 + 1/Rh( 􏼁 + 1/Rleak( 􏼁
. (8)

(e differential equation for the lung dynamic in (6) can
now be rewritten by substituting the airway pressure ex-
pression in (8) into it as follows:

_pl �
− 1/Rh( 􏼁 + 1/Rl( 􏼁( 􏼁pl + 1/Rh( 􏼁po

RlCl 1/Rl( 􏼁 + 1/Rh( 􏼁 + 1/Rleak( 􏼁( 􏼁
. (9)

We can represent (5), (7), and (8) in the state-space form
as follows:

_pl � Ahpl + Bhpo, (10)

paw

Qp

􏼢 􏼣 � Chpl + Dhpo, (11)

where po is the input, [paw, Qp]T is the output vector, pl is
the state, and

Ah � −
1/Rh( 􏼁 + 1/Rleak( 􏼁

RlCl 1/Rl( 􏼁 + 1/Rh( 􏼁 + 1/Rleak( 􏼁( 􏼁
, (12)

Bh �
1/Rh( 􏼁

RlCl 1/Rl( 􏼁 + 1/Rh( 􏼁 + 1/Rleak( 􏼁( 􏼁
, (13)

Ch �
1/Rl( 􏼁

1/Rl( 􏼁 + 1/Rh( 􏼁 + 1/Rleak( 􏼁
−

1/Rh( 􏼁 + 1/Rl( 􏼁

Rl 1/Rl( 􏼁 + 1/Rh( 􏼁 + 1/Rleak( 􏼁( 􏼁
􏼢 􏼣

T

, (14)

Dh �
1/Rh( 􏼁

1/Rl( 􏼁 + 1/Rh( 􏼁 + 1/Rleak( 􏼁

1/Rh( 􏼁

Rl 1/Rl( 􏼁 + 1/Rh( 􏼁 + 1/Rleak( 􏼁( 􏼁
􏼢 􏼣

T

. (15)
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(e blower system on the other hand can be represented
by the following state-space model:

_xb � Abxb + BbPcon, (16)

po � Cbxb. (17)

Finally, the complete general state-space model of the
artificial ventilator is obtained by coupling expression in (10)
with (16) and (17) as follows:

_xp �
_xb

_pl

􏼢 􏼣

�
Ab 0

BhCb Ah

􏼢 􏼣
xb

pl

􏼢 􏼣 +
Bb

0
􏼢 􏼣Pcon.

(18)

3. Design of AFSMC

(is section presents the direct form of adaptive control
employing FLC and SMC to achieve precise tracking per-
formance while ensuring closed-loop stability of the me-
chanical ventilator. (is has been accomplished by
augmenting fuzzy approximation theory and principle of
sliding mode control theory in the proposed AFSMC
method, which proves to be robust against parametric
uncertainties and perturbations.

3.1. Problem Statement. Consider the class of nth order
control-affine nonlinear system given as

xn � f(x, t) + g(x, t)u + d(t),

y � x,
(19)

where f(x, t) and g(x, t) are the smooth and continuous
bounded nonlinear functions, x ∈ Rn is the state vector assumed
to be measurable, u ∈ R and y ∈ R are the control input and
output of the system, respectively, and d(t) is the unknown but
bounded disturbances such that d(t)≤D. If the state transition
function f(x, t) and control input vector g(x, t) are perfectly
known, then a perfect feedback linearization control law to
follow the desired state trajectory xd in presence of modeling
uncertainties and exogenous disturbances is given by

u
∗

�
1

g(x, t)
− f(x, t) + €xd − k1 _e(t) − k2e(t)􏼂 􏼃. (20)

where e(t) � x − xd is the tracking error, while k1 and k2 are
the positive gain constants. However, in practice, it is not

possible to determine the exact value of f(x, t) and g(x, t);
therefore, it is difficult to apply control law given by (20).
Hence, it is preferable to introduce some adaptive com-
ponent in feedback linearization control law that will adjust
the control parameters to improve tracking performance
and to guarantee closed-loop stability.

3.2. AFSMC Design Based on Universal Approximation
6eorem. (is section presents the design of AFSMC
control for pressure control of mechanical ventilator
systems. (e proposed control methodology integrates
the fuzzy approximation theory and principles of sliding
mode control into a fuzzy controller, which proves to be
insensitive against modeling uncertainties and external
perturbations. (e decision-making capability of fuzzy
control employing linguistic information has been
proved to be effective for controlling nonlinear complex
systems. (e prime objective of the fuzzy controller is to
approximate the pressure control command Pcon such
that it will approach the ideal control law u∗ given by (20)
to arbitrary accuracy by defining multiple output fuzzy
sets with singleton membership functions. With a view
that the fuzzy rule base grows exponentially as the
number of input variables increases, the sliding surface as
a function of state variables is considered the input to the
fuzzy set. (e sliding surface being input to the fuzzy
system is defined as

s(t) � _e(t) + k1e(t) + k2 􏽚 e(t)dt. (21)

where e(t) � Pt − Paw, λ is the Laplace operator, and the
variables k1, k2, and k3 are the coefficients of Hurwitz
polynominal h(λ) � λn− 1 + kn− 1λ

n− 2 + · · · + k1, such that all
the root lies in the open left half-plane. Taking the derivative
of the sliding surface given by (21) implies

_s(t) � €e (t) + k1 _e(t) + k2e(t). (22)

To make the IF part of the input variable s, symmetric
and uniformly distributed triangular membership functions
are used, whereas the output of the fuzzy system Pfz is
defined as the singleton control action αi, i � 1, 2, .., n, where
n is the number of fuzzy rules as shown in Figure 2.

(e ith fuzzy linguistic rule involved the design process
is written in the following form.

Rule i: If s is in the domain of Fi
s, then Pfzi

is αi.
(e control law Pfz is obtained by the center of gravity

defuzzification method [45], which implies

Pfz(α, ξ) �
􏽐

m
i�1 αi · ωi

􏽐
m
i�1 ωi

, (23)

where ωi is the firing strength of the ith rule. In order to cope
with uncertain and complex unmodeled system dynamics,
the singleton control action αi is chosen to be an adjustable
parameter with respect to changing environment [34]. (e
resultant adaptive fuzzy control law Pfz as a function of
tunable parameter α can explicitly be expressed as

Blower Hose Lung

paw

paw

Rl Cl

pl
Qp

Sensor tube

po
Qo

Rh

Rleak

Qleak

Figure 1: Blower-hose-patient system.
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Pfz(α, ξ) � αTξ, (24)

where the vector α � [α1, α2, . . . , αm]T represents the pa-
rameter vector and ξ � [ξ1, ξ2, . . . , ξm]T symbolize the re-
gressive vector, while ξi is defined as

ξi �
ωi

􏽐
m
i�1 ωi

. (25)

(e absolute feedback linearization control based on the
universal approximation theorem [18] can be expressed as

P
∗
con � P

∗
fz α∗, ξ( 􏼁 + ϵ

� α∗Tξ + ϵ,
(26)

where ϵ depicts the approximation error described as

ϵ � P
∗
con − P

∗
fz α∗, ξ( 􏼁, (27)

To realize the perfect feedback linearization control P∗con,
the fuzzy control law P∗fz(α∗, ξ) can be approximated as
follows:

􏽢Pfz(􏽢α, ξ) � 􏽢αTξ, (28)

where 􏽢α is the estimation of α∗. Despite the capacity that Pfz

will strive to approach P∗con, there is always some residual
error between Pfz and P∗con. (is error will be minimized by
augmenting the sliding mode-based discontinuous switch-
ing term Psw in the control expression described as

Pcon � 􏽢Pfz(􏽢α, ξ) + Psw, (29)

where

Psw � − Ksign(s(t)), (30)

(e switching control law is intended to minimize the
error between the designed fuzzy law 􏽢Pfz and perfect
feedback linearization control law P∗con.(e resultant control
law Pcon given by (29) leads to the robust control approach to
achieve smooth and precise tracking performance even if the
system under consideration subjects to high degree of
uncertainty.

Theorem 1. Consider the mechanical ventilator system given
by (38), the control law given by (29), with fuzzy control
element 􏽢Pfz given by (28) and the switching control element

Psw given by (30), ensures the finite-time stability while
tracking error converges to zero.

Proof. To prove the finite-time stability, the expressions of
perfect feedback linearization control law given by (20) and
sliding mode dynamics given by (22) are solved for P∗con,
which yields the following expression:

P
∗
con �

1
g(x, t)

g(x, t)Pcon − _s(t)􏼂 􏼃. (31)

Substituting the control law Pcon given by (29) in (31)
yields the following sliding mode dynamics:

_s(t) � g(x, t) 􏽢Pfz + Psw − P
∗
con􏽨 􏽩. (32)

Choose the following Lyapunov candidate function:

V1(s(t), 􏽥α) �
1
2
s
2
(t) +

1
2c1

􏽥αT
􏽥α, (33)

where c1 is a positive constant. Taking the time derivative of
V1 yields the following equation:

_V1(s(t), 􏽥α) � s(t) _s(t) +
g

c1
􏽥αT􏽥α

.

, (34)

� s(t)g 􏽢Pfz + Psw − P
∗
con􏼐 􏼑 +

g

c1
􏽥αT􏽥α

.

, (35)

� s(t)g 􏽥αTξ + Psw − ϵ􏼐 􏼑 +
g

c1
􏽥αT􏽥α

.

, (36)

� g􏽥αT
s(t)ξ +

1
c1

􏽥α
.

􏼨 􏼩 + s(t)g Psw − ϵ( 􏼁.

(37)

To ensure the finite-time stability of the closed-loop
system, let us define the adaptive law as follows:

􏽥α
.

� 􏽢α
.

� − c1s(t)ξ. (38)

Placing the expression of Psw given by (30) leads to the
following expression of _V1:

_V1(s(t), 􏽥α) � − K|s(t)|g − ϵs(t)g≤ − K|s(t)|g − |ϵs(t)|g

(39)

� − (K +|ϵ|)|s(t)|g≤ 0. (40)

Considering that the sliding surface s is uniformly
continuous, the Lyapunov stability is guaranteed by negative
semidefiniteness of _V1(s(t), 􏽥α). Asymptotic stability of the
closed-loop system follows from Barbalat’s lemma [43], such
that (s(t), 􏽥α)⟶ (0, 0) as t⟶∞. □

Proof. (e next objective is to find the appropriate value of
sliding mode gain K, which needs to be smooth enough in
order to avoid undesirable chattering phenomenon. If K is
made small, it will reduce chattering, but it may lead to
inferior tracking performance. Hence, it would be preferable
to make the sliding mode gain adaptively to achieve better

1Fs
2Fs

3Fs
nFs

α1 α2 α3 αn

Figure 2: Singleton control.
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tracking accuracy and closed-loop stability. By replacing K

by 􏽢K, the equation of the switching (discontinuous) control
law is described as

􏽢Psw � − 􏽢K(t)sign (s(t)), (41)

where 􏽢K is the estimation of K. Based on this, the control law
given by (29) is written as

Pcon � 􏽢Pfz(􏽢α, ξ) − 􏽢K(t)sign (s(t)). (42)
□

Theorem 2. Consider the mechanical ventilator system given
by (38), the control law given by (42), comprising fuzzy-based
controller 􏽢Pfz and switching control element Psw, guarantees
that the closed-loop system is asymptotically stable in the sense
of Lyapunov and the system follows the desired reference
output in presence of modeling uncertainties and
disturbances.

Proof. Define the estimation error of sliding mode gain as
􏽥K(t) � 􏽢K(t) − K. (43)

Now, consider the Lyapunov energy function V2 as

V2(s(t), 􏽥α, 􏽥K) �
1
2
s
2
(t) +

1
2c1

g􏽥αT
􏽥α +

1
2c2

􏽥K
2
, (44)

where c2 is the positive gain constant. (e time derivative of
Vs along the error trajectory given by (44) is

_V2(s(t), 􏽥α, 􏽥K) � s(t) _s(t) +
g

c1
􏽥αT􏽥α

.

+ +
g

c2

􏽥K _􏽥K

� g􏽥αT
s(t)ξ +

1
c1

􏽢α
. T

􏼠 􏼡 + s(t)g Psw − ϵ( 􏼁

+
g

c2

􏽥K _􏽥K

� − 􏽢K(t)|s(t)|g − ϵs(t)g

+
g

c2
( 􏽢K(t) − K) _􏽢K(t).

(45)

To establish asymptotic convergence of the tracking
error such that _V2 ≤ 0, the estimation law is defined as

_􏽢K(t) � c2|s(t)|, (46)

By substituting the expression of _􏽢K, the time derivative
of V2 given by (45) can be written as

_V2(s(t), 􏽥α, 􏽥K) � − 􏽢K(t)|s(t)|g − ϵs(t)g +( 􏽢K(t) − K)|s(t)|g ,

(47)

� ϵs(t)g − K|s(t)|g≤ |ϵs(t)|g − K|s(t)|g,

(48)

� (K − |ϵ|)|s(t)|g≤ 0. (49)

Negative semidefiniteness of _V2(s(t), 􏽥α, 􏽥K) implies the
Lyapunov stability of the system equilibrium
(s(t), 􏽥α, 􏽥K) � (0, 0, 0). Asymptotic stability follows from
Barbalat’s lemma, see, e.g., [43].

(e AFSMC structure given by (42) encompassing fuzzy
and switching control elements to track the targeted pressure
commands is illustrated in Figure 3. □

4. Numerical Simulations

(e practical applicability of AFSMC for pressure control in
the simulated mechanical ventilation system is demon-
strated in this section. (e nominal values of the system
parameters of artificial mechanical ventilator are chosen as
RLung � 0.005mbar/mL/s, RLeak � 0.06mbar/mL/s, and
Rhose � 0.0045mbar/mL/s. For computer simulation, the
targeted airway pressure is set to be 0.30mbar. (ree control
methodologies—AFSMC, SMC, and PID—are implemented
in order to illustrate the performance comparison. (e
tradeoff between faster convergence toward the desired
values, settling time, and overshoot in the response curves of
three control strategies is shown in Figure 4.

(e superiority of AFSMC over conventional PID and
SMC is clearly observed through simulation results. (e
AFSMC demonstrates smooth tracking performance with
small tracking error compared with its counterparts. Fur-
thermore, the key performance indices of AFSMC, SMC,
and PIC control schemes in response to the square wave
input of targeted airway pressure are listed in Table 1. It is
apparent that no overshoot has been observed in all the
simulation cases.

To quantify the tracking performance, the time histories
of the magnitude of residual error of the control method-
ologies under consideration are illustrated in Figure 5, which
reveals that the AFSMC scheme adequately follows the
desired pressure curve.

5. Robust Analysis

In this section, to gain a qualitative insight of the ro-
bustness characteristic and sensitivity of AGDI control, a
realistic scenario is exercised by introducing 20% random
variations in the parameters of artificial ventilator system
such as Rl, Rh, and Rleak. (e magnitude of ventilator
parameter lung compliance Clung, which determines the
change in lung volume per change in trans-pulmonary
pressure, is also varied as its value is not constant and
changes accordingly with respect to the lung’s volume.
Computer simulation is performed by commanding the
targeted airway pressure of 0.30 mbar for the artificial
ventilator. (e response curves of targeted and achieved
airway pressure are depicted in Figure 6, which reveals
effective tracking of pressure commands along with faster
convergence toward the reference value. (e corre-
sponding control input command is shown in Figure 7,

6 Journal of Healthcare Engineering



Sliding
surface

Bound
estimation

Hitting
control

Fuzzy
control

Adaptive
mechanism

p 

paw

e ( )

e ( ) S

e ( )

d/d 

d 

psw

pcon

α

K 

Pfz

Figure 3: AFSMC block diagram.
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Table 1: Performance comparison.

Parameters AFSMC SMC PID
Rise time, sec 2.129 2.729 3.530
Settling time, sec 3.640 4.357 5.522
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Figure 5: Residual error.
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which is very much realizable. From simulation results, it
is concluded that the AGDI control is made adaptive and
robust against parametric variations and proven to be
effective and feasible for its applications to real-world
systems.

6. Conclusion

(epaper presents the design of AFSMC for smooth tracking of
targeted pressure curves of the mechanical ventilation systems.
For performance evaluation, along with AFSMC, two other
control approaches (PID and SMC) are also implemented and
their performances have been verified in terms of convergence
toward the targeted pressure curves of the artificially ventilated
human respiratory system.(eAFSMC approach reveals better
pressure tracking performance by adjusting the ventilator
output pressure curves adaptively in comparison with SMC and
PID. In future work, the presented approach can further be
checked and verified through numerical simulation as well as

experimental investigations for a more complex human lung
artificially ventilated system.
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