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Currently, providing nutritious food to all people is one of the greatest challenges due to rapid human population growth. The
global poultry industry is a part of the agrifood sector playing an essential role in food insecurity by providing nutritious meat
and egg sources. However, limited meat production with less nutritional value is not fulfilling the higher market demands
worldwide. Researchers are focusing on nanobiotechnology by employing phytosynthesized mineral nanomaterials to improve
the growth performance and nutritional status of broilers as these mineral nanoparticles are usually absorbed in greater
amounts from the gastrointestinal tract and exert enhanced biological effects in the target tissues of animals with greater tissue
accumulation. These mineral nanoparticles are efficiently absorbed through the gastrointestinal tract and reach essential organs
via blood. As a result, it enhances growth performance and nutritional value with less toxicity and tremendous bioavailability
properties. In this review, the research work conducted in the recent past, on the different aspects of nanotechnology including
supplementation of mineral nanoparticle in diet and their potential role in the poultry industry, has been concisely discussed.

1. Introduction

Nanotechnology is the promising and emerging technology
that has tremendous potential to revolutionize livestock
and agriculture sectors. The concept of nanotechnology
was to reduce the size of particles to few nanometers. The
field of nanotechnology is not only applicable to basic sci-
ences research but is also performing a major role in disease
diagnosis and therapeutic agents. Nanotechnology is an
advent grade technology that is aimed at creating materials
in which at least one dimension is less than 100 nm [1-5].
Nanoparticles are not new world creation; historically, nano-
particles existed hundreds of years ago, as many natural phe-

nomena on the planet earth like forest fires, volcanic
eruptions, and photochemical smog result in a formation
from these nanoparticles [1]. Nanotechnology is concerned
with the phenomenon of converting larger-sized molecules
to a particle as small as nanosize [6, 7], while converting
these larger compounds to smaller ones results in a modified
chemical and physical properties of the base material. These
changes include changes in the degree of solubility, absorp-
tion of the particle, transportation across the cell and tissues,
and excretion, and also, the most important is antagonism
(Mohapatra, Swain, Mishra, Behera, Swain, [8, 9]). In the
modern scientific world, nanoparticles are almost used in
every field of science like in the field of agriculture.
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Nanofertilizers are used to improve crop production and
also used to remove toxic substances and water catchers,
and nanoparticles are also used to eradicate certain pollut-
ants from the water and air; the cosmetics industry is also
now loaded with the products containing nanoparticles
majorly used in skin care and also in dyes. One of the most
promising applications of nanoparticles is in the human
medicine where it has enabled the scientist for controlled lib-
eration of cancer drugs, hormones, nutrients, and gene ther-
apy [10-13]. Recent studies have also showed that
nanominerals are more potent and they are more easily
available for cells as compared to their larger sized mate-
rials [14].

Minerals are important for animals because they are
required to carry out various physiological and biochemical
reactions in the body of organisms, for normal growth and
to continue their race for the future [15, 16]. Many feeds
given to animals and especially to poultry have a very low
level of minerals, and if they are available in enough amount,
their bioavailability is very low, but on the other hand, the
animal requires mineral supplements in larger quantity
because along with the use of mineral at a cellular level, a sig-
nificant amount of minerals is excreted to the environment
which results in increased cost [17, 18]. The bioavailability
of the nutrients does not depend upon the particle size and
its potency, but it is also influenced by the physiological rate,
species, source, and synthetic structure of the components
[19]. Nanofeed substances not only increase feed proficiency
but also reduce the cost of feed along with additional benefit
of improved yield in terms of animal products [20].

2. Types of Nanoparticles

Organic, inorganic, dispersions, emulsions, and nanoclays
are the different types of nanoparticles that are classified
based on their chemical properties. Inorganic nanoparticles
are used extensively in feed products like titanium dioxide
which act as a feed colorant and are used as an ultraviolet
barrier in feed packaging. Minerals are also used in feeds
as well as in the packaging industry, which involves nano-
clays in the packaging of feed; other minerals like silver,
magnesium, and calcium are being used as antimicrobial
agents, as water purifiers, and in feed storage. Fat, sugar,
and protein molecules are classified as organic nanoparticles.
Organic nanoparticles by altering feed and its bioavailability
also improve their nutritional value. Organic nanoparticles
can encapsulate nutrients and can transport them through
the bloodstream, which is now referred to as the nanocap-
sule. Due to increased bioavailability, nanocapsules are used
to deliver the nutrients without altering the taste and
appearance. These encapsulated nanomaterials are incorpo-
rated into feed as liposomes and also as a biosensor in the
feed packaging system, shelf-life extender, identification
markers, and antimicrobial agents in stored feed. Nanoe-
mulsion is another class of organic nanoparticles that is
mainly used as a stabilizing agent, to deliver the active com-
ponents either in the water/oil interface or in a continuous
phase [21].
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2.1. Synthesis of Nanoparticles. The synthesis of nanoparti-
cles mainly depends upon the need and the purpose for
which they are intended to be used. The stability of the active
component, the toxicity of the nanoparticle, its liberation,
and its possible effect on the living system are also taken into
account when they are intended to be used for living sys-
tems. Nanoparticle synthesis can be broadly classified into
chemical and biological methods (Figure 1). As the ultimate
fate of nanoparticles in one way or the other is a human
being, the chemically synthesized nanoparticles are not con-
sidered safe as compared to phytosynthesized nanoparticles
([22]: [23]).

3. Biological Method

In this method, mainly microbes, algae, fungi, and plant
extract with active molecular compounds and other biologi-
cal agents are used [22-24]. Green nanotechnology is the
term used for the synthesis, characterization, and assessment
of the biological effect of phytosynthesized nanoparticles
such as silver, copper, gold, iron, zinc, and selenium on liv-
ing systems. The plant extract has a major role as it acts as
a reducing and capping agent for the synthesis of nanoparti-
cles [25-28].

In addition to the quality and safety of foods, nanotech-
nology has emerged as a technological advancement that can
transform agriculture and the food sector which will
enhance global food production with high nutritional value
and better quality with the safety of food as well [29, 30].
Nanoparticles and the organic molecules found in food,
i.e., carbohydrates, proteins, and lipids, work at the same
scale. A metal oxide nanoparticle, i.e., titanium dioxide, is
one of the most used nanoparticles for various industrial
and commercial purposes and also in the food industry
[31] (Figure 2). Silver nanoparticles due to their antimicro-
bial activities are one of the most widely used nanoparticles
in the food sector [32].

The antimicrobial activity of silver nanoparticles has
been proved in various studies, in which AgNP has shown
antimicrobial activity against a wide range of microbes such
as gram-positive and gram-negative bacteria, yeast, mold,
and viruses.

Salmonellosis and campylobacteriosis are the two most
frequently reported food-borne pathogens caused by Salmo-
nella and Campylobacter. These two pathogens are of the
highest concern in the poultry field, which are present either
in the gut content or in the skin of birds which may become
part of the human food by using poultry meat [33, 34]. For-
tunately, both microbial species are heat sensitive and their
transfer can be prevented by adequately cooking the meat
[33]. The globally median number of 5% of illnesses and
16% of deaths due to food-borne pathogens is caused by
Campylobacter species. A major share of this food-borne
pathogen can be attributed to chicken meat which acts as a
food vehicle for these infectious agents [35]. Contamination
is not only limited to farms; it can be caused at any step from
farm to kitchen. Now, the industry is following the “farm to
fork” philosophy to emphasize all parties for the prevention
of contamination. The process starts with the breeding
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FIGURE 1: Biological, chemical, and physical methods of nanoparticle synthesis.
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FIGURE 2: Altered and improved features of mineral nanoparticles with their beneficial aspects for different applications.

stocks and continues through hatcheries, farms, feed mills,
live-poultry pickup and transport, processing plants, distri-
bution channels, and the consumer’s own kitchen. Nano-
technology offers several benefits which can be exploited
during different phases of the food chain, which can be uti-
lized to improve microbial quality of food during produc-
tion, processing, transport, and storage. Commercial
poultry processing environment also plays a major role in
reducing the chance of food-borne contamination, prior to
consumer supply and use.

4. Nanotechnology and Poultry

Many reports are available in the literature about the utiliza-
tion of nanoparticles in poultry either in feeding, watering,
or also through other routes to improve bird’s health
(Table 1). The antimicrobial and immunomodulatory effects
of many nanoparticles including gold, silver, and titanium
are well-established. Silver nanoparticles cause immuno-
stimulation and antimicrobial activity in the animal.
[36-39]. The use of chromium nanoparticles significantly
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TaBLE 1: A summary of the studies on different nanoparticles (NP) on performances, immunity, and other health effects on poultry.

Nanoparticles

Health effects on poultry Reference

Zinc nanoparticles

Zinc nanoparticles

Copper and zinc nanoparticles

Zinc nanoparticles

Carbon nanoparticles

TiO, nanoparticles

Silver nanoparticles

Silver nanoparticles

Silver nanoparticles

Selenium nanoparticles

Selenium nanoparticles

Selenium nanoparticles
Calcium nanoparticles

Chromium nanoparticles

(i) Increased tibia ash Zn content
(ii) Increased breast muscle Zn content [81]
(iii) Body weight and feed conversion ratio was unaffected

(i) All the egg quality traits and mean egg weight were

significantly increased (Amem & Al-Daraji, 2011)

(i) Zinc was accumulated in the liver of broiler chickens
(ii) Reduced MDA content [82]
(iii) Increased feed consumption and body weight

(i) High doses showed significant changes specially in the liver, [83]
congested blood vessels, and proliferation of bile duct

(i) No significant difference was observed in RBC morphology,
weight of organs, and other biochemical parameters among the
tested and control groups [84]
(ii) It was concluded that carbon nanoparticles remain in the

body without affecting any major trait

(i) TiO, nanoparticles affected mRNA levels of different genes
which are involved in Wnt signaling [85]
(ii) Treatment with TiO, resulted in free radical production which

disrupted the somite myogenesis and lateral plate mesoderm

(i) Increased phagocytosis and leukocyte metabolic activity by

application of silver nanoparticles

(ii) Antioxidant activity was enhanced with decreasing level of [7]
haemoglobin

(iii) Increased lipid peroxidation and bilirubin content

(i) Silver nanoparticle accumulation was observed in the liver
and intestine, and this accumulation was dose-dependent,
i.e,, higher dose resulted and greater accumulation

(i) Silver nanoparticles resulted in decreased villus height

to crypt depth ratio in the jejunum

(iii) Stimulated and activated immune with enhanced
oxidative stress system was observed in the AgNP-treated
group as compared to control

(86]

(i) Enhanced immunostimulatory effect was observed

(ii) Elevated level of IL-6 demonstrated that higher dose of
silver nanoparticles has proinflammatory effect

(iii) AgNPs also stimulated B

(iv) They also stimulated B lymphocytes which resulted in
a higher level of immunoglobulins

(86-88]

(i) Diet supplementation with selenium resulted in a higher

concentration of selenium in different tissues as compared

to nontreated groups

(i) It was also demonstrated that selenium source [89]
(sodium selenite, nanoselenium, or Se yeast A) had no effect

on tissue selenium retention and no significant difference

was observed between these groups

(i) Feeding nano-Se increased glutathione peroxidase mRNA
expression in the liver

(ii) Expression of cytokine genes was also stimulated by feeding [50]
with nanoselenium

(1) In%proved average.daily gain ('ADG) ar}d survival ratio [91]
(ii) Tissue accumulation of selenium was improved

(i) Greater %mprovement was observed %n average daily. gain (.ADG), and [92]
about 12% improvement was observed in feed conversion ratio (FCR)

(i) Increase in food intake was observed in stressed quills, but no [41]

significant difference was observed in nonstressed quills
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TaBLE 1: Continued.

Nanoparticles Health effects on poultry Reference
(i) Cr NP uptake by the apical membrane was reduced

Chromium nanoparticles (ii) The efficiency of epithelial transport across Caco-2 monolayers [42]
was increased using Cr NP

Chomion s, ESBel s d el v v e dong iyl g

Manganese nanoparticles (i) There was no significant effect on carcass yield [93]
(i) Lower FCR, but no effect was noted in average daily

Manganese nanoparticles gain (ADG) and feed intake [87]
(ii) Blood/liver lipid peroxidation, SOD, and GPx are not affected

Manganese nanoparticles (i) Increased tibial bone weight [94]

improves the thyroid production, growth, weight of liver,
semen quality, egg size, feed conversion ratio, and shell
thickness [40-42] (Figure 3).

Use of antibiotics in poultry feed to increase poultry pro-
duction is not new, as different concentrations of antibiotics
have been used varying with growth, time, and breed of
chicken. Due to rapid microbial resistance to antibiotics,
these drugs are now banned in various countries. So there
is a dire need to use alternatives, which should benefit for
poultry growth and health performance with less harm to
humans. The importance of nanotechnology in improving
meat and egg production has been greatly neglected, mainly
due to lack of sufficient knowledge and limited literature
[43]. Nanoparticles of different minerals are the best alterna-
tives which have better penetrance, more absorption, and
greater conversion ratio which make them a very good can-
didate to be used instead of these antibiotics. In the follow-
ing discussion, we will discuss about the use and benefits
provided by various mineral nanoparticles for poultry
growth and production [44].

4.1. Silver Nanoparticles (AgNPs). Silver nanoparticles have
been proved effective not only for gram-positive and gram-
negative pathogenic strains of bacteria, but it has also shown
antibacterial activity against resistant bacterial strains [45,
46]. Silver nanoparticles have also shown an antibacterial
property against Staphylococcus aureus and Escherichia coli,
by degrading the cell wall at minimum inhibitory concentra-
tion of 50 and 100 ppm, respectively [47]. As far as the mode
of action of nanoparticles is concerned, NPs attach to infec-
tious and pathogenic microbes and eventually remove them
from the bird’s body (Figure 4). According to [48], silver
nanoparticles at a dose of 4ppm/kg resulted in reduced
growth of E. coli, without affecting the population of benefi-
cial bacteria, like lactobacillus species in microflora. Silver
nanoparticles at a dose rate of 900 ppm increased the body
weight, feed intake efficiency, and feed conversion ratio ulti-
mately on overall growth performance in birds ([49] in
nutritional). It is recently being observed that silver nano-
particles are now being used also in solution and suspen-
sions as well. Owing to their well-established and
confirmed antimicrobial properties, silver nanoparticles are
now being widely used as disinfectants and also to reduce
the metabolic wastes like nitrogen oxides and ammonia.

Dobrzanski et al. (2010) demonstrated in their study that
nano-Ag has biocidal activities which has not only reduced
the number of harmful E. coli, salmonella, and streptococcus
species, but also, it reduced the total number of bacteria.

It is proved by various research studies that silver nano-
particles stimulate inflammatory signaling by producing
reactive oxygen species (ROS), which results in activated
macrophage cell thereby secreting tumor necrotic factor type
alpha (TNF-«). This increased concentration of TNF-«
results in membrane damage and ultimately cell death. If sil-
ver nanoparticles are recognized as foreign particles by the
immune cells, it may also result in multistep and multilevel
immune response which finally may lead to toxicity [50].
However, somehow, if the immune system is unable to rec-
ognize AgNPs, then the capacity of silver nanoparticles to
activate the response of immune system decides their fate
in the host, in spite of all this in vivo studies that have con-
firmed that nanoparticles are also responsible for promoting
inflammation [51]. A study conducted by

Grodzik and Sawosz [52] assessed that silver nanoparti-
cles at a concentration of 10 ppm reduce the size and num-
ber of follicles but had no major effect on the growth
performance of the chickens [53] administrated at different
doses (20, 40, and 60 ppm) of silver nanoparticles to assess
its effect on bursa, which revealed that the increasing dose
of nanoparticles affected the number of follicles. It may be
concluded that silver nanoparticles may have effected and
reduced the microflora of the gut due to its antimicrobial
properties, as silver nanoparticles carry the available oxygen,
which reduces the growth of strictly anaerobic bacteria,
which has manifested itself by reducing the growth of bursa
of Fabricius. Almost no effect of AgNPs was reported on
Immunoglobulin G (IgG) and Immunoglobulin M (IgM)
levels ([37]. But it has also been showed that silver nanopar-
ticles in combination with certain amino acids like threonine
and cysteine can improve the innate and adaptive immunity
in chickens during embryonic development [39, 54].

4.2. Zinc Oxide Nanoparticles. Zinc is one of the most vital
trace metals which is required to initiate and complete most
of the essential pathways and to carry out various physiolog-
ical functions [16]. Zinc is required by all the six major types
of enzymes and the total number of enzymes estimated to be
200, which are associated with the metabolic pathways of
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major organic compound like carbohydrates, proteins,
lipids, and nucleic acids. Moreover, zinc also plays a major
role in various signaling pathways usually by initiating a
response with hormone secretion pathways as well. The
immune defense system also requires zinc at different levels
either for immune response initiation or in various interme-
diate regulatory steps in the immune response pathway (S.

[15]). Like many other minerals, zinc also functions as a
cofactor for various enzymes in the liver, including alanine
aminotransferase, gamma glutamyl transferase, and aspar-
tate aminotransferase. Deficiency of zinc reduces the activity
of these enzymes which leads to various liver diseases
including hepatitis and cirrhosis [55]. Zinc also makes an
integral part of antioxidant enzyme system, especially
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superoxide dismutase, which is one of the most important
players of the organisms’ body against oxidative stress.
Therefore, deficiency of zinc also affects the activity and
capacity of the antioxidant defense system [16].

Bioavailability of organic zinc as compared to inorganic
is higher, but one major problem associated with organic
zinc is its high cost [56]. Moreover, higher usage of zinc in
dietary supplements also results in higher rate of excretion
which causes environmental pollution [57, 58]. Further-
more, high concentration of zinc also affects the stability of
other nutrients, such as vitamins as well, which necessitates
that zinc should be used at an optimum level. Additionally,
it is also observed that long-term exposure also causes depo-
sition of zinc in the animal body, as zinc residue has been
reported in various organisms living in a high zinc environ-
ment [59, 60].

Nanotechnology has been extensively used in the last few
years in the field of animal husbandry and nutrition, mainly
to improve the utilization of various trace minerals and to
improve their bioavailability [61, 62]. Zinc is also important
for poultry as it is required for the maintenance of growth
performance, for the development of skeleton, and in
immune response system. It is also added in various poultry
diets at a rate of 0.12 to 0.18 g/kg, mainly for the improved
development of bone and feathers and to enhance the
immune response (S. [15]). Zinc sulfate and zinc oxides are
the two major sources of inorganic zinc which is used at
commercial level in poultry feed, out of which 80-90% zinc
is used as ZnO which has very low bioavailability as com-
pared to ZnSO, [63]. On the other hand, zinc sulphate is
not safe as it is very reactive which promotes the formation
of free radicals, which in turn facilitates various degradative
reactions for vitamins, fats, and oils, decreasing the nutri-
tional value of diet [64]. Many studies have been carried
out to explore the effect of ZnO nanoparticles to promote
growth performance and health status in poultry. [65] used
zinc oxide nanoparticles of 40 nm size at a dose rate of 30,
60, 90, and 120mg/kg in basal diet of broilers that has
improved the feed intake, feed efficiency, and weight gain
of broilers in first 21 days at 60 and 90 mg/kg, but higher
concentration (120 mg/g) resulted in reduced growth perfor-
mance and weight loss. (Y. J. C. N. [66]) conducted their
study to investigate the comparative effect of large ZnO par-
ticles (60 mg/g) and ZnO Nanoparticles (20, 60, and 100 mg/
g) fed to broiler chickens. It was concluded that chickens fed
with 20 and 60 mg/g of ZnO NPs had low feed conversion
efficiency but increased body weight gain as compared to
ZnO particles and ZnO NPs at a dose rate of 100 mg/g.
According to [8], ZnO NPs at the 1/500™ level of basal diet
increase overall growth rate, along with increased levels of
alkaline phosphatase activity and serum glucose concentra-
tion, with decreased activity of alanine aminotransferase
enzyme activity. It has been reported previously that ZnO
NPs at a supplementation rate of 10, 20, and 40 mg/g in
basal diet at about 15°C-18°C induce ascites and increased
weight gain. However, lower feed efficiency was seen in birds
fed with 40 mg/g of the ZnO NP group. However, there are
also some reports that ZnO NPs at a dose rate of 25 and
50 mg/g and ZnO particles at 100 mg/g have negligible effect

on feed efficiency, feed intake, and body weight gain and car-
cass yield. But higher doses of ZnO NPs has reduced malon-
dialdehyde content along with cooking loss of chicken meat
as compared to ZnO at 100 mg/g [67].

4.3. Selenium Nanoparticles. Selenium is also one of the trace
elements, required for animal nutrition as it exerts multiple
actions related to animal production, fertility, and disease
prevention (kryukov et al, 2003). Selenium requirements
for poultry ranges from 0.1 to 0.15 mg/kg, which can be sup-
plemented with any poultry feed. Common selenium sup-
plements in various poultry feeds include sodium selenite,
inorganic sodium selenite, organic selenomethionine, and
selenium yeast. Comparatively, organic forms of selenium
are better absorbed in the gastrointestinal tract, compared
to inorganic ones. More than 90% selenium in organic form
is absorbed compared with 60% absorption of inorganic sel-
enite. Moreover, organic forms such as selenomethionine
can be retained in the tissues more efficiently than selenate
or selenite [68]. Selenium is the integral part of about 25
selenoproteins which play a pivotal role in enzymatic redox
reactions at the cellular level, which enables them to scav-
enge the reactive oxygen species (ROS). There are many
important physiological processes like reduction of oxidised
proteins and membranes; biosynthesis of nucleotides;
metabolism of hormones, specifically thyroid hormone;
and scavenging of toxic peroxides along with transport and
storage of selenium reservoir in different tissues (Papp
et al., 2007) (Figure 5).

These selenoproteins can be grouped into three catego-
ries, glutathione peroxidases (GSH-Px) thioredoxin reduc-
tases (TrxR), and iodothyronine deiodinases, out of which
thioredoxin reductases are of most importance. This system
is responsible for many essential cellular processes including
synthesis of DNA (Holmgren 1985, 1989), integral part of
body defense system against oxidative species, and maintain-
ing the structure and integrity of the endoplasmic reticulum
(Rhee et al., 2005). Moreover, the most important and piv-
otal role of this system is to convert the inactive form of
Thyroxin (T4) to active form (T3), which affects the overall
metabolism of the body. Thioredoxin system is also involved
in expression of gene regulation through activating various
transcription factors like, NF-kB, Ref-1, AP-1, P53, gluco-
corticoid receptor, and apoptosis-regulating kinase (ASKI1).
So it can be concluded that this system either directly or
indirectly is involved in many key process of the body rang-
ing from affecting cell cycle, apoptosis, gene expression, and
immune response (Rundl6f and Arnér 2004). The second
most important group is GSH-Px that is primarily required
for regulating the concentration of free radicles at a cellular
level (Back 2013; Sarkar et al., 2015). It has been concluded
by different studies that selenium is not directly associated
with enhancing growth performance of the poultry; rather,
it is indirectly involved in various key process by activating
and proper functioning of redox systems, especially TrxR
and GSH-Px (Gangadoo et al., 2016).

Two different forms of selenium, inorganic (selnite or
selenite) or organic (selenomethionine), are used in avian
industry to fulfill the requirement of selenium but both of
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these have their own disadvantages. The first thing to note is
that it is quite a reactive compound that can be reduced by
various nutrients, including ascorbic acid, and some feed
ingredients to an unavailable metallic form. Feed moisture
can also dissolve it and convert it into volatile compounds
that are lost. Additionally, sodium selenite has prooxidant
properties in a dose-dependent manner, which can nega-
tively affect the gut of animals/chickens. Last but not least,
sodium selenite is poor at transferring selenium from eggs
to the foetus via the placenta, so the body cannot build
reserves of selenium for use during stressful conditions when
selenium demands rise while feed consumption usually
decreases (Sarkar et al., 2015). In order to overcome these
disadvantages and to fulfil the need of “precise nutrition,”
the concept of “nanoselenium” has been introduced. Unlike
the bulk selenium in the form of sodium selenite, this nano-
sized selenium possesses many key properties; like it has
large surface area, greater intestinal absorption, and higher
mucosal permeability.

Moreover, the role of selenium nanoparticles is not only
restricted to redox reactions, but it is also involved in pro-
moting epithelial health which leads to enhanced absorption
and digestion of nutrients in the intestine. It has been shown
that supplementation of selenium nanoparticles in poultry
feed at 0.9 mg/kg has shown improvement in population of
beneficial bacteria like Lactobacillus and Faecalibacterium
spp., along with production of short-chain fatty acids
(SCFas), most importantly butyric acid (Gangadoo et al.,
2018). Both of these improvements are important for poul-
try, as improving gut microbiota enhances gut health and
integrity while the SCFas serve as potential energy-rich
source for intestinal cells. Moreover, it is also been shown
that selenium nanoparticles result in increased population
of Faecalibacterium prausnitzii, which is not only in excess
to normal level but it was also higher than the normal probi-
otic supplement (Gangadoo et al., 2018).

Supplementation of Se NP at 0.5mg/kg diet in laying
hens improved the rate of egg production, GPx activity,
and total antioxidant status in addition to significantly

decreasing the soft-shelled or cracked egg rate. Chicken fed
diets containing 0, 0.1, 0.3, and 0.5 mg/kg of Se NP improved
final body weight, daily body weight gain, and feed conver-
sion ratio after 90 days (X. [69]). Selenium not only plays
important role in meat production, but it has also been
reported that it can enhance the egg-laying ability of hens
as well. Se NP at a supplementation rate of 0.5mg/kg
increased the selenium content in tissues. Selenium is also
reported to have a positive effect on the liver, breast muscle,
pancreas, and feathers [70]. Selenium supplementation has
also shown to have a stimulatory effect on the immune sys-
tem, improving growth and reproductive performance and
enhancing disease resistance. Consequently, deficiency of
selenium in poultry diet manifests itself in the form of exu-
dative diathesis, pancreatic dystrophy, myopathy, immuno-
deficiency, and nutritional muscular dystrophy [71]. From
the above discussions, it is apparent that supplementation
of Se NP has variable responses compared with the bulk Se
sources on production performance of poultry.

4.4. Copper Nanoparticles. Copper (Cu) is a vital trace ele-
ment involved in various physiological and biochemical pro-
cesses. However, lower absorption of copper in animals is
causing the major problem, as most of the copper is
excreted, contaminating the environment. Copper has long
been used in the poultry diet to improve growth perfor-
mance and carcass yield. First and the foremost beneficial
aspect is its antimicrobial effect, as copper reduces the pop-
ulation of harmful bacteria in broiler intestine which indi-
rectly promotes growth process in chickens. Secondly,
copper acts as cofactor for various enzymes; most important
are antioxidant enzymes like, GSH-Pox, CuZn-SOD, and
intestinal lipase (Mroczek-Sosnowska et al., 2013). Lastly,
copper is also involved in stimulation and secretion of vari-
ous growth hormones which ultimately results in high yield.
Copper is also an integral part of enzyme systems which are
involved in iron metabolism, formation of red blood cells,
and inducing immune stimulation and its proper function-
ing. Furthermore, it is also been proved by various studies



BioMed Research International

that copper is involved in the formation of connective tissues
and enhancing the nervous system [72].

In the last decade, immense work has been done in
which mineral nanoparticles were added to the poultry diet
which has given many beneficial results. As there are many
important physiological and biochemical functions per-
formed by Cu, copper sulphate is added to the poultry diet
[73, 74]. 1t is suggested that the Cu concentration should
be 4 mg/kg for layers and 8 mg/kg for broilers [75]. But prac-
tically, in the poultry farm, these guidelines are not followed
and excessive amount of Cu is added to get more carcass
yield. As there are numerous reports which suggest that
excessive copper has toxic effect, majority of the reports con-
cluded that Cu can become toxic if it is added 100 times the
recommended dose. Moreover, these higher doses of copper
result in resistant bacterial population in the chickens. These
antibiotic-resistant bacteria ultimately reach to humans and
cause various health problems. Therefore, there is a need of a
time to give attention to “precise nutrition,” in which accu-
rate amount of minerals is added to the feed, which benefits
the poultry as well as the humans.

One of the most suitable alternatives to copper sulphate
(feed additive in poultry) is CuO nanoparticles which have
greater potency, more absorption, and better interaction
with other organic and inorganic materials due to their
smaller size and large surface area. The Cu-NP has the capa-
bility to cross the small intestine and distribute into the
blood, brain, heart, kidney, spleen, liver, and intestine (Mon-
tero et al., 2017). There are many studies which suggest the
antibacterial effects of Cu-NPs on strains mainly E. coli
and Staphylococcus spp. A study demonstrated that the anti-
microbial properties of chitosan implanted with Cu-NP
reduce gut bacteria such as E. coli, Enterococcus faecalis, S.
aureus, and, particularly, Lactobacillus fermentum, which
is one of the primary targets of antibiotic growth promoters,
suggesting that the Cu-NP could be used to minimise unde-
sirable levels of microbial populations without causing cyto-
toxicity [76] Further, Cu-NP inhibits the growth of S.
aureus, B. subtilis, E. coli bacteria, Micrococcus luteus, Klebsi-
ella pneumonia, and Pseudomonas aeruginosa. The subsis-
tence rate of E. coli and B. subtilis bacteria is decreased by
increasing Cu-NP concentrations [77].

4.5. Gold NPs. Gold and its compounds with multiple appli-
cations in medical field have long been utilized in for drug
delivery, drug targeting, etc. Gold NPs due to their no or
zero cytotoxicity, large surface area, and other biocompatible
properties have long been used in nanobiotechnology and
nanomedicine [78]. Au NPs can reach to the GI (gastrointes-
tinal tract) through watering and feeding and also can be
given via oral or through injection of therapeutic nondrug.
Because of the small size of the particle, it fastly diffuses GI
tract mucous and ultimately reaches to the blood circulation
and intestinal cell lining [79]. As the Au NPs are diffused
through the GI tract, they (Au NPs of 100 nm or less) can
also translocate through lymphatic to various important
organs such as the spleen and liver. Au NPs of smaller size
like >50 nm are more potent and are capable of to be taken
up by the villus epithelium [80]. Au NPs when entering into

the cell also have the ability to upregulate certain genes as
well. It also enhances growth of the breast muscle and
improved and enhanced protein synthesis with increase in
the population of beneficial bacterial.

5. Conclusion and Future Perspectives

Rapid and uncontrolled increase in human population
requires enhanced agriculture production to meet the food
requirement. The field of animal nutrition is facing immense
pressure to increase production to meet the growing demand
of animal protein. To meet the egg and meat demands, most
of the farmers use antibiotics in poultry feed which not only
enhances the yield but also prevents infectious diseases in
chickens. Lab-made antibiotics such as tetracycline are now
extensively used in poultry feed in most parts of the worlds.
This is positive side of the picture; yes, there is negative side
as well. This extensive use of antibiotics causes threat to the
human population either by reducing the microbiota in
human gut or conferring antibiotic resistance to many path-
ogens as well. Scientists are now working on some natural
alternatives to antibiotic so that the egg and meat production
should be appropriate to meet the market demand with less
or zero toxic effects. Nanobiotechnology is a tremendous
field with potential application in animal and especially in
poultry with increasing applications in diagnostics, medica-
tion, and nutrition. The concept of nanobiotechnology is
based on the fact that by changing the particle size to nano-
meter, it makes these particle more potent, increases bio-
availability, and increases retention in the body.
Nanoparticles are synthesized mainly by three methods,
chemical, physical, and biological. Biological synthesis or
phytosynthesis of nanoparticles is recently getting more
attention as this process involves plant extract (usually
medicinal plants) as a reducing agent, the phenomenon also
known as “green nanotechnology.” Various mineral nano-
particles mainly of copper, iron, zinc, titanium, selenium,
and silver have been used for animal and mainly for poultry
nutrition. Many studies have been carried out to investigate
the actual mode of action of nanoparticles, which have con-
tradictory results as far as the growth improvement is con-
cerned. As these are small-sized particles, they are
efficiently absorbed through the GI tract and by reaching
essential organs and blood, they exert immense biological
effects on target tissues. These mineral nanoparticles result
in increased carcass yield, growth performance, egg laying
ability, less toxicity, and improved distribution and bioavail-
ability. Moreover, certain nanoparticles like AgNPs and
ZnNPs also have a role to control the risk of food-borne
pathogen Campylobacter, along with increase in the popula-
tion of beneficial gut microflora. Some of the studies have
also suggested that nanoparticle feeding has also improved
immunity, digestibility, and growth performance in broilers.
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