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Background: Atrial fibrillation (AF) is the most common arrhythmia. Previous

studies mainly focused on identifying potential diagnostic biomarkers and

treatment strategies for AF, while few studies concentrated on post-

operative AF (POAF), particularly using bioinformatics analysis and machine

learning algorithms. Therefore, our study aimed to identify immune-associated

genes and provide the competing endogenous RNA (ceRNA) network

for POAF.

Methods: Three GSE datasets were downloaded from the GEO database, and

we used a variety of bioinformatics strategies and machine learning algorithms

to discover candidate hub genes. These techniques included identifying

differentially expressed genes (DEGs) and circRNAs (DECs), building protein-

protein interaction networks, selecting common genes, and filtering candidate

hub genes via three machine learning algorithms. To assess the diagnostic

value, we then created the nomogram and receiver operating curve (ROC).

MiRNAs targeting DEGs and DECs were predicted using five tools and the

competing endogenous RNA (ceRNA) network was built. Moreover, we

performed the immune cell infiltration analysis to better elucidate the

regulation of immune cells in POAF.

Results: We identified 234 DEGs (82 up-regulated and 152 down-regulated) of

POAF via Limma, 75 node genes were visualized via PPI network, which were

mainly enriched in immune regulation. 15 common genes were selected using
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three CytoHubba algorithms. Following machine learning selection, the

nomogram was created based on the four candidate hub genes. The area

under curve (AUC) of the nomogram and individual gene were all over 0.75,

showing the ideal diagnostic value. The dysregulation of macrophages may be

critical in POAF pathogenesis. A novel circ_0007738 was discovered in POAF

and the ceRNA network was eventually built.

Conclusion: We identified four immune-associated candidate hub genes

(C1QA, C1R, MET, and SDC4) for POAF diagnosis through the creation of a

nomogram and evaluation of its diagnostic value. The modulation of

macrophages and the ceRNA network may represent further therapy methods.
KEYWORDS

post-operative atrial fibrillation, machine learning, bioinformatics analysis, diagnosis,
immune and inflammation, competing endogenous RNA network
Introduction

Atrial fibrillation (AF) is one of the most prevalent cardiac

arrhythmias. Previous studies focused primarily on identifying

potential diagnostic biomarkers and treatment options for atrial

fibrillation (AF) through large-scale clinical trials, fundamental

research, and data mining (1), but few studies have concentrated

on postoperative atrial fibrillation (POAF).

POAF is a common complication after cardiac surgery,

affecting 20% to 40% of patients undergoing cardiac surgery

and accounting for approximately one-third of secondary AF

cases (2). The majority of POAF symptoms are mostly

asymptomatic, paroxysmal and brief. The incidence peaks

between two to four days after surgery and recurs frequently

during the first post-operative week (3). It can cause adverse

consequences, such as an increase in hospitalization days,

expenses, and critical care unit time (4). Moreover, it is an

independent predictor of postoperative mortality since it is

related with a higher incidence of stroke and hemodynamic

instability due to AF (5, 6). POAF is promoted when transient,

postoperative triggers act on a vulnerable atrial substrate

comprised of preoperative, perioperative, and postoperative

remodeling processes. Several independent risk variables are

related with POAF, including age, male gender, history of AF,

and peri-operative predictors such as mitral valve surgery and

intra-aortic balloon pump (7). These risk factors alter the

sensitivity of the atrial substrate to the two primary AF

mechanisms: ectopic firing owing to triggered activity and

re-entry.

Despite the fact that various clinical researches have focused

on identifying risk factors and predicting the prognosis of POAF,

the immune-associated diagnostic biomarkers and underlying
02
pathophysiology remain unknown. To the best of our

knowledge, no previous studies analyzed POAF using public

GEO datasets and machine learning algorithms.

Herein, after a series of bioinformatics analysis and machine

learning algorithms, we identified four diagnostic biomarkers and

created the nomogram for POAF prediction based on the receiver

operating characteristic curve evaluation (ROC). Furthermore, we

investigated the immune cell infiltration between POAF and sinus

rhythm (SR). In addition, the circ/miR/mRNA network of POAF

was built. In general, our study offered a systematic analysis of

POAF, including identification of diagnostic markers, building of

competing endogenous RNA (ceRNA) network, and examination

of immune pathway components.
Methods

Microarray data

The study flowchart is shown in Figure 1. (post operative

atrial fibrillation) AND “Homo sapiens”[porgn:_ txid9606] was

the search strategy for selecting appropriate datasets. Two gene

expression datasets (GSE143924, GSE62871) and one non-

coding RNA dataset (GSE97455) were downloaded from the

NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.

nih.gov/geo/) (8). GSE143924 was generated using Affymetrix

Human Gene 2.0 ST Array and included epicardial adipose

tissue from 30 participants (15 Sinus rhythm (SR) and 15

POAF). GSE62871 (9), generated from Agilent-039494

SurePrint G3 Human GE v2 8x60K, consisted of right atrial

appendage from 16 participants (9 SR and 7 POAF). GSE97455

was generated using 074301 Arraystar Human CircRNA
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microarray V2 and contained plasma samples from 15 SR and

15 POAF.
Differentially expressed genes and
circRNAs identification

After downloading the raw datasets, background calibration,

normalization, and log2 transformation were performed using

affy in R software (version 4.1.3; https://www.r-project.org/) to

preprocess the data. When multiple probes and different

transcripts corresponded to the same common gene, the

median value was calculated as its expression. The

Bioconductor Limma (10) R package was used to identify

DEGs and DECs. The criteria for identification of DEGs and

DECs between SR and POAF were |Fold change| > 1.5 and P

value < 0.05, |Fold change| > 2 and P value < 0.05, respectively.
Protein-protein interaction network
construction

The Search Tool for the Retrieval of Interacting Genes

(String) database (11) (version 11.5; www.string-db.org), an

online tool to identify the interaction among proteins, was

used to construct PPI network. The minimum required

interaction score was set as 0.40, the default value of String.

Cytoscape (http://www.cytoscape.org) (12) software was applied

to visualize the network and calculate the node genes

subsequently. Three algorithms (Betweenness, Closeness,

Degree) in CytoHubba, a plug-in of Cytoscape, were applied

to identify top 20 genes. The intersection of 20 genes from the
Frontiers in Immunology 03
three algorithms were selected using Draw Venn diagram

(http://bioinformatics.psb.ugent.be/webtools/Venn/) for further

machine learning analysis.
Functional enrichment analysis

Functional enrichment analysis include Gene Ontology

(GO, http://geneontology.org) (13) and Kyoto Encyclopedia of

Genes and Genomes (KEGG, https://www.kegg.jp/) (14). To

explore the biological mechanisms of node genes regarding

POAF, GO and KEGG enrichment analysis were performed

using Sangerbox (http://www.sangerbox.com/home.html), a

f r iendly and comprehens ive c l in ica l p la t form for

bioinformatics analysis. The selection criteria included:

number of genes enriched in the item > 2 and the adjusted P

value < 0.05 to eliminate the bias caused by a large gene list input

or enriched items containing a large number of genes.
Machine learning

Herein, to minimize the risk of bias in potential diagnostic

genes, three different machine learning algorithms were applied

to identify candidate hub genes. Lasso (15) is a regression

analysis approach using regularization to reduce the prediction

error and was performed via “glmnet” R package. Random forest

(16) is a popular classification and regression method in

biological research, it can generate one decision tree forest and

screen out critical genes through 10-fold cross validation

method. Support vector machine recursive feature elimination

(SVM-RFE) (17) is a supervised machine-learning algorithm
FIGURE 1

Study flowchart. POAF, post-operative atrial fibrillation; DEGs, differentially expressed genes; Limma, linear models for microarray data; Lasso,
least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination; DECs, differentially expressed
circRNAs; CCRD, cancer-specific circRNA database; ceRNA, competing endogenous RNA.
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with high accuracy to identify the most suitable characteristic

genes. The intersection of genes from the three algorithms were

selected for nomogram construction.
Nomogram construction and receiver
operating characteristic curve building

The ROC curve was initially established using SPSS Version

26.0 (IBM Corporation, Armonk, NY, USA) to visualize the

diagnostic value of each individual gene with the calculation of

area under curve (AUC) and 95% confidence interval (CI). The

other POAF and SR validation cohort was applied to further

validate its value. Then, the nomogram was constructed using

“rms” R package to provide clinical perspective in POAF

diagnosis. Each gene possesses the score based on its

expression and after the accumulation of all genes, the total

score can be used to predict POAF occurrence risk from

the nomogram.
MiRNAs targeting DEGs and
DECs prediction

After a series systematical bioinformatics analysis and

machine learning algorithms identification, hub genes for

ceRNA network construction were selected. Therefore, to

present a more precise ceRNA network, only DECs with |Fold

change| > 4 were selected for ceRNA network construction. Four

databases, including miRDB, miRWalk, RNA22, and RNAInter

(18, 19), were used to predict miRNAs targeting DEGs.

Meanwhile, miRNAs targeting DECs were predicted using

CCRD (20).
Circ-miR-mRNA network building

After the prediction of miRNAs targeting DEGs and DECs,

only the intersection of miRNAs targeting DEGs from four

databases were selected for ceRNA network construction. By

the integration of the circRNA/miRNA pairs and the miRNA/

mRNA pairs, a ceRNA regulation network was constructed.

Nodes that cannot complete a circRNA-miRNA-mRNA axis

were removed. Cytoscape was used to visualize the network.
Immune cell infiltration

CIBERSORT is a computational method for distinguishing

22 human immune cell phenotypes (21). The “Cibersort” R

package was applied to compute and depict the percentage of
Frontiers in Immunology 04
each immune cell type in various samples. To compare and

visualize the proportion of 22 immune cells between POAF and

SR, the “boxplot” R software was used. Using the “corrplot” R

package, a correlation heatmap displaying the correlation of 22

types of infiltrating immune cells was generated (22)..
Results

DEGs identification via Limma

A total of 234 DEGs between POAF and SR in GSE143924

were identified using Limma package, of which 82 were up-

regulated and 152 were down-regulated. The complete list of

DEGs was provided in Supplementary Table S1. Figure 2A, B

display the heatmap of the top 25 up- and down- regulated

DEGs and the volcano plot for all DEGs.
PPI network construction and common
genes identification

After removing the isolated nodes and non-protein coding

genes, 75 protein-coding node genes were identified in the PPI

network and visualized via Cytoscape (Figure 3). The top 20

node genes from Betweenness, Closeness, and Degree algorithms

using CytoHubba plug-in were visualized and presented in

Figure 3D. The intersection of 20 genes from the

aforementioned algorithms was depicted using Venn diagram

and 15 genes were identified as common genes for candidate hub

genes selection (Figure 3). The majority of them were intimately

associated with immune and inflammation regulation. The

detailed information of 15 common genes were listed as

Supplementary Table S2.
Functional enrichment analysis of
node genes

Functional enrichment analysis was performed based on the

75 node genes. The GO analysis demonstrated that node genes

were mainly enriched in “response to stress”, “immune system

process”, “response to external stimulus” regarding BP

(Figure 4); “extracellular region”, “extracellular region part”,

“extracellular space” regarding CC (Figure 4); “extracellular

matrix structural constituent”, “endopeptidase activity”,

“glycosaminoglycan binding” regarding MF (Figure 4). The

KEGG pathway enrichment analysis showed that complement

and coagulation cascades play the critical role in POAF

pathogenesis (Figure 4). The detailed results of the enrichment

analysis were presented in Supplementary Table S3.
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Candidate hub genes selection via
machine learning

SVM-RFE, random forest, and Lasso regression algorithms

were applied to screen out candidate hub genes for POAF diagnosis.

Figure 5 shows the average rank of common genes after 100

folds using SVM-RFE algorithm. Genes with the smaller rank

are more significant in POAF pathogenesis. The ten most

important genes were chosen. Figure 5 indicates that the

LASSO regression algorithm identified seven potential

candidate hub genes with the lowest binominal deviance.

Figure 5 reveals that genes were ranked based on the

importance score calculation. The greater the score, the more

significant the position.

The Venn diagram (Figure 5) showed that the intersection of

the top ten common genes from SVM-RFE and random forest as

well as seven genes from Lasso was five (MET, C1QA, SDC4, C1R,

and MFI2), which were selected as the candidate hub genes for the

further nomogram building and diagnostic value evaluation.
Frontiers in Immunology 05
Diagnostic value evaluation via
ROC curve

The diagnostic value of each candidate hub gene was

assessed using ROC curves and revalidated using the other

validation dataset GSE62871. MFI2 was not observed in gene

symbol after a succession of GSE62871 processing steps, which

may be attributable to the use of different microarray platforms.

Therefore, the ROC curve was determined using the remaining

four candidate hub genes. Figure 6 showed the AUC and 95% CI

for each gene: C1QA (AUC: 0.751, CI 0.572-0.930), C1R (AUC:

0.827, CI 0.679-0.974), MET (AUC: 0.769, CI 0.596-0.942),

SDC4(AUC: 0.791, CI 0.681-0.964). All the four candidate

genes demonstrated optimal diagnostic value. Although the

AUC for each gene was reduced after GSE62871 validation,

this may be due to sample size constraints (Figure 6). Finally, the

nomogram was built (Figure 6) and the AUC under nomogram

was 0.938, showing the highest cl inical diagnostic

value (Figure 6).
A

B

FIGURE 2

The heatmap and volcano plot of DEGs for POAF compared with SR in GSE143924. (A) Heatmap reveals top 25 up- and down-regulated DEGs
for POAF patients compared with SR. Red and black represent up- and down- expression, respectively. (B) The volcano plot shows all DEGs for
POAF compared with SR. Red and green triangles represent the significant DEGs following the filtration criteria. SR, sinus rhythm; others see
Figure 1.
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DECs identification via Limma

68 DECs were identified using Limma method, of which 43

were up-regulated and 25 were down-regulated. The heatmap of

top 20 up- and down-regulated DECs were shown in Figure 7,

and the volcano plot for all DECs were displayed in Figure 7. The

complete list of DECs was shown in Supplementary Table S4. 13

DECs (12 up-regulated and one down-regulated) were selected

for ceRNA construction based on more rigorous DECs filtering

criteria (|Fold change| > 4 and P value < 0.05).
Frontiers in Immunology 06
MiRNAs prediction and ceRNA
network construction

Four candidate hub genes and 13 DECs were used to

construct ceRNA network.

As circRNAs could bind miRNA competitively to regulate

mRNA expression (23), only genes and DECs with similar

expression trends were selected to create the ceRNA network.

All four genes were downregulated in POAF; hence, only

circ_0007738 was employed to form the ceRNA network.
A

B D

E

C

FIGURE 3

PPI network construction and common genes selection. (A) 75 POAF node genes were visualized from the PPI network. (B-D) Top 20 node
genes were visualized using “Betweenness”, “Closeness”, and “Degree” algorithms via CytoHubba plug-in from Cytoscape, respectively. (E) The
Venn diagram of top 20 node genes from three algorithms shows that 15 genes were identified as common genes for machine learning analysis
after intersection. PPI, protein-protein interaction network; others see Figure 1.
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Four databases were intersected to predict miRNAs that

target mRNA, and the results indicated that four, seven, 83, and

40 miRNAs were predicted for C1QA, C1R, MET, and SDC4,

respectively (Figure 8D). Eight miRNAs targeting circ_0007738

were identified. The detailed mRNA-miRNA and circRNA-

miRNA pair information was provided in Supplementary

Table S5. Finally, the ceRNA network was built, including

three mRNAs, eight miRNAs and one circRNA (Figure 8).
Immune cell infiltration analysis

Since the identified candidate hub genes were mainly

enriched in immune regulation and the function description

from gene cards were primarily about complement. We aimed to

excavate immune cell infiltration in POAF.

Following the use of the Cibersort algorithm, the percentage

of 21 types of immune cells in each sample was displayed using a

bar plot (Follicular help T cell was omitted because its
Frontiers in Immunology 07
proportion was equal to 0 in all samples) (Figure 9). The

vioplot of the differential in immune cell infiltration revealed

that POAF patients had a lower level of M2 macrophages and

resting mast cells than SR (Figure 9). The correlation of 21 types

of immune cells revealed that monocytes were positively related

with Tregs (r = 0.75) and eosinophils (r = 0.75), whereas

CD4 naïve T cells were negatively related with M2

macrophages (r = -0.61) (Figure 9). In summary, focusing on

macrophage regulation could serve as potential approaches for

POAF treatment.
Discussion

The incidence of POAF is still high despite the progression

of drug innovation in recent years. Our study discovered four

biomarkers (C1QA, C1R, MET, and SDC4) and constructed a

nomogram for clinical use in predicting the occurrence of

POAF. The nomogram provides us with an intuitive and user-
A B

DC

FIGURE 4

Functional enrichment analysis of POAF node genes. (A-C) Partial visualization of GO analysis for node genes from biological process, cellular
component, and molecular function, respectively. X-axis represents gene ratio, Y-axis represents different ontologies, the circle color represents
P-value and the circle size shows count number. (D) KEGG pathway analysis of node genes. The left side displays genes, while the right side
depicts significant enriched pathways. The connection between genes and pathways refers to that genes were enriched in related pathway.
POAF, post-operative atrial fibrillation; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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friendly interface to predict the risk of POAF. Based on the

identified four biomarkers, we can collect blood samples from

patients and test the expression of the four genes, each gene

corresponds to a score according to its expression level and the

accumulation of all scores refer to a total score that can be used

to predict the incidence of POAF.

Despite the fact that the underlying mechanisms of POAF

still remain elusive, the dysregulation of cardiac metabolism,

epigenetic methylation, and the inflammation (24, 25) have been

widely recognized. A series of clinic research in POAF prediction

have found several classical indicators associated to cardiac
Frontiers in Immunology 08
metabolism. For instance, Yasushige et al. (26) revealed that

lower expression of fatty acid binding protein 3 (FABP3), a

regulator involved in fatty acids uptake (27), may be utilized to

predict POAF regardless of age or atrial size. Furthermore,

mitochondria are important in controlling cardiomyocyte

energy metabolism. David et al. (9) proved that POAF was

substantially linked with lower pre-operative mitochondrial

respiration and higher sensitivity to calcium-induced

mitochondrial permeability transition pore opening. DNA

methylation is a type of chemical DNA modification that can

change genetic activity without altering the DNA sequence (28).
A

B

D

C

FIGURE 5

Machine learning algorithms for identifying candidate hub genes in diagnosing POAF. (A) Common genes were ranked based on the average
rank using SVM-RFE algorithm after 100 folds. The lower the average rank, the greater the significance of the gene. (B) The number of genes
(n=7) corresponding to the lowest point of the curve is the most suitable number for POAF diagnosis using Lasso algorithm. (C) The column
reveals that genes were ranked with importance score using random forest algorithm. (D) The Venn diagram depicts the intersection of genes
shared by three distinct methods. Five genes were chosen for nomogram development and diagnostic value assessment. POAF, post-operative
atrial fibrillation; SVM-RFE, support vector machine-recursive feature elimination.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.974935
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2022.974935
The Framingham Heart Study (29) clarified the association

between DNA methylation and AF, and Matthew et al. (30)

recently established DNA methylation biomarkers that can

predict the incidence of POAF.

There is growing evidence that inflammation has a

significant role in the incidence and recurrence of AF after

cardiac surgery. Amar et al. (31) found that increments in white

blood cell (WBC) were greater in patients with AF and coincided

with the peak onset of POAF. A prospective study shows that an

increase in postoperative WBC count predicts POAF

development independently (32). In a pilot study of patients

undergoing cardiac surgery, researchers identified peri-operative

upregulation of the monocyte adhesion receptor, CD11b, and

higher circulating monocyte as predictors for POAF (33).

Similarly, the progression of POAF is closely correlated with

changes in inflammatory cytokines. For example, Hak et al. (34).

found a straightforward connection between interleukin (IL)-2

serum levels and the development of POAF following coronary

artery bypass grafting. It was also reported that the IL-6
Frontiers in Immunology 09
promoter gene variation modulates the inflammatory response

to surgery and influences the development of POAF (35).

Increased peripheral high-sensitive C reaction protein level has

been identified to initiate intracardiac inflammatory state, cause

atrium substrate abnormalities, and hence contribute to POAF

(36). In summary, inflammation plays the critical role in POAF

development, immunological response appears to have the

capacity to predict POAF.

Herein, the four identified biomarkers in POAF were

partially associated with inflammation and immune regulation.

C1QA and C1R were both essential immune regulatory

complement components. The complement system is a crucial

component of innate and adaptive immunity for the

identification and elimination of invading pathogens (37). C1Q

is the first recognition molecule regarding the classical pathway

of the complement system. C1Q deficiency has been

demonstrated to be vital in the incidence of various diseases.

Ling et al. (38) revealed that C1Q could inhibit the response to

self-antigens via altering the mitochondrial metabolism of CD8+
A

B

DC

FIGURE 6

Nomogram construction and ROC evaluation. (A) The ROC curve of the individual candidate hub gene (C1QA, C1R, MET, SDC4) in nomogram
construction. (B) The ROC curve of the same candidate hub gene derived from a different test dataset-GSE62871. (C) The nomogram was
constructed based on the four candidate hub genes. (D) The ROC curve of the nomogram. ROC, receiver operating curve; C1QA, Complement
C1qA Chain; C1R, Complement C1r; MET, MET Proto-Oncogene, Receptor Tyrosine Kinase; SDC4, Syndecan 4.
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T lymphocytes in systemic lupus erythematosus, and C1Q

deficiency may result in fatal immunopathology. While C1QA

appears to be expressed differently in cancer. Azzato et al. (39)

reported that overexpression of C1QA was strongly related with

a favorable prognosis in oestrogen-receptor-negative cancers.

Similarly, C1R expression has been reported to be highly

associated with the pathogenesis of cardiovascular disease.

Patients with acute myocardial infarction showed

coordinated proteomic signature changes in complement

proteins (C1R) and immunological response, according to

Cubedo et al. (40). The role of complement system in AF

pathogenesis has been partially confirmed by Wen et al. (41).

They found that the cascade response functions in the

complement system were markedly diminished in AF patients,

based on the downregulation of the mRNA expression of

complement system genes. Our data showed that C1QA and

C1R expression was lower in POAF than in SR, which is similar

as AF, indicating that the innate and adaptive immune responses

were impaired following cardiac surgery, resulting in POAF.

MET is a proto-oncogene and has been found to be critical in

tumor regulation. Paolo (42) summarized that it could initiate

and sustain neoplastic transformation when genetically altered.

MET has been identified as a possible therapeutic target in the

treatment of cancer. For instance, Alex et al. (43) found that in

some genomic subsets of lung cancer, MET activation acted as

both a primary and a secondary oncogenic driver of acquired
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resistance to targeted therapy. Also, it is crucial to concentrate

on MET regulation in cardiac repair. MET deficiency in

cardiomyocyte resulted in a reduction in anti-oxidant defense

capacity. Meanwhile, the activation of MET after hypoxia-

induced damage could activate the PI3K/AKT pathway and

increase the activity of the MAPK cascades to exert an anti-

apoptotic function (44). The downregulation of MET in POAF

patients suggests that the anti-apoptotic function was weakened

during cardiac surgery, resulting in the formation of POAF.

SDC4 is a key membrane-associated endogenous receptor.

Studies were primarily focused on human tumorigenesis and

development due to its widely regulation of cytoskeleton, cell

adhesion, and cell migration (45). Chen et al. (46) revealed that

silencing SDC4 promotes human papillary thyroid cancer cell

death and inhibits epithelial mesenchymal transition viaWnt/b-
Catenin pathway. Meanwhile, SDC4 is important in regulating

the formation of extracellular matrix, which provides the novel

targets for cardiac fibrosis and the subsequent pathological

remodeling induced by various stimuli. For instance, Kate

et al. (47) discovered that SDC4 can protect the heart from the

profibrotic effects of thrombin-cleaved osteopontin. Even

though there isn’t any concrete proof linking SDC4 to POAF,

Wu et al. (48) have explored the function of SDC4 in AF. They

discovered that individuals with valvular AF had downregulated

SDC4 expression, and that SDC4 could control AF etiology by

regulating oxidative stress and inflammatory responses. Our
A

B

FIGURE 7

The heatmap and volcano plot of DECs for POAF compared with SR in GSE97455. (A) The heatmap displays top 20 up- and down-regulated
DECs, Red and blue represent up- and down- expression. (B) The volcano plot showed all DECs for POAF. Red and green triangles refer to the
significant DECs based on the selection criteria (Fold change > 2 and P value < 0.05). DELs, differentially expressed circRNAs; POAF, post-
operative atrial fibrillation; SR, sinus rhythm.
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research revealed that SDC4 was down-regulated in POAF

patients, which is similar to AF, and this finding could

suggest that extracellular matrix synthesis was impaired after

cardiac surgery.

Due to the strong relationship between the four genes and

immune regulation, our study also analyzed the immune

infiltration of POAF. M2 and resting macrophages were down-

regulated in POAF compared to SR, while the remaining 19

types of immune cells displayed the same trend. Previous

research on the cross-talk between macrophages and atrial

myocytes in AF found that the increased macrophages in the

atr ium were predominant ly M1 pro-inflammatory

macrophages, which is not consistent with our findings (49).

We speculated that this may be attributable to the distinct

immunological patterns of POAF and AF. To clarify the

mechanism, additional basic research is required. In addition,
Frontiers in Immunology 11
we identified a circRNA and presented the POAF ceRNA

network. The expression of circ_0007738 was reduced by more

than fourfold in POAF. However, no articles pertaining

to circ_0007738 have yet been discovered, requiring

further investigation.
Limitation and expectation

Our study had several limitations. First, there are only two

mRNA datasets and one circRNA dataset available for POAF in

GEO. These datasets were produced utilizing several platforms,

and the variety of sample types resulted in bias that needed to be

verified in our clinical samples. Second, given the various types

of cardiac surgeries, it is uncertain whether the detected DEGs

had the ideal diagnostic value for POAF following various
A B

D

E

C

FIGURE 8

CeRNA network construction. (A-D) The Venn diagrams show the intersection of predicted miRNAs targeting mRNAs (C1QA, C1R, MET, SDC4)
using four databases (miRDB, miRWalk, RNA22, RNAInter). (E) The constructed ceRNA network includes three mRNAs, eight predicted miRNAs,
and one circRNAs. ceRNA, competing endogenous RNA; C1QA, Complement C1q A Chain; C1R, Complement C1r; MET, MET Proto-Oncogene,
Receptor Tyrosine Kinase; SDC4, Syndecan 4.
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cardiac surgeries. Third, additional clinical variables should be

taken into account considering the limited clinical information

provided by the datasets. To clarify POAF more clearly, we can

add more clinical details to the nomogram. Finally, it is essential

to investigate the underlying mechanism linking the detected

DEGs, DECs, and POAF.

To be specific, in order to confirm the differential expression,

we first should collect blood samples from the patients and test

the expression of the identified genes and circRNAs. The

nomogram needs to be modified after the basic clinical

characteristics have been adjusted. To investigate whether

overexpression or downregulation of the related genes and

circRNAs can decrease the incidence of POAF, basic research

models should be developed. The precise mechanism can then
Frontiers in Immunology 12
be explored utilizing a number of omics techniques based on the

confirmed results.
Conclusion

In conclusion, our study identified four candidate diagnostic

hub genes (C1QA, C1R, MET, SDC4) for diagnosing POAF

compared with SR using integrated bioinformatics approaches

and machine learning algorithms. The nomogram for diagnosis

was constructed and the diagnostic value of each gene and the

nomogram was ideal using ROC curve. The enrichment and

immune cell infiltration analysis revealed that these genes were

mainly enriched in immune regulation and that macrophages
A

B

C

FIGURE 9

Immune cell infiltration between POAF and SR. (A) The proportion of 21 subtypes of immune cells in different samples regarding POAF and SR
groups. (B) The barplot shows the comparison of 21 immune cell subtypes proportion between POAF and SR groups. Red and blue column
represent SR and POAF group, respectively. *P < 0.05. (C) Correlation matrix of all 21 immune cell subtype compositions. The correlation
coefficients are shown in the corresponding grids.
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played the critical role in POAF pathogenesis. In addition, we

discovered a new circ_0007738 with greater than fourfold down-

regulation in POAF and created the ceRNA network for

further exploration.
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40. Cubedo J, Padró T, Badimon L. Coordinated proteomic signature changes in
immune response and complement proteins in acute myocardial infarction: the
implication of serum amyloid p-component. Int J Cardiol (2013) 168(6):5196–204.
doi: 10.1016/j.ijcard.2013.07.181

41. Wen S, Yan W, Wang L. mRNA expression disturbance of complement
system related genes in acute arterial thrombotic and paroxysmal atrial fibrillation
patients. Ann Palliat Med (2020) 9(3):835–46. doi: 10.21037/apm.2020.04.18

42. Comoglio PM, Trusolino L, Boccaccio C. Known and novel roles of the
MET oncogene in cancer: a coherent approach to targeted therapy. Nat Rev Cancer
(2018) 18(6):341–58. doi: 10.1038/s41568-018-0002-y

43. Drilon A, Cappuzzo F, Ou SI, Camidge DR. Targeting MET in lung cancer:
Will expectations finally be MET? J Thorac Oncol (2017) 12(1):15–26. doi: 10.1016/
j.jtho.2016.10.014

44. Gallo S, Gatti S, Sala V, Albano R, Costelli P, Casanova E, et al. Agonist
antibodies activating the met receptor protect cardiomyoblasts from cobalt
chloride-induced apoptosis and autophagy. Cell Death Dis (2014) 5(4):e1185.
doi: 10.1038/cddis.2014.155

45. Yang H, Liu Y, Zhao MM, Guo Q, Zheng XK, Liu D, et al. Therapeutic
potential of targeting membrane-spanning proteoglycan SDC4 in hepatocellular
carcinoma. Cell Death Dis (2021) 12(5):492. doi: 10.1038/s41419-021-03780-y

46. Chen LL, Gao GX, Shen FX, Chen X, Gong XH, Wu WJ. SDC4 gene
silencing favors human papillary thyroid carcinoma cell apoptosis and inhibits
epithelial mesenchymal transition via wnt/b-catenin pathway. Mol Cells (2018) 41
(9):853–67. doi: 10.14348/molcells.2018.0103

47. Herum KM, Romaine A, Wang A, Melleby AO, Strand ME, Pacheco J, et al.
Syndecan-4 protects the heart from the profibrotic effects of thrombin-cleaved
osteopontin. J Am Heart Assoc (2020) 9(3):e013518. doi: 10.1161/jaha.119.013518

48. Wu H, Zhou Q, Xie J, Li GN, Chen QH, Kang LN, et al. Syndecan-4 shedding is
involved in the oxidative stress and inflammatory responses in left atrial tissue with
valvular atrial fibrillation. Int J Clin Exp Pathol (2015) 8(6):6387–96.

49. Sun Z, Zhou D, Xie X, Wang S, Wang Z, Zhao W, et al. Cross-talk between
macrophages and atrial myocytes in atrial fibrillation. Basic Res Cardiol (2016) 111
(6):63. doi: 10.1007/s00395-016-0584-z
frontiersin.org

https://doi.org/10.3390/mps3040064
https://doi.org/10.1038/nature12986
https://doi.org/10.1016/j.jacc.2012.04.063
https://doi.org/10.1093/europace/eur208
https://doi.org/10.1093/europace/eur208
https://doi.org/10.1016/j.jjcc.2017.07.003
https://doi.org/10.1038/nrd2589
https://doi.org/10.1186/s13148-021-01064-y
https://doi.org/10.1038/srep40377
https://doi.org/10.3389/fcvm.2022.837725
https://doi.org/10.1016/j.athoracsur.2006.03.103
https://doi.org/10.1053/j.jvca.2005.03.026
https://doi.org/10.1213/01.Ane.0000155260.93406.29
https://doi.org/10.1213/01.Ane.0000155260.93406.29
https://doi.org/10.1089/jir.2008.0082.2906
https://doi.org/10.1161/01.cir.0000087441.48566.0d
https://doi.org/10.1111/eci.12237
https://doi.org/10.1146/annurev-immunol-042617-053245
https://doi.org/10.1146/annurev-immunol-042617-053245
https://doi.org/10.1126/science.aao4555
https://doi.org/10.1038/sj.bjc.6605625
https://doi.org/10.1016/j.ijcard.2013.07.181
https://doi.org/10.21037/apm.2020.04.18
https://doi.org/10.1038/s41568-018-0002-y
https://doi.org/10.1016/j.jtho.2016.10.014
https://doi.org/10.1016/j.jtho.2016.10.014
https://doi.org/10.1038/cddis.2014.155
https://doi.org/10.1038/s41419-021-03780-y
https://doi.org/10.14348/molcells.2018.0103
https://doi.org/10.1161/jaha.119.013518
https://doi.org/10.1007/s00395-016-0584-z
https://doi.org/10.3389/fimmu.2022.974935
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Immune-associated pivotal biomarkers identification and competing endogenous RNA network construction in post-operative atrial fibrillation by comprehensive bioinformatics and machine learning strategies
	Introduction
	Methods
	Microarray data
	Differentially expressed genes and circRNAs identification
	Protein-protein interaction network construction
	Functional enrichment analysis
	Machine learning
	Nomogram construction and receiver operating characteristic curve building
	MiRNAs targeting DEGs and DECs prediction
	Circ-miR-mRNA network building
	Immune cell infiltration

	Results
	DEGs identification via Limma
	PPI network construction and common genes identification
	Functional enrichment analysis of node genes
	Candidate hub genes selection via machine learning
	Diagnostic value evaluation via ROC curve
	DECs identification via Limma
	MiRNAs prediction and ceRNA network construction
	Immune cell infiltration analysis

	Discussion
	Limitation and expectation
	Conclusion
	Data availability statement
	Author contributions
	Acknowledgment
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


