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Abstract

As one economically important fish in the southeastern Himalayas, the giant devil catfish (Bagarius yarrelli) has been known for its

extraordinarily large body size. It can grow up to 2 m, whereas the non-Bagarius sisorids only reach 10–30 cm. Another outstanding

characteristic of Bagarius species is the salmonids-like reddish flesh color. Both body size and flesh color are interesting questions in

science and also valuable features in aquaculture that worth of deep investigations. Bagarius species therefore are ideal materials for

studying body size evolution and color depositions in fish muscles, and also potential organisms for extensive utilization in Asian

freshwateraquaculture. Inacombinationof IlluminaandPacBiosequencingtechnologies,wedenovoassembleda571-Mbgenome

for the giant devil catfish from a total of 153.4-Gb clean reads. The scaffold and contig N50 values are 3.1 and 1.6 Mb, respectively.

This genome assembly was evaluated with 93.4% of Benchmarking Universal Single-Copy Orthologs completeness, 98% of tran-

scripts coverage, and highly homologous with a chromosome-level-based genome of channel catfish (Ictalurus punctatus). We

detected that 35.26% of the genome assembly is composed of repetitive elements. Employing homology, de novo, and

transcriptome-based annotations, we annotated a total of 19,027 protein-coding genes for further use. In summary, we generated

the first high-quality genome assembly of the giant devil catfish, which provides an important genomic resource for its future studies

such as the body size and flesh color issues, and also for facilitating the conservation and utilization of this valuable catfish.
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Introduction

Sisoridae is a group of catfish restrictively resident in the

southeastern Himalayas, with more than 200 species in 22

genera (Ng 2015). In general, the members in Sisoridae are

small, with standard length usually under 30 cm, and mostly

just around 10 cm. However, one exception occurs in the

genus Bagarius (supplementary fig. S1, Supplementary

Material online, Ng and Jiang 2015); for instance, the giant

devil catfish in the Mekong River area, Bagarius yarrelli

(fig. 1a), can reach lengths up to 2 m (Allan et al. 2005).
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The large size of Bagarius is attractive in the fish market,

which has led to a decrease of the natural stocks of this genus

(Allan et al. 2005). On the other hand, it has also motivated

the artificial breeding and aquaculture utilization of B. yarrelli

(Xue et al. 2012). The genetic basis of the large size in the

genus is largely unknown (Jiang et al. 2019).

Another distinct characteristic of the genus Bagarius (rela-

tive to other sisorids and also most other teleosts) is a

yellowish to reddish flesh color (fig. 1b). It is similar to that

seen in salmonids, and the mechanistic basis is also yet

known.

To provide a genome resource for investigations of the

body size and flesh color of Bagarius, for sustainable conser-

vation and for the utilization of this economically important

fish, here we present the whole-genome assembly, and gene

annotation of the giant devil catfish.

FIG. 1.—Characterization of the giant devil catfish and its genome. (a) A lateral view of the giant devil catfish. (b) A transverse section of the giant devil

catfish, demonstrating its unusual reddish flesh color. (c) The collinear relationship between the giant devil catfish (Bagarius yarrelli, assembled in this study)

and channel catfish (Ictalurus punctatus, Liu et al. 2016).
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Materials and Methods

Sampling, Sequencing, and Genome Size Estimation

A female B. yarrelli with a body length of 52 cm was collected

from the main stream of the Lancangjiang (Upper Mekong

River) in Yunnan Province of China (supplementary fig. S2,

Supplementary Material online). Genomic DNA and total RNA

were extracted from muscle tissues of this fish for the whole-

genome and transcriptome sequencing. All animal experi-

ments were approved by the Institutional Review Board on

Bioethics and Biosafety of the Kunming Institute of Zoology,

Chinese Academy of Sciences (Approval ID: 2015-SMKX025).

We employed a combination of two sequencing technol-

ogies: Illumina paired-end sequencing and Pacific Bioscience

(PacBio) single-molecule real-time sequencing. Six paired-end

Illumina sequence libraries, including two short-insert (500

and 800 bp) and four long-insert (2, 5, 10, and 20 kb), were

constructed according to the standard protocol from Illumina

(San Diego, CA). All these six DNA libraries and one cDNA

library were sequenced on an Illumina HiSeq X-Ten platform.

Low-quality raw reads (more than 10 Ns or rich in low-quality

bases) were filtered using SOAPfilter (SOAP, Li et al. 2009)

with optimized parameters (-y -p -g 1 -o clean -M 2 -f 0). The

genome size was estimated using the routine 17-mer depth

frequency distribution formula: genome size¼ Kmer number/

Kmer depth, where the Kmer number is the total number of

17 k-mer, and Kmer depth indicates the peak frequency that

is higher than others (Liu et al. 2013).

De Novo Genome Assembly and Assessment

We generated a de novo assembly that combined both the

short reads from the Illumina sequencing and the long reads

from the PacBio platform. First, we assembled contigs using

these 500- and 800-bp Illumina sequencing data (around

90�) by Platanus (version 1.2.4, Kajitani et al. 2014) with op-

timized parameters (-k 29 -d 0.3 -t 16 -m 300). Then, we

applied DBG2OLC (Ye et al. 2016) to align these contigs

against the PacBio reads (about 34�) for construction of con-

sensus contigs. Subsequently, Pilon (version 1.22, Walker et al.

2014) was employed to polish the contigs assembly (Polishing

First). Based on the contig assembly, we utilized PacBio reads

to construct the initial scaffolds by SSPACE-LongRead (Boetzer

and Pirovano 2014). These generated scaffolds were further

connected using Illumina long-insert (2, 5, 10, and 20 kb) se-

quencing data with SSPACE_Standard (Marten et al. 2011).

The intrascaffold gaps were then filled using GapCloser (ver-

sion 1.12, Li et al. 2009) and GapFiller (version 1.10, Nadalin

et al. 2012). Again, we applied Pilon to polish the scaffolds

after filling the gaps (Polishing Second) and generated the final

scaffold assembly of B. yarrelli.

We employed both orthologous gene alignment and tran-

scriptomic data mapping to evaluate our genome assembly.

We applied Benchmarking Universal Single-Copy Ortholog

(BUSCO, version 2.0, Simao et al. 2015) to align the orthologs

of B. yarrelli to a reference gene set of actinopterygii_odb9 (a

total of 4,584 orthologs). The transcriptome was first de novo

assembled using Trinity (version 2.5.1, Haas et al. 2013) based

on the data from the muscle sample, and then mapped to the

assembled genome. Furthermore, to compare the scaffold-

level genome of B. yarrelli in this study with a reported

chromosome-level genome of the channel catfish (Ictalurus

punctatus; Liu et al. 2016), we also performed a synteny anal-

ysis of these two genome assemblies using Lastz (version

1.02, Harris 2007) with only considering the reliable aligned

regions more than 1 Mb in length.

Annotation of Repetitive Sequences

Two traditional methods, de novo and homology-based pre-

diction, were employed to annotate repetitive sequences in

the assembled genome. For the de novo prediction,

RepeatModeller (Smit and Hubley 2008) and LTR_Finder

(version 1.0.6, Xu and Wang 2007) were used to generate

a local repeat reference, which was then aligned to our ge-

nome assembly for de novo prediction of repeat elements.

For the homology-based prediction, the genome was pri-

marily aligned to the RepBase (Jurka et al. 2005) using

RepeatMasker (version 4.0.6, Chen 2004) and

RepeatProteinMask (Chen 2004). Subsequently, the corre-

sponding outcomes of both the de novo and homology-

based predictions were integrated to construct the final non-

redundant repeat annotation.

Functional Annotation of Protein-Coding Genes

Three standard strategies, including homology, de novo, and

transcriptome-based annotations, were combined to predict a

total gene set for B. yarrelli. 1) For the homology annotation,

we aligned protein sequences from published genomes of ten

vertebrates, including human (Homo sapiens, Shi et al. 2016),

zebrafish (Danio rerio, Howe et al. 2013), spotted gar

(Lepisosteus oculatus, Braasch et al. 2016), sea lamprey

(Petromyzon marinus, Smith et al. 2013), elephant shark

(Callorhinchus milii, Venkatesh et al. 2014), medaka (Oryzias

latipes, Kasahara et al. 2007), Japanese puffer (Takifugu rubri-

pes, Aparicio et al. 2002), and three recently published cat-

fishes (channel catfish, I. punctatus, Liu et al. 2016; Chinese

yellow catfish, Pelteobagrus fulvidraco, Zhang et al. 2018; and

Tibetan catfish, Glyptosternum maculatum, Liu et al. 2018),

against the B. yarrelli genome using TBlastN (Altschul et al.

1990) with an E-value cutoff of 10�5. Subsequently,

GeneWise (version 2.2.0, Birney et al. 2004) was applied to

predict the potential gene structure of each alignment. Those

low-quality predictions (the predicted genes <150 bp in

length) were removed. 2) For the de novo annotation, our

genome assembly was first masked to exclude the

repetitive elements. Then, we used Augustus (version 3.2.1,

Stanke et al. 2006) and GENSCAN (version 1.0,
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Burge and Karlin 1997) to achieve the de novo predictions

with the masked B. yarrelli genome. 3) For the transcriptome

annotation, the transcriptome reads obtained after filtering

were mapped onto the assembled scaffolds to identify the

splice junctions by TopHat (version 2.0.13, Kim et al. 2013)

and further integrated into gene structures by Cufflinks (ver-

sion 2.2.1, Trapnell et al. 2012).

All the gene predictions were integrated to generate con-

sensus gene locations and structures by GLEAN (Elsik et al.

2007). Additionally, we performed functional annotation of

these predicted genes by searching several public databases,

including SwissProt (Apweiler et al. 2004), Interpro (Hunter

et al. 2009), and TrEMBL and KEGG (Kanehisa and Goto 2000).

Clustering of Gene Families

Protein sequences of 13 ray-finned fishes downloaded from

Ensemble or NCBI, including spotted gar, zebrafish, Mexican

tetra (Astyanax mexicanus), red-bellied piranha (Pygocentrus

nattereri), grass carp (Ctenopharyngodon idellus), Atlantic

cod (Gadus morhua), Nile tilapia (Oreochromis niloticus), me-

daka, Japanese puffer, Asian arowana (Scleropages formo-

sus), and three catfishes (channel catfish, Chinese yellow

catfish and Tibetan catfish), plus those of B. yarrelli in this

study were used to cluster gene families. To eliminate redun-

dant sequences of splicing variations, we retained the lon-

gest sequences from unique genomic loci. In addition, any

coding sequence <150 bp were discarded from each data

set as they may contain unreliable gene predictions. These

retained coding sequences were matched at the amino acid

level by performing all-to-all BlastP with an E-value cutoff of

10�5. The generated similarities among all the protein

sequences were then applied to cluster gene families, which

was implemented in OrthoMCL (Li et al. 2003) with the pa-

rameter of “-inflation 1.5.”

Phylogenetic Analysis

We carried out a phylogenetic analysis using the single-copy

orthologs of the 14 species, identified from gene family clus-

tering, in order to confirm the phylogenetic position of B.

yarrelli. This concatenated data set was primarily aligned by

MUSCLE (version 3.7, Edgar 2004) and then imported to re-

construct maximum likelihood (ML) tree in PhyML (version

3.0, Guindon and Gascuel 2003) and Bayes inference (BI)

tree in MrBayes (version 3.2.2, Ronquist et al. 2012) with

HKY85 substitution model. Spotted gar, the only nonteleost

species, was used as the outgroup.

Results and Discussion

Genome Assembly and Assessment

A total of 53.9- and 79.3-Gb sequencing reads were gener-

ated from these two short-insert (500 and 800 bp) and four

long-insert (2, 5, 10, and 20 kb) libraries, respectively. For the

PacBio sequencing, a total of 20.2-Gb reads were obtained

with an average length of 6.43 kb (supplementary table S1,

Supplementary Material online). For the transcriptome se-

quencing, a total of 8.6-Gb raw reads were generated. For

the genome estimation of B. yarrelli, the total 17 kmer num-

ber is 47,305,441,040 and the Kmer depth was 79.

According to the 17-mer depth frequency distribution for-

mula, the estimated genome size of B. yarrelli was calculated

to be 599 Mb.

After the first round of polishing to the contig assembly,

we obtained a primary contig assembly with a total size of

572 Mb and a contig N50 of 1.51 Mb. After the second round

of polishing to the scaffold assembly, the final assembled ge-

nome size reached 571 Mb (95.3% of the estimated genome

size), with a scaffold N50 of 3.1 Mb and a contig N50 up to

1.6 Mb (supplementary table S2, Supplementary Material on-

line). The final assembled genome (571 Mb, see statistics in

table 1) accounted for 95.3% of the estimated genome size

(599 Mb).

The results of BUSCO alignment showed that our final

assembly contains 4,279 complete BUSCOs (93.4%), of

which 4,107 were single-copy, whereas 172 were dupli-

cated (supplementary table S3, Supplementary Material

online). Using assessment of transcripts mapping, we

found over 98% of the transcripts were covered within

the B. yarrelli genome regions (supplementary table S4,

Supplementary Material online). Both BUSCO alignment

and transcriptomic mapping suggest that our current ge-

nome assembly of B. yarrelli is characterized by high qual-

ity, completeness, and accuracy. Furthermore, based on

Table 1

Statistics of the Assembled Genome of Bagarius yarrelli

Scaffold Contig

Size (bp) Number Size (bp) Number

N90 577,296 203 265,790 410

N80 1,256,925 134 591,605 266

N70 1,848,885 97 869,246 189

N60 2,397,639 71 1,267,632 134

N50 3,129,371 50 1,599,318 94

N40 3,833,100 33 2,151,192 64

N30 4,879,671 26 2,814,748 40

N20 7,417,786 10 3,309,792 21

N10 12,005,657 7 5,512,941 171

Longest 15,823,707 13,429,274

Total size 570,806,968 569,629,338

Total number (>100 bp) 541 1,002

Total number (>2,000 bp) 541 1,002

Total number (>10,000 bp) 537 991

Total length (>100 bp) 570,806,968 569,629,338

Total length (>2,000 bp) 570,806,968 569,629,338

Total length (>10,000 bp) 570,776,638 569,557,739
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the sequence similarities, we observed that most of the

scaffolds, as well as most regions in each scaffold of

B. yarrelli could align with the chromosome regions of I.

punctatus (fig. 1c). These results suggest a highly similar

sequence arrangement between these two catfish species

and also indicate a high completeness of our B. yarrelli

assembly. Interestingly, only a very few examined scaf-

folds of B. yarrelli (about 8%) presented multiple linear

links with the chromosomes of I. punctatus (fig. 1c), sug-

gesting a few chromosomal rearrangements may have

occurred between these two catfishes.

Genome Annotation and Gene Family Clusters

We determined that 35.26% of the genome assembly is

composed of repetitive elements (see more details in supple-

mentary tables S5 and S6, Supplementary Material online).

Employing homology, de novo, and transcriptome-based

annotations, we predict a total of 19,027 protein-coding

genes. Among them, the average gene length, average cod-

ing region length, average exon length, and average exon

number are 16,505 bp, 1,724 bp, 178 bp, and 9.58, respec-

tively (supplementary table S7, Supplementary Material on-

line). Through matches to SwissProt, InterPro, TrEMBL, and

FIG. 2.—Gene family clustering and phylogenetic analyses. (a) Gene family clustering of Bagarius yarrelli and other 13 ray-finned fishes. (b) The numbers

of clustering gene families among B. yarrelli and other three catfishes. (c) Phylogenetic relationships of B. yarrelli and other 13 ray-finned fishes.
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KEGG, a total of 17,740 (93.24%) predicated genes were

assigned biological functions (supplementary table S8,

Supplementary Material online).

Using the protein sequences of 14 ray-finned fishes, we

identified a total of 21,253 gene family clusters (supplemen-

tary table S9, Supplementary Material online). For B. yarrelli,

16,807 protein-coding genes grouped with other fishes, clus-

tered into 12,896 gene families. The remaining 2,220 genes

did not cluster with the other species. A total of 2,283 clusters

were single-copy ortholog families (fig. 2a). A total of 9,455

gene families were shared among the four catfish species.

Interestingly, more gene families of B. yarrelli were exclusively

shared with G. maculatum (326) than with I. punctatus (171)

and P. fulvidraco (288, see more details in fig. 2b).

Phylogenetic Position of B. yarrelli

The phylogenetic tree was obtained based on a supermatrix

nucleotide data set with 108,820 sites. Both the ML and Bayes

inference analyses revealed a consistent phylogenetic topol-

ogy with robust supporting values (fig. 2c). A relationship of

(Cyprinifromes, (Characiformes, Siluriformes)) was found

within the Ostariophysi lineage, which corroborates the latest

phylogeny of major ray-finned fish lineages based on tran-

scriptomic and genomic data (Hughes et al. 2018). The mono-

phyly of the four catfishes (in the Order Siluriformes) was

supported. The Asian catfish species (B. yarrelli, G. macula-

tum, and P. fulvidraco) were monophyletic relative to the one

American species (I. punctatus), which agrees with the “Big

Asia” clade, proposed by Sullivan et al. (2006) based on two

gene sequences. Bagarius yarrelli was sister to G. maculatum,

which is consistent with current taxonomy (they are both in

the Sisoridae family, Ng and Jiang, 2015), and also supported

by the higher similarity in the shared gene families (as reported

above, see in fig. 2b).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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