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The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal
exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage
is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with
the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the
oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity
and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative

stress and the role that lipids play in the related compensatory or defense mechanisms.

1. Introduction

A clear relationship has been established between ethanol
intake, addiction and dependency [1-3], and several risk
factors for chronic disease and injury [4]. Indeed, the public
health problem associated with increased alcohol consump-
tion and alcoholism [5, 6] is becoming ever more severe
due to the increased economic burden of the complications
on the health national systems and the cost of the relevant
treatments [4, 7-10]. Alcoholism provokes high rates of
mortality and it increases in risk of several disabling disorders
[4, 11]. Such damage can be classified in function of the organs
involved (liver, kidney, heart, brain, etc.), the type of intake
(acute or chronic), or the subject’s age at the time of exposure
to ethanol (prenatal, neonatal, or adult). In summary, ethanol
has several negative health effects, especially if we consider
prenatal exposure where the brain is a major target for the
damage provoked.

2. Effects of Ethanol in the Brain

Ethanol has many effects in the brain depending on the
age of exposure (prenatal, postnatal, or adult). For example,

aggressive behavior and depression are observed after acute
postnatal exposure to ethanol, possibly due to a decrease in
circulating tryptophan, followed by the depletion of serotonin
in the brain [12, 13]. Another effect of acute postnatal
alcohol exposure is related to impaired impulsive and control
behavior [14, 15], although few in vivo studies have focused
on this issue. Cognitive performance has been associated
with specific prefrontal cortical regions in Rhesus Macaque
monkeys [11] and GABA receptors in this structure have
been implicated in the effects of acute postnatal ethanol
exposure [16-18]. Indeed, GABA was found to be a mediator
in ethanol-induced ataxia [18, 19].

The most severe alcohol-related damage is found follow-
ing acute prenatal or chronic pre- and postnatal ethanol expo-
sure, effects that have been associated with a loss of neurons
(Table 1). In terms of prenatal exposure, the babies born
to women that drink alcohol excessively during pregnancy
may suffer from fetal alcohol syndrome [20], a condition
characterized by specific craniofacial abnormalities, pre- and
postnatal growth deficiencies, and nervous system dysfunc-
tion that is manifested as persistent intellectual, behavioral,
and neurological defects [5, 21]. These latter symptoms have
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been related to neurodegeneration in experimental animal
models (see Table 1 for a summary of some of the available
literature).

Chronic alcohol exposure has been associated with per-
manent neuronal loss in brain regions like the hippocampus
and cerebellum. Moreover, in vivo studies have demonstrated
neurological effects following chronic ethanol exposure in
young and adult populations, with deterioration in memory,
motor function, cognition, and so forth. All these effects
could be due to neurotoxicity or neurodegeneration, and
there is evidence that oxidative stress associated with ethanol
metabolism is involved.

3. The Pharmacokinetics of Ethanol

The ethanol concentration that can be found in blood
following its ingestion depends on its pharmacokinetics (PK).
PK determines not only the time-course and persistence
of ethanol in blood but also the amount of alcohol and
its metabolic products that accumulate in different tissues,
and hence their pharmacological and toxicological responses
[48].

3.1. Absorption. Inadults, the ethanol ingested is almost com-
pletely and instantly absorbed by passive diffusion, reaching
a peak concentration in humans between 30 and 90 min.
Absorption is more efficient in the small intestine than
in stomach [49], a difference in absorption that is due to
two factors. First, the thickness of mucus that protects the
stomach appears to have a resistance ~16 times greater than
that which protects the small intestine [49, 50], which also has
a greater intestinal absorption surface due to the presence villi
and microvilli [51]. The second difference reflects the speed of
stirring caused by peristalsis, which is more important in the
small intestine than in the stomach, playing a role in gastric
emptying and in the intestinal transit time [49].

In addition, the presence of food is another factor that
modifies the absorption rate [52], mainly as food reduces
gastric emptying and ethanol is absorbed more slowly [53].
Solid food intake can reduce the ethanol absorption rate by
30% and it has been suggested that this effect is due to the
need for food digestion prior to absorption process. As such,
if food is taken in as a liquid then it would not produce
this effect [49, 54]. Moreover, a small amount of ethanol
can be oxidized to acetaldehyde by alcohol dehydrogenase
(ADH) classes I and IV [52, 55] in the stomach and intestine.
This acetaldehyde can be absorbed along with ethanol and
metabolized by the liver or other tissues.

3.2. First Pass Metabolism and the Distribution of Ethanol.
The amount of alcohol in any given tissue depends on its
relative concentration in the blood, which is a function of first
pass metabolism [49], that is, the oxidation of ethanol in the
stomach, intestine, and liver.

Most first pass metabolism occurs in the liver [49, 55]
and the rate-limiting step is the oxidation of ethanol to
acetaldehyde. This reaction is catalyzed by proteins of the
ADH family [56], of which class I (ADH1) and III (ADH3)
enzymes metabolize ethanol in the liver [57, 58]. These two

types of enzymes differ in their Km, with ADHI having a low
Km while ADH3 has a high Km value [57, 59]. Consequently
ADHS3 plays a more important role in the metabolism of
alcohol at high concentrations. In addition, microsomal
ethanol oxidizing system (MEOS) and catalase contribute to
the metabolism of alcohol in specific circumstances, such as
high ethanol concentrations [48, 60].

The acetaldehyde produced by the oxidation of ethanol is
thereafter transformed to acetate by aldehyde dehydrogenase
(ALDH) [61], which can be further metabolized through
the tricarboxylic acid cycle to generate energy, or these
metabolites can be deposited in the plasma [62, 63]. Indeed,
increases in acetate but not acetaldehyde can be detected in
human plasma after ethanol intake [64, 65] (Figure 1).

The efficiency of ethanol metabolism is dependent on
the enzymatic activity and pathways involved. It has been
reported that ADH, cytochrome P450 (CYP), and ALDH
show genetic variations (ADHI1B, ALDH2, CYP2E1"6, and
CYP2E1"7B besides others) that affect enzymatic activity
in the liver and alcohol metabolism [66-68]. As a result,
ethanol’s pharmacokinetic and pharmacodynamic properties
are affected by this genetic variation, as reflected in interracial
and ethnic pharmacological differences [56, 66-71]. Conse-
quently the risk of developing diseases may increase in certain
populations, including that of hypertension [70], alcohol
dependence, and several types of alcohol-related cancer [60,
72-75].

After first pass metabolism, the remaining ethanol and its
metabolites are distributed in different tissue, and the excess
alcohol is excreted in the breath, urine, and sweat [56]. The
distribution of ethanol throughout the body is driven in direct
proportion to water content of each tissue, especially at the
ethanol steady-state. Since ethanol is a small, polar molecule,
the distribution volume of ethanol is dependent on the total
body water of an individual (50 to 60% lean body weight)
[76-78]. The variation in the distribution volume of ethanol
has been evaluated for women and men, and in both sexes,
the distribution volume decreases as the body mass index
increases [79].

Alcohol-driven physiological changes, such as vascular
effects (vasodilation) or changes in cardiac output, can also
modify tissue blood flow and ethanol distribution [78]. Since
the blood flow to the brain remains relatively constant,
changes in the blood concentration of ethanol are the most
relevant factor influencing the amount of ethanol delivered
to the brain and therefore for the different levels of brain
intoxication [78-80].

The distribution of ethanol is also particularly rele-
vant during pregnancy, as 1-2 hours after maternal alco-
hol ingestion the fetal alcohol concentrations reach levels
that are nearly equivalent to the maternal levels [81]. The
elimination of ethanol by the fetus is impaired due to its
reduced metabolic capacity. Thus, fetal exposure is prolonged
through the reuptake of amniotic-fluid containing ethanol
[81]. Ultimately, the elimination of alcohol from the fetus
relies on the mother’s metabolic capacity, which inevitably is
a process that occurs late, meaning that the fetus is exposed
to the toxicological effects of alcohol [82]. Therefore, many
of the physical effects of ethanol on brain structure not only
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FIGURE 1: Mechanisms of ethanol metabolism in the liver. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main

enzymes that convert ethanol to acetate in the liver.

affect neurobehavioral features during fetal development but
may also persist into childhood, potentially enduring until
adulthood [82, 83].

3.3. Ethanol and Acetate Can Reach the Brain. Ethanol can
cross the blood-brain barrier and it can be metabolized in the
brain. Indeed, ethanol has been found in the human brain
after alcohol intake [84], although metabolites of ethanol,
like acetate, can also reach the brain as products of first
pass metabolism [85]. Recently, the metabolism of [2-(13)C]-
ethanol was evaluated in the brains of rats, and products such
as labeled acetate, glutamate, glutamine, and GABA were
detected found [86].

4. Metabolism of Ethanol and Acetate
in the Brain

The oxidation of ethanol to acetaldehyde can occur in the
brain through pathways that involve catalase, cytochrome
CYP2EL and ADH. The main pathway to metabolize ethanol
in the liver is that involving ADH, although it has not been
definitively shown to play a role in ethanol metabolism in
the brain. In certain regions of the adult rat, mouse, and
human brain it has been possible to identify ADH mRNA
transcripts, with ADHI1 and ADH4 expressed at distinct sites
[87, 88], yet with no detectable activity after exposure to
ethanol. Nonetheless, ADH4 inhibition avoids the synaptic
dysfunction associated with severe alcohol intoxication in the

hippocampus [89]. Moreover ADH activity (ADHI1, ADH3,
and ADH4) was found in the human brain but under patho-
logical process like brain cancer [73] and Alzheimer’s disease
[90], and not induced by alcohol intake. In addition, and
despite fulfilling a less prominent role in ethanol metabolism
[85, 91], ADHs have been related to enhanced voluntary
alcohol intake in rats [92].

Other pathways metabolize ethanol in the brain. Catalase
and CYP2E1 are the main pathways; there is evidence that
they do indeed play an important role in ethanol oxidation to
acetaldehyde in the brain [91]. Indeed, acetaldehyde produc-
tion in the brain in vivo depends on catalase activity [85, 93]
and catalase appears to be expressed in all neural cells. Perox-
isomal catalase is a tetrameric, heme-containing enzyme that,
in addition to converting hydrogen peroxide (H,O,) to water
and oxygen, can also oxidize ethanol to acetaldehyde. The
discovery of the catalase pathway for acetaldehyde formation
in the brain represented an important first step in our
understanding of the role of acetaldehyde in the effects of
ethanol in the brain [94]. Studies using inhibitors of catalase
and acatalasemic mice revealed that catalase is responsible for
approximately half of the ethanol metabolism occurring in
the CNS [91]. Indeed, inhibitors of catalase are also effective
in inhibiting the production of acetaldehyde.

The cytochrome P450 enzymes (CYP2El) that are
involved in ethanol metabolism in the liver have also been
implicated in its metabolism in the brain. CYP2EI reduces
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molecular oxygen to water and thus ethanol is oxidized to
acetaldehyde. This enzyme is induced in response to chronic
drinking and it may contribute to the increased rates of
ethanol elimination in heavy drinkers. Some endogenous
substrates for CYP2E1 include acetone and fatty acids, both
of which are abundant in the brain [95]. The CYP2EI system
fulfills an important role in the generation of reactive oxygen
species (ROS) and exposure to ethanol is related to the
accumulation of ROS, which in rat brain homogenates may be
attributed to the induction of CYP2EIL [96]. Not only ethanol
but many other substrates are also metabolized by CYP2EL,
including neurotoxins or procarcinogens, producing reactive
intermediates [97, 98]. Moreover, in human neurons CYP2E1
is known to generate ROS and nitric oxide through the induc-
tion of NADPH/xanthine oxidase and nitric oxide synthase
[99].

Therefore, CYP2E] and catalase are the main pathways in
the brain that metabolize ethanol to acetaldehyde, while ADH
appears to play a minor role. Acetaldehyde is a biologically
active compound and it has been implicated in alcohol
addiction [100, 101], as well as inducing euphoria at low
concentrations [102]. The effects of ethanol are modulated
by acetaldehyde [100, 103], which in turn may react with
endogenous substances to form other biologically active com-
pounds. Acetaldehydes along with other proteins (adducts)
were found in mice brain after alcohol consumption and
in alcoholic human brains, suggesting they are involved in
neural damage [104, 105]. Moreover adducts like salsolinol
(formed when acetaldehyde binds to dopamine) were also
seen to be involved in neurotoxicity [106] and in reinforcing
addictive ethanol conduct [107]. Salsolinol has been identified
in the brain and cerebrospinal fluid of patients with Parkinson
disease, and it has been proposed to increase ROS production
along with a reduction of glutathione [108], as well as reduc-
ing intracellular ATP and thereby acting as an inhibitor of
mitochondrial energy supply. Thus, acetaldehyde reinforces
its own effects or enhances the addictive action of ethanol
(109, 110].

As a result, acetaldehyde oxidation is required for detox-
ification and it can be metabolized to acetate by ALDH
[111]. ALDH is critically important and the risk of alcohol-
induced toxicity in individuals with mutant ALDH2 increases
remarkably [112], while ALDH2 overexpression diminishes
alcohol-related ROS production [113]. However, the accu-
mulation of NADH increases in association with ALDH
activity [114] and if the NAD"/NADH ratio decreases, the
amounts of superoxide radicals increase [115, 116]. Moreover,
although ALDH activity has beneficial effects, such as in
the reduction of acetaldehyde, it also produces free radicals.
Finally, the acetate produced by ALDH is metabolized in
the Krebs cycle to produce energy or provide intermediaries
for other molecules. Recent research showed that oxida-
tion of [13]C-acetate generates specific neurotransmitters, as
[13]C-glutamine, glutamate, and GABA levels were higher
in chronic ethanol-exposed rats than in controls [86]. The
production of these molecules may be related to the known
effects of GABA receptors [16, 17, 19, 117], although other
receptors are also involved in the effects of ethanol, such

as dopamine, acetylcholine, and NMDA receptors [118-120]
(Figure 2).

5. Oxidative Stress Produced by Ethanol

ROS are produced by exposure to ethanol [85] and they are
associated with the effects of ethanol in the brain [92, 99, 101,
121-125], where ROS-related damage is due to oxidative stress
[99, 124, 126-128]. The oxidative balance is a result of the
amount of ROS that accumulates and the activity of antioxi-
dant enzymes. In the brain, antioxidant enzymes are present
in the cortex, cerebellum, hypothalamus, striatum, and spinal
cord, and they include glutathione peroxidase, superoxide
dismutase, glutathione reductase, and peroxiredoxin [129].
When the oxidative balance is disturbed, oxidative stress
develops that affects the cell as a whole, as well as proteins,
lipids, and DNA individually, provoking neurotoxicity or
neurodegeneration.

6. The Antioxidant System and
the Effects of Ethanol

The formation of ROS accompanies many physiological
processes, such that the body has developed a system of
antioxidant protection against their harmful effects. In the
brain, where the generation of free radicals is particularly
severe, it is essential that the antioxidant system functions
correctly [130]. Antioxidant activity is considered as enzy-
matic or nonenzymatic based on the mechanism of action
involved.

6.1. Superoxide Dismutase (SOD). It is an enzyme that cat-
alyzes the dismutation of the superoxide anion to hydro-
gen peroxide, which is then decomposed by catalases pri-
marily located in the peroxisomes. There are two main
SOD isoenzymes found in the CNS of mammals: Mn-SOD
(dependent on mitochondrial manganese ions) and Cu, Zn-
SOD (SOD-1) present in the cytoplasm, microsomes, and
synaptosomes [131]. Increased SOD activity is considered
to be an adaptive response to oxidative stress, such as that
induced by acute ethanol toxicity in the cerebral cortex [132].
However, acute ethanol intoxication reduces the activity of
Cu, Zn-SOD in the cytosolic and microsomal fraction of
the rat brain, and Mn-SOD activity in the mitochondria
[131]. SOD interacts closely with catalase, which catalyzes
the deprotonation of peroxide hydrogen and the oxidation
of substances like methanol, ethanol, formate, nitrite, and
quinones.

6.2. Catalase. In mammals, catalase is primarily located in
the liver, erythrocytes, kidneys, and CNS. In the CNS, it can
be found in microsomes [133] and it has been shown that,
in acute ethanol poisoning, there is an increase of catalase
activity in the cytosol, microsomes, and synaptosomes, as
well as a reduction in the mitochondria of the rat CNS [131].
The increase in catalase activity following ethanol intake and
its effects in the CNS are associated with weak ADH activity.
This increase in catalase activity in the CNS may be adaptive
processes induced by the increase in the hydrogen peroxide
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metabolism.

generated, as what occurs in the CNS of animals exposed to
high concentrations of ethanol [134].

6.3. Glutathione Peroxidase (GSH-Px). 1t is present in many
tissues, as well as in the neurons and glia of the CNS [135,136].
The role of GSH-Px is limited to the reduction of peroxides
in which glutathione participates, which is accompanied by
the formation of glutathione disulfide. In the rat and human
CNS, the greatest glutathione peroxidase activity is observed
in the gray and white matter of the cerebral cortex [137,138].

6.4. Glutathione Reductase (GRed). Itisan enzyme present in
the cytosol and in the mitochondria of most cells, catalyzing
the regeneration of reduced glutathione oxidation at the
expense of NADPH. Most GRed activity is found in neurons
and glial cells [139], and acute ethanol poisoning significantly
dampens GRed activity in the cerebral cortex [140].

The activity of antioxidant enzymes is significantly altered
in the CNS of animals chronically intoxicated with ethanol.
The antioxidative capacity of the CNS also depends on
exogenous antioxidants obtained by the organism through
its dietary intake. The most important exogenous antioxidant

in the CNS is vitamin E, and both vitamin E and vitamin C
content in the CNS falls after ethanol consumption, whereas
vitamin A content increases [131].

7. Oxidized Fatty Acids as a Consequence of
Oxidative Stress

Lipid peroxidation affects polyunsaturated fatty acids in
membrane phospholipids as oxidative stress increases, pro-
ducing bioactive aldehydes like 4-hydroxyalkenals and mal-
ondialdehyde [141]. Oxidative stress and the products of
lipid peroxidation, 4-hydroxynonenal (HNE) [99, 142-145]
or malondialdehyde [141, 146, 147], have been related to
decreased neuronal viability in some studies. Ethanol-
induced lipoperoxidation by oxidative stress [142] and its
products decrease the intracellular reduced glutathione and
increase its oxidized form [148]. HNE has also been asso-
ciated with increases in mitochondrial permeability and
cytochrome c release [143, 149, 150], the latter triggering
apoptotic cell death by activating caspases [145, 150]. Inter-
estingly, the toxicity mediated by the product of lipoperoxi-
dation was weaker when glutathione transferase A4-4 activity
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FIGURE 3: The role of lipids in ethanol-induced damage. Lipid metabolic pathways may be involved in neurodegeneration, such as
lipoperoxidation, reduced phosphatidylserine (PS), N-acyl-PE (NAPE), and ceramide/Sph (sphingosine). Some lipids are produced as a
compensatory mechanism and they fulfill a protective role, such as c16-ceramide, PS, sphingomyelin (SM), phosphatidyl ethanolamine (PE),

and phosphatidylethanol.

was enhanced and glutathionyl-HNE was produced, avoiding
the accumulation of HNE [150, 151] and possibly serving
as a mechanism of tolerance. However, the activation of
glutathione transferase A4-4 was suppressed in the presence
of anionic phospholipids like cardiolipin [152]. Furthermore,
the ability of HNE to produce glutathionyl-HNE was pre-
vented by a PLA2 inhibitor [153], suggesting a role of PLA2
in the production of HNE.

8. The Role of Phospholipids in Stress Damage

Cardiolipin is a phospholipid and it is the major com-
ponent of mitochondrial membranes, although ethanol-
induced oxidative stress provokes a loss of this lipid [152, 154
157] in conjunction with the appearance of HNE [157, 158].
Therefore, cardiolipin oxidation occurs following ethanol
ingestion and consequently its fatty acids are released from
phospholipids by PLA2. When cardiolipin is affected by
ethanol, mitochondrial function is impaired and the outer
mitochondrial membrane may disintegrate [157, 159], which
could induce the release of cytochrome c from the mitochon-
dria and trigger an apoptotic cascade mediated by caspases
[158, 160]. Interestingly, the neurodegeneration induced by
ethanol can be prevented by an inhibitor of PLA2 in vitro
[153, 161].

Phosphatidylserine (PS) has also been shown to play
a role in apoptotic signaling, and both the reduction in
PS and the enhanced neuronal cell death that ensues dur-
ing the developmental period may contribute to the brain
defects often observed in fetal alcohol syndrome [162].
Meanwhile, docosahexaenoic acid (DHA: 22:6n-3) prevents
neuronal apoptosis by promoting PS accumulation [162],
while conversely, PLA2 activity and oxidation-mediated HNE
production may diminish the levels of PS.

9. Ceramide Related to Neurodegeneration

Ceramides are produced in the central nervous system by de
novo synthesis or sphingomyelin hydrolysis [163]. Ceramide
has been shown to accumulate in mitochondria upon the
induction of apoptotic processes related to neurodegenera-
tion [164-175]. The expression of serine palmitoyltransferase
was localized in neurons and it was enhanced in caspase
3-positive neurons induced by ethanol [172], indicating
that de novo ceramide synthesis participates in ethanol-
induced apoptotic neurodegeneration in the brain. Although
ceramide synthase 6 (CerS6) fulfills a protective role, this
enzyme produces Cl16-ceramides and they are the precursors
of other sphingolipids, such as sphingomyelin and gluco-
sylceramide. Interestingly, CerS6 is enhanced within hours
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of ethanol withdrawal as a compensatory effect [176]. In
summary, ceramide is an apoptotic signal [173] but it is
also necessary for the sphingomyelin synthesis required to
produce diacylglycerol (DAG), which in turn activates PKC
[177], thereby avoiding apoptosis [178].

10. Lipids Potentially Involved in the
Compensatory Mechanisms Protecting
against Ethanol-Induced Damage

While some lipids are altered to signal cells for destruction,
others seem to offset some of the effects that occur due to
oxidation. For example, there is more cholesterol in neuron
membranes exposed to ethanol [155]. Cholesterol is known
to provide rigidity to membranes and ethanol is effective in
disrupting unstable lipid membranes. Hence, an increase in
the cholesterol present in membranes may represent a com-
pensatory mechanism to combat ethanol damage. Indeed,
when mitochondrial cardiolipin is oxidized and its fatty acid
released, membranes become unstable due to aloss of rigidity.

Other lipids can also reduce the availability or the effects
of metabolites of ethanol, such as phosphatidylethanolamine,
phosphatidylethanol, and acylethanolamine. Ethanol expo-
sure augments the amount of phosphatidylethanolamine due

to the attachment of aminated ethanol to citidyldiphos-
phate [152, 179], resulting in the production of phos-
phatidylethanolamine through the Kennedy pathway [180].
Moreover, phosphatidylethanolamine can serve as a substrate
for acyltransferases and indeed N-acylphosphoethanolamine
(NAPE) is produced following ethanol exposure [168]. The
amount of NAPE in membranes augments under cellular
stress and as a result of tissue damage [181-184], and NAPE
represents a precursor of the N-acylethanolamines [185]
involved in learning and memory [186], neuroinflamma-
tion [187], oxidative stress, neuroprotection, and neuro-
genesis. Palmitoylethanolamine treatment of cultured cells
produces neuroprotection against oxidative stress, impeding
apoptosis [187-189] and protection in mice with chronic
constriction injury [190]. Moreover, the endocannabinoid
anandamide is also involved in neurodegeneration and thus
acylethanolamines, and especially palmitoylethanolamine,
appear to play an important role as neuroprotectors.
Acylethanolamines can be found in the mitochondria in vitro
[191] and palmitoyl requires carnitine to enter mitochondria.
When cells or animals receive carnitine it acts as a neuro-
protective agent, preventing ethanol-induced damage [147].
Furthermore, @ type-3 unsaturated fatty acids and DHA
provide neuroprotection in conjunction with an increase in
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the formation of acylethanolamine [161, 162], suggesting that
the formation of the latter prevents the damage caused by the
oxidative metabolism of ethanol. Finally, ethanol can also be
metabolized as phosphatidylethanol, a molecule found in the
brain of rats [192] that is possibly formed to avoid ethanol
oxidation.

11. Conclusions

Lipid metabolism is clearly affected by exposure to ethanol
(Figure 3), and the alterations to lipid components like
cardiolipin and some phospholipids in response to ethanol
provide evidence of cell damage. The formation of oxidized
species, abnormal lipids, and dysfunctional membranes due
to ethanol uptake also provokes cell degeneration. However,
compensatory mechanisms exist to dampen the effects of
these metabolic events and to minimize cell damage, as
reflected by the neuroprotective activities of natural lipids
like DHA, esters, vitamin E, and so forth. Thus, ethanol-
induced neurodegeneration is at least partly the result of
the equilibrium maintained between the toxicity of signaling
lipids and the protection they confer on the cell (Figure 4).
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