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Abstract

We present FLEX (Functional evaluation of experimental perturba-
tions), a pipeline that leverages several functional annotation
resources to establish reference standards for benchmarking
human genome-wide CRISPR screen data and methods for analyz-
ing them. FLEX provides a quantitative measurement of the func-
tional information captured by a given gene-pair dataset and a
means to explore the diversity of functions captured by the input
dataset. We apply FLEX to analyze data from the diverse cell line
screens generated by the DepMap project. We identify a predomi-
nant mitochondria-associated signal within co-essentiality
networks derived from these data and explore the basis of this
signal. Our analysis and time-resolved CRISPR screens in a single
cell line suggest that the variable phenotypes associated with
mitochondria genes across cells may reflect screen dynamics and
protein stability effects rather than genetic dependencies. We
characterize this functional bias and demonstrate its relevance for
interpreting differential hits in any CRISPR screening context. More
generally, we demonstrate the utility of the FLEX pipeline for
performing robust comparative evaluations of CRISPR screens or
methods for processing them.
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Introduction

CRISPR-based screening techniques have become a central instru-

ment for systematic investigation of gene function. At the forefront

of such efforts, the Cancer Dependency Map (DepMap) effort aims

to catalogue genetic dependencies of all human genes across a range

of cultured cell lines spanning various tumor entities. To date, the

loss-of-function fitness effects of 17,634 genes have been measured

in 563 cell lines (19Q2 data release) (Meyers et al, 2017; Dempster

et al, 2019a). These data provide a comprehensive and easily acces-

sible resource for biological hypothesis generation. Several studies

have developed computational methods to systematically derive

functional information from these data, including inferring genetic

interactions (Rauscher et al, 2018) or functional relations by identi-

fying co-essentiality relationships (similarity of genes’ dependency

profiles) (Boyle et al, 2018; Pan et al, 2018; Kim et al, 2019;

preprint: Wainberg et al, 2019). Despite the wealth of data and a

diversity of methods for processing CRISPR screening data, we lack

standard benchmarks for evaluating their ability to extract func-

tional information, which ultimately limits our progress in establish-

ing the best practices for analyzing CRISPR screens.

Here, we developed FLEX (Functional evaluation of experimental

perturbations), a pipeline to evaluate functional screening data or

algorithms designed to improve scoring or interpretation of such

data. FLEX derives reference standards from diverse genome-wide

functional resources such as CORUM complexes (Giurgiu et al,

2019), curated pathways (Liberzon et al, 2011), GO Biological

Processes (BP) (Ashburner et al, 2000), or genomic data-derived

functional networks (Greene et al, 2015). It then uses these refer-

ence standards to (i) generate summaries of precision-recall (PR)

performance on a global and local scale by assessing the degree to

which genetic dependency profiles capture known functional rela-

tionships, (ii) investigate underlying functional diversity driving the

observed PR performance, and (iii) report a diversity-normalized PR

statistic that highlights both the quality and functional diversity of

functional relationships captured by a dataset of interest. FLEX is

available as an R package.

We illustrate the functionality of the FLEX pipeline through

several applications on the DepMap collection of CRISPR screens,

including comparative benchmarking of alternate versions of the
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dataset, comparisons of different methods for deriving co-

essentiality networks, and an evaluation of the impact of number of

screens on the quality of the resulting co-essentiality network. These

analyses highlight the prominence of mitochondria-related genes’

dependency profiles in CRISPR screens, which we hypothesize is a

result of protein stability and screen dynamics.

Results

Development of a pipeline for evaluation of CRISPR screen data

We developed FLEX to evaluate the capacity of the DepMap CRISPR

knockout co-essentiality networks to recover complex, pathway,

and biological process co-membership of human genes (Fig 1A,

Appendix Fig S1). Precision-recall (PR) statistics calculated from

FLEX showed that co-essentiality scores recapitulated many known

functional relationships—for example, at a precision of 0.5, 3,348

true-positive (TP) co-complex pairs from the CORUM complex stan-

dard were identified based on pairwise Pearson correlation coeffi-

cients derived from the DepMap dataset (Fig 1B). FLEX uses PR

statistics to account for the strong class imbalance typically

observed in functional genomics data, where the number of positive

events (true functional relationships) is much smaller than the

number of negative events (unrelated pairs) (Myers et al, 2006).

While PR statistics provide a general quantification of functional

information, they do not provide insight into the diversity of func-

tional information captured by a particular dataset. To understand

how individual protein complexes contribute to overall perfor-

mance, we decomposed the contribution of each complex (number

of TP pairs) across the range of precision levels achieved (see Mate-

rials and Methods for details). FLEX visualizes these contributions

per complex as a “contribution diversity” plot, where at each preci-

sion threshold (y-axis), the fraction of TP pairs mapping to each

protein complex at that threshold is summarized (x-axis) (Fig 1C).

Precision thresholds dominated by a single color indicate low func-

tional diversity among the gene pairs supporting the predicted func-

tional relationships at that cutoff. As a complementary view of how

functional performance varies across functional modules, FLEX also

reports the area under the PR curve (AUPRC) for each individual

complex along with the complex size (Fig 1D, Table EV1).

Strikingly, we found that only two of 1,697 complexes in the

CORUM standard, the electron transport chain (ETC) I holoenzyme

and the 55S mitochondrial ribosome, dominate the strongest corre-

lated gene pairs from the DepMap dataset, contributing ~76% of the

3,348 TP pairs at a precision of 0.5 (Fig 1C). Consistent with a

predominant functional signal contributed by these complexes,

exclusion of the ETC and 55S mitochondrial ribosome annotations

from the 1,697-complex standard, but not removal of other large

complexes or small complexes with high AUPRC, vastly reduced

global PR performance of the DepMap (Fig 1E), suggesting that

caution needs to be taken when interpreting such global evalua-

tions. Similar issues have been reported when evaluating other

types of genomic datasets in a pairwise manner, particularly for

large, coherent protein complexes (Myers et al, 2006; Liu et al,

2009; Drew et al, 2017).

Complexes such as the ETC and the 55S mitochondrial ribosome

dominate these global evaluations because they are well-captured

by profile similarity in the DepMap data, as supported by focused

PR analysis of gene pairs associated with only genes in these

complexes (Fig 1C–E, Appendix Figs S2A–D and S3A–D), but due to

their large size, they contribute a large number of pairs. To enable

functional evaluations of CRISPR screen data that are less influenced

by well-performing, large gene sets, we implemented in FLEX an

additional, complementary metric, termed module-level Precision-

Recall (mPR) performance. To compute the mPR measure, the

contribution diversity data (e.g., as reported in Fig 1C) are used to

count the number of distinct functional modules in the standard that

are represented among the set of gene pairs meeting a given preci-

sion threshold (see Materials and Methods for details). These results

▸Figure 1. FLEX reveals mitochondrial bias in functional CRISPR/Cas9 screening data.

A FLEX inputs a CRISPR screening dataset and functional reference standards to compute gene-level performance and module-level (e.g., protein complex) performance
summaries (see Appendix Fig S1 for details).

B Precision-recall (PR) performance of gene–gene co-essentiality scores using the CORUM complex standard to define true positives (TP). This is a traditional PR curve
with the following modifications: (i) the absolute number of TP instead of fractional recall (0-1) on the x-axis (simply a scaling of the axis) and (ii) use of a log-scale
on the x-axis (highlights high precision part of the curve). Pearson correlation coefficients (PCC) are computed between CERES score profiles across the 563 19Q2
DepMap screens for all possible gene pairs.

C Contribution diversity of CORUM complexes to PR performance (B). Functional composition of different complexes (x-axis, as a fraction) to the set of TP pairs
predicted at different precision levels (y-axis) are plotted. Only the minimum number of complexes to cover the set of TP pairs (for a certain precision) are considered
(see Materials and Methods for details). Complexes with a fraction smaller than 0.01 (1%) at any precision are collectively shown in light gray. The background (bg)
contribution diversity represents the functional contribution of complexes across the entire CORUM standard. Highlighted complexes are defined in (D).

D Size and individual CORUM complex PR performance. Area under the PR curve (AUPRC) was computed per complex on a fractional precision-recall (0-1) scale. Dot
size corresponds to the mean within-complex CERES profile PCC, adjusted by the standard error. Protein complexes with at least 30 members (genes) are defined as
large, otherwise small. Complexes with an AUPRC of at least 0.4 are defined as high AUPRC, otherwise low. All sub-complexes mapping to the ETC I or 55S
mitochondrial ribosome are shown in the respective color.

E PR performance of gene–gene co-essentiality scores (see (B)). Black line shows complete data, colored lines show the performance after sets of complexes (defined in
(C)) were removed from the data and standard. The inset barchart shows the percentage of TP lost at a precision of 0.5 after either set of complexes is excluded.

F Module PR (mPR) curve summarizes performance at a functional module level (here, CORUM protein complexes). This is a modified version of a precision-recall curve
(B) with the number of unique complexes (x-axis) covered and plotted (instead of unique gene pairs) at each precision cutoff (y-axis) (see Materials and Methods for
details).

G Comparison of two methods measuring co-essentiality in the DepMap using PR and mPR plots. The method proposed by Wainberg and colleagues is compared with
the standard PCC-based method (top). The well-balanced coverage of complexes is shown after their ETC-related complex exclusion (dotted lines, top) as well as in
the mPR curve (bottom). The approach from Wainberg et al (2019) bases gene-pair similarity scores on FDR corrected P-values (1 - fdr) resulting in a ‘late start’ of the
PR curve (many values at top are the same, 1.0).
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are then summarized across all gene sets, but each gene set is

allowed to contribute only a single count to the total displayed on

the x-axis, thereby stabilizing the contribution of large versus small

gene sets to the evaluation (Fig 1F). We emphasize that each of

these complementary FLEX visualizations (Fig 1B, C, D and F) is

produced by default for any dataset evaluated by the pipeline;

considering all of them collectively is important to gain an accurate

perspective of the functional information captured by a given

dataset.

Applications of FLEX to benchmark CRISPR screen data and
analysis methods

FLEX enables objective benchmarking of methods for scoring or

processing CRISPR screen data, several of which have been recently

published specifically for the DepMap (Boyle et al, 2018; Pan et al,

2018; Kim et al, 2019). To demonstrate the utility of FLEX for

benchmarking, we provide several example use cases. First, we

used FLEX to compare an earlier DepMap data release (18Q3) to a

later release (19Q2), which was based on an improved CERES

score (preprint: Dempster et al, 2019b). The later release shows

substantial improvement in capturing functional relationships and

a greater functional diversity in the relationships captured (e.g.,

ETC-related complexes are less dominant) (Appendix Fig S2E–H),
suggesting that the improvements to the CERES score have

reduced the dominance of the ETC and the 55S mitochondrial ribo-

some. Second, we used FLEX to benchmark a variety of similarity

metrics in their ability to construct co-essentiality networks that

capture known functional relationships from the DepMap dataset.

Specifically, we evaluated four different similarity measures for
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gene pairs: cosine similarity, inner (dot) product, Pearson correla-

tion, and Spearman correlation. We found that Pearson correlation

(PCC) and Spearman correlation provide comparable performance

and that they clearly outperformed cosine and dot product similar-

ity measures on the DepMap dataset (Fig EV1A and B) (PCC is

implemented as the default similarity measure in FLEX). Third, we

used FLEX to evaluate a collection of published methods for

producing co-essentiality networks from the DepMap data (Boyle

et al, 2018; Kim et al, 2019; preprint: Wainberg et al, 2019). We

found substantial dependence on the mitochondrial complexes in

all of them, with the notable exception of the algorithm published

by preprint: Wainberg et al (2019), which captures functional rela-

tionships with a much greater functional diversity than other

methods (Appendix Figs S4 and EV2A and B). This superior

performance with respect to functional diversity may result from

accounting for covariance among cell lines, which is a key feature

of the method developed by Wainberg and colleagues but not

others. This difference is clearly highlighted by FLEX’s mPR metric

(Figs 1G and EV2C and D).

In a fourth application example, we applied FLEX to explore

the extent to which the ability to derive co-essentiality networks

from a CRISPR screen dataset depends on the number of screens.

Specifically, we subsampled different numbers of screens from

the DepMap data, measured co-essentiality networks on the

resulting datasets of varying size, and evaluated these scores for

functional information using FLEX. Our analysis showed that the

amount of functional information captured increases with the

number of screens included as expected, but that this saturates

relatively quickly (Appendix Fig S5). For example, FLEX analysis

indicates that there is little measurable difference between the

quantity of functional information captured by only 300 screens

as compared to the complete collection of 563 in the 2019Q2

release of the DepMap data (Appendix Fig S5). Even a set of as

few as 100 randomly sampled screens performs similarly to the

complete set of 563. Our FLEX analysis also indicated that with

15 or fewer screens, the ability of co-essentiality scores to

accurately capture functional information drops dramatically

(Appendix Fig S5), suggesting this is a practical limit on the

minimum number of screens required for generating co-

essentiality maps.

As a final example FLEX application, we explored the question

of how the identity of genetic screens affects the type of func-

tional information captured in co-essentiality scores. Specifically,

we applied FLEX to analyze the co-essentiality scores derived

from 31 genome-wide CRISPR-Cas9 screens against 27 DNA-

damaging agents (Olivieri et al, 2020). Interestingly, FLEX contri-

bution diversity analysis showed a strong dominance of protein

complexes related to DNA damage repair (e.g., Fanconi anemia

complex, DNA ligase IV−XRCC4−XLF complex, DNA synthesome

complex) among predicted functional relationships (Appendix Fig

S6A and B). At the same time, ETC-related complexes were not

strongly represented among these co-essentiality scores, suggest-

ing that the factors driving the variation in ETC-related genes’

phenotypes are less prominent in this context. This example

more generally shows how the biological focus of the investi-

gated set of screens, an experimental theme spanning various

model organisms (Jonikas et al, 2009; Billmann et al, 2018), can

be evaluated.

Exploring the basis of dominant ETC-related co-essentiality
relationships in CRISPR screens

Given the dominance of the functional signal contributed by ETC-

related complexes in DepMap co-essentiality relationships, we

further explored the basis of this observation. First, we compared

dependency data from 149 cell lines in the 19Q2 DepMap that had

been screened both at the Broad Institute (hereafter referred to as

Broad DepMap) and the Sanger Institute (Sanger DepMap). Since

we also observed a strong signal for the ETC V complex

(Appendix Fig S3A), we hereafter consider ETC I, V, and the 55S mt

ribosome and refer to them collectively as ETC-related complexes.

While the dependency profiles for the same cell lines generally agree

across these two datasets (Dempster et al, 2019a), we found the

ETC-related genes to be among the protein complexes exhibiting the

strongest differences between them, with the Broad DepMap consis-

tently measuring stronger dropout phenotypes for these genes (Fig 2

A). Assay length is a major difference between Broad and Sanger

DepMap screening protocols (Broad screens are conducted over

21 days while the Sanger screens are completed over 14 days)

(preprint: Dempster et al, 2019b), and thus, we reasoned that the

difference in ETC-related genes’ phenotype observed in the Broad

and Sanger screens may be related to screen sampling times. Specifi-

cally, we hypothesized that the rate at which functional proteins are

cleared from the cell after successful gene disruption may impact

phenotypic penetrance over the course of a screening experiment. In

other words, the growth phenotype associated with disruption of an

essential gene would only be observed after the corresponding

essential protein is mostly depleted from the cell population. Thus,

in the case of a highly stable essential protein, cells may need to be

cultured for a longer period of time after gene disruption to observe

the resulting growth defects. Consistent with this hypothesis, we

found that protein complexes with significantly more severe fitness

defects in the Broad DepMap screens (FDR < 5%) tend to be more

stable (z-score > 1; P = 0.001, hypergeometric test), based on analy-

sis of available protein half-life data derived from monocytes, B

cells, and hepatocytes (Mathieson et al, 2018). Strikingly, the ETC I

and V complexes showed the highest protein stability of any

complex in the CORUM standard (Fig 2B, Appendix Fig S7A–C). In
contrast, the 55S mitochondrial ribosome had a protein half-life

comparable to the median complex half-life. The phenotypic delay

observed for the 55S ribosome may also be related to high remain-

ing protein levels of the ETC, which acts downstream of the 55S

ribosome. More specifically, the phenotypic effect of the 55S ribo-

some perturbation is a result of its impact on ETC complex disrup-

tion (i.e., the ETC complex is epistatic to the 55S ribosome in this

context), which may explain why it exhibits similar dynamics in the

context of a CRISPR screen.

To test whether temporal drop-out patterns that are dependent

on assay length and whether protein stability could contribute to the

high similarity of ETC-related co-essentiality profiles, we performed

several CRISPR/Cas9 screens in a single cell line (HAP1 cells) and

measured gene essentiality at multiple different time points over the

course of the screen (Fig 2C). Specifically, we sampled cells every

3–4 days following initial infection and compared the abundance of

guide RNAs (gRNAs) targeting a particular gene at a given time

point relative to the starting gRNA abundance for the corresponding

gene. Applying this approach, we generated dynamic essentiality
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profiles, derived from seven biological replicate screens, for each of

~18,000 genes targeted by our genome-wide TKOv3 gRNA library

(Fig 2C, Appendix Fig S8A–C). Similar to observations from the

Broad DepMap, we found that genes with similar time-resolved

essentiality profiles, derived from a single HAP1 cell line, tended to

be functionally related, and often annotated to the same protein

complex or biological pathway (Fig 2D–F). Strikingly, using FLEX to

dissect the observed functional performance revealed that the same

ETC-related complexes were responsible for the majority of the

functional associations derived from our dataset (Fig 2D–G,
Appendix Fig S9A–D). We note that other large essential protein

complexes with shorter protein half-lives (e.g., the 26S proteasome

or the cytosolic ribosome) drop out relatively rapidly when targeted

(within 5 days post-puromycin selection), while the ETC-related

complex members take substantially longer, dropping out between

6 and 13 days post-puromycin selection (Figs 2H and EV3A–C). This
observation is consistent with phenotypes for these complexes

observed in earlier CRISPR/Cas9 screens (Tzelepis et al, 2016) and

RNAi-based screens (Marcotte et al, 2012). In our own FLEX-based

analysis of RNAi screens (McFarland et al, 2018), we observed a

similar, albeit weaker, enrichment for mitochondrial ribosome-

related gene pairs (Appendix Fig S10), although unlike CRISPR
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screens, co-essentiality scores from RNAi screens also exhibited

dominant enrichment for cytoplasmic ribosome gene pairs

(Appendix Fig S10).

Given the delayed phenotype of protein complexes with long

protein half-lives, we reasoned that the time at which a CRISPR/

Cas9 screening experiment was sampled could affect the

measured dependency on a particular gene target, and vice versa,

that the measured dependency may reflect differences in effective

sampling time. To test this, we first sorted the 563 cell lines in

the Broad DepMap using the median CERES score for ETC-

related complexes. As expected, while genome-wide CERES

scores for each cell line exhibited comparable ranges (Fig 3A,

gray), ETC-related CERES scores strongly varied across cell lines

(Fig 3A, red, Appendix Fig S11A–C). Furthermore, when we

added the data from the 149 Sanger DepMap screens that over-

lapped the Broad DepMap, a matched comparison of the ranks

for those 149 showed lower ranks (weaker ETC signal) relative

to the corresponding Broad screens (Fig 3B). We further tested

how different time points of a single cell line, HAP1, would rank

within the Broad DepMap collection of screens based on the

strength of the ETC-related phenotype. We leveraged 27 time

points measured in 7 independent genome-wide screens taken

between 6 and 19 days post-puromycin selection (Appendix Fig

S8A–C) (see Materials and Methods). We found that those HAP1

screen time points spanned the range of Broad DepMap screen

ranks, with early time points showing weaker dependency on

ETC-related genes (Fig 3C). Notably, the strength of the ETC-

related dependency itself predicted HAP1 screen timepoints with

reasonable accuracy (r = 0.61, P = 0.0007). This was not true

of the dependency scores for other essential complexes such

as the 26S proteasome (r = −0.22, P = 0.28), the spliceosome

(r = −0.01, P = 0.96), or the cytosolic ribosome (r = 0.37,

P = 0.055) (Fig EV3D–F). Together, this suggests that the strength

of ETC-related fitness phenotypes is able to accurately recover

the effective length of time a screen was cultured before gRNA

abundance was quantified.

Discussion

Our analysis suggests a link between the strength of ETC-related

gene dependency and the screen sampling time. In the context of an

effort like the DepMap, which is focused on screening large collec-

tions of diverse cell lines, there may be a complex interplay between

global protein stability, screen sampling time, and doubling rate of

the cell line being screened (Fig 3D). While there is likely true varia-

tion in the extent of genetic dependency on mitochondria function

across different cell types and genetic backgrounds, we speculate

that a substantial portion of the quantitative differences observed in

the strength of the ETC-related phenotypes in the DepMap may

instead reflect differences in the effective sampling time, cell line

doubling rate, and protein stability across these cell lines. While this

effect is readily discoverable in the DepMap dataset, phenotypes for

these ETC-related genes should be interpreted with caution in other

CRISPR screen contexts as well, especially if one is interested in

scoring differential phenotypes (e.g., cell line-specific dependencies,

genetic– or chemical–genetic interactions).
Why are ETC-related genes unique in this regard? If differences

in the effective sampling timing or growth rates of cell lines are

limited to � ~50% of the typical sampling time in a given collection

of screens, one would expect that only protein complexes like the

mitochondrial ribosome and ETC I genes, whose fitness effect size is

still increasing even late in screens would show different pheno-

types related to such differences in timing. Other essential

complexes drop out rapidly enough that there is negligible variation

in phenotypes for the vast majority of screens regardless of small

variation in effective sampling time or other factors. We note that

while multiple lines of evidence support our hypothesis about the

◀ Figure 2. Delayed ETC CRISPR/Cas9 fitness phenotypes create within-complex co-essentiality.

A Protein complex-level differences in fitness effects between the Broad and Sanger DepMap screens. The 149 cell lines and 16,464 genes common to both datasets are
compared. For each CORUM complex, the median differential CERES score (x-axis) and a paired Wilcoxon rank sum P-value with BH-correction are shown.
Mitochondrial ribosome (yellow) and ETC I (orange) sub-complexes are highlighted. Dot size is proportional to complex size.

B Protein stability of CORUM complexes. Protein half-life data were taken from B cells, hepatocytes, and monocytes, and summarized on the CORUM complex level.
Half-life data were z-transformed, and the minimum z-score set to 0 to emphasize large z-scores. Complexes for which at least 5 members contributed data across
the three cell lines are shown.

C Scheme of time-resolved genome-wide CRISPR/Cas9 screens in HAP1 cells. Temporal fitness profile similarity was estimated by computing the pairwise PCC between
genes with 32 unique measurements across time. The dropout speed was derived from profiles interpolated from the 32 measurements after correcting for maximal
dropout effects (see Materials and Methods).

D Precision-recall (PR) curve showing HAP1 temporal fitness profile similarity performance using CORUM complexes as a pairwise functional standard. Black line shows
complete data, red line performance after ETC I, V, and mitochondrial ribosome (ETC-related complexes) are removed from the data and standard.

E Contribution diversity of HAP1 temporal fitness profile similarity PR performance using the CORUM complex standard. Shown are the fraction of TP pairs for CORUM
complexes (distributions across the x-axis) at different precision cutoffs (down the y-axis). The minimum number of complexes to cover the complete set of TPs is
shown (see Materials and Methods). Complexes with a fraction smaller than 0.01 (1%) at any precision are collectively shown in light gray. The background (bg)
functional diversity represents the distribution of categories across the entire reference standard (i.e., the expected distribution in a random selection of gene pairs).

F Module-level performance of HAP1 temporal fitness profile similarity shows CORUM complex size and AUPRC. Dot size corresponds to the mean within-complex
similarity, adjusted by the standard error. All sub-complexes mapping to the ETC-related complexes are shown in the respective color.

G Comparison of module-level performance between Broad DepMap co-essentiality and temporal fitness. AUPRC measures the performance of each dataset in
reconstructing CORUM complex co-memberships. Dot size is proportional to complex size.

H Dropout speed for ETC-related and other selected essential complexes. Dropout speed is a normalized estimate of the derivative of an LFC profile (across time) for
each guide (see Materials and Methods). A positive dropout speed indicates faster relative dropout, while a negative dropout speed indicates slower dropout (see left
panel for hypothetical LFC profile examples and their corresponding dropout speeds). The average dropout speed across all genes in each of the indicated complexes
is plotted as a function of screen sampling time (right). tSNE embedding groups CORUM complexes with similar dropout speed (see Materials and Methods). The six
selected complexes on the right are indicated in the tSNE plot (large colored dots) and sub-complexes are labeled with matching colors (bottom).
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effect of protein stability on ETC-related genes’ phenotypes in

CRISPR screens, more definitive experiments could be done to

further test this hypothesis. For example, one could specifically

quantify the dynamics of wild-type protein abundance in a popula-

tion of cells expressing guides targeting ETC-related genes. Also, we

note that beyond sampling time, growth rate, and protein stability

there are likely additional non-genetic factors, such as the redox

potential of the media as explored by Lagziel and colleagues

(Lagziel et al, 2019), that could similarly modulate the apparent

phenotypes measured in CRISPR screens.

Our study also highlights the utility of the FLEX pipeline, which

enables objective benchmarking of functional relationships and

informative summaries of the underlying functional diversity. The

focus of our example applications of FLEX described here is evalua-

tion of co-essentiality scores derived from (single knockout)

genome-wide CRISPR screens. However, we emphasize that the

FLEX pipeline can more generally evaluate the quality/functional

composition of pairwise gene relationships of any type. For

example, FLEX could be used to directly evaluate genetic inter-

actions derived from combinatorial (double targeting) screens

(Gonatopoulos-Pournatzis et al, 2020), protein–protein interactions

(Luck et al, 2020), co-expression relationships, or the output of

machine learning approaches focused on inferring related gene

pairs. Also, FLEX is flexible in the sense that the functional standard

used as the basis for evaluation can be readily changed. Users can

easily choose between any of the four standards included (e.g., see

Appendix Fig S2), or an external standard can be loaded as long as

it defines a relationship between two genes. Importantly, we note

that the utility of FLEX is inherently limited by the reference stan-

dard(s) used. Functional annotations for the human genome are

incomplete and nonuniform in their coverage, and these biases can

influence the relative performance of datasets evaluated by FLEX. A
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Figure 3. CRISPR screen sampling time and protein level change.

A Broad DepMap genome-wide CRISPR/Cas9 screens ranked by the median CERES score across the ETC-related complexes. The middle red line indicates the median,
the vertical lines the 25 and 75% quantiles of a given screen. Gray lines represent the same metrics for all genes in the genome.

B Pairwise comparison of Broad and Sanger DepMap screens based on their median CERES score of ETC-related complexes. Highlighted are 149 cell lines common to
both datasets. To rank those cell lines, Sanger data from those 149 screens were added to the 563 Broad DepMap screens and all screens were ranked. Green lines
indicate a higher ranking of the Broad screen (assay length 21 days) and brown a higher ranking for the corresponding Sanger screen (assay length 14 days).

C Rank of HAP1 time course genome-wide screens in the Broad DepMap screens based on the adjusted median ETC-related LFC. HAP1 screens were performed with the
TKOv3 library, and LFC values were adjusted by centering non-essential genes around 0 and core essential genes around −1 (see Materials and Methods). HAP1
screens sampled at T3 are shown as circles indicating that they have not been used for computing the Spearman’s rank correlation coefficient and the associated
statistical significance (see Materials and Methods for details).

D Wild-type protein abundance of two protein complexes is schematically displayed over the course of a CRISPR screen. The measured phenotype (e.g., gRNA
abundance as a proxy for cell fitness) depends on the presence of a sufficient amount of protein to fulfill a cellular function. Stability of proteins, the rate of cell
doublings that redistribute residual protein, protein levels required for normal function, or more stable epistatic protein complexes determine the penetrance of
cellular fitness phenotypes throughout the course of a CRISPR experiment.
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good practice to achieve robust conclusions is to evaluate the data-

sets of interest against multiple different functional standards using

the FLEX pipeline. In general, resources such as FLEX and objective

applications of them to existing data and processing methods are

critical to our effective interpretation of large-scale CRISPR screens

and other functional genomic data.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source
Identifier or catalog
number

Experimental models

HAP1 cells (H. sapiens) Horizon Genomics CVCL_Y019

HEK293T cells (H. sapiens) ATCC CRL-3216

Recombinant DNA

lentiCRISPRv2 Addgene Cat #52961

pMD2.G (envelope plasmid) Addgene Cat #12259

psPAX2 (packaging plasmid) Addgene Cat #12260

Oligonucleotides and other sequence-based reagents

TKOv3 gRNA library Addgene Cat #90294

Chemicals, enzymes, and other reagents

Wizard Genomic DNA Purification Kit Promega Cat #A1120

DMEM low glucose Wisent Cat #319-162-CL

DMEM high glucose Life Technologies Cat # 11995-065

Opti-MEM Life Technologies Cat #31985-070

X-tremeGene 9 DNA transfection
reagent

Roche Cat #06365809001

Plasmid maxi purification kit Qiagen Cat #12963

Fetal Bovine Serum (FBC) GIBCO Cat #12483-020

Puromycin Wisent Cat #400-160-UG

Software

R version 3.6.3 https://www.r-project.org/ N/A

org. Hs.eg.db_3.10.0 https://bioconductor.org/packages/release/data/annotation/html/org. Hs.eg.db.
html

N/A

Bowtie v0.12.8 http://bowtie-bio.sourceforge.net/index.shtml N/A

Other

Illumina HiSeq2500 Illumina

Methods and Protocols

FLEX is designed to perform a systematic functional evaluation of

genome-scale perturbation data. It has three different components:

generation of reference standards, gene-level (global) evaluation,

and module-level (local) evaluation. To use FLEX, the user must

provide an input dataset and select a reference standard to evaluate

against. FLEX enables both global and local functional evaluations

and supports a number of visualization options (Appendix Fig S1).

Generation of reference standards
To systematically evaluate functional relationships between gene

pairs, FLEX uses various public reference datasets. A majority of

these datasets include genes grouped into different modules (a set

of related genes); for example, in the CORUM reference dataset, a

module refers to a protein complex. Relationships between all possi-

ble gene pairs from all modules form a co-annotation (co-

membership) based binary reference standard. In such a reference

standard, gene pairs co-annotated to the same module (within-

module pairs) are labeled positives (1) and gene pairs from two dif-

ferent modules (between-module pairs) are labeled negatives (0).

For all the positive pairs, the source(s) of their co-annotation (mod-

ule IDs) are stored.

A single reference standard provides an exclusive view of biolog-

ical complexity. To support functional evaluation from multiple

perspectives, FLEX supports four different reference standards. For

protein complexes, FLEX uses CORUM v3.0 (Giurgiu et al, 2019) as

the reference standard. For pathways, it uses MSigDB (Liberzon
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et al, 2011) that collates several pathway datasets, and for GO (Ash-

burner et al, 2000), it uses biological processes (BP). For reference

standards based on complexes and pathways, a positive example is

defined as a gene pair annotated to the same complex (or pathway).

A gene pair forms a negative example when the genes come from

two different complexes (or pathways). In contrast, for the GO BP

dataset, FLEX first applies a filter based on the number of genes anno-

tated to a GO term (term size). Biological processes that are too speci-

fic (term size < 10) or too general (term size >= 300) are excluded.

Then using the gene annotations in the filtered GO BP candidates,

FLEX applies a similar approach as outlined for complexes and path-

ways to define the GO BP-specific reference standard.

While all of these aforementioned reference standards are manu-

ally curated and thus high quality, they lack in terms of their

genome-wide coverage. For a broader standard, FLEX includes an

integrated, data-driven reference functional network named GIANT

(Greene et al, 2015), which reports inferred functional relationships

from many different genomic or proteomic data sources. A node

represents a gene in this network, and an edge represents an

inferred functional relationship between two genes. While CORUM,

Pathway, and GO BP provide annotations for 3,662, 8,904, and

13,637 genes, respectively, GIANT covers ~25K genes. To transform

the GIANT network to a reference standard, the gene–gene relation-

ships (edges) in the network are first ranked by the relationship

strength (edge weights), in descending order. Next, the top one

million gene–gene relationships are labeled as positives (the rest are

negatives), resulting in a density of ~2.6% for the positive standard.

The density of positives for the CORUM, Pathway, and GO BP stan-

dards are ~0.6, ~7, and ~6%, respectively.

Even though FLEX provides four different reference standards by

default, users can easily define additional reference standards as

desired. The only requirement is that the new reference standard

provides associations between a set of gene pairs. Therefore, any

dataset with modules or any network quantifying gene–gene relation-

ships is appropriate as input to FLEX to generate reference standards.

Analysis performed using FLEX can be divided into two broad cate-

gories (details below): gene-level (global) evaluation and module-

level (local) evaluation (contribution diversity, module-level perfor-

mance, and module-level summary). Module-level analyses are only

feasible when the reference standard has a modular hierarchy such

that genes are grouped into modules (e.g., CORUM complexes, path-

ways, etc.). Reference standards without a module-level hierarchy

(e.g., GIANT) are only limited to gene-level performance analysis.

Gene-level evaluation
FLEX performs gene-level evaluations using genome-wide quantita-

tive perturbation effects. These effects can either be dependency

scores (Meyers et al, 2017), where each gene in the library is

systematically knocked out across a panel of cell lines, or genetic

interaction (GI) scores (Aregger et al, 2020), where a single gene is

first knocked out and a panel of gene knockouts are introduced by

library screening in the mutant background. Then, depending on

user input, FLEX either calculates a pairwise profile similarity score

for each gene pair (using gene profiles across screens/experiments)

or uses the direct measurements between gene pairs. As FLEX eval-

uates gene pairs, direct measurements are only relevant when the

screens also represent genes (a second knockout for GI, for exam-

ple). Profile similarity scores between gene pairs are meaningful in

either case (GI or dependency). FLEX uses Pearson correlation coef-

ficient (PCC) values as measures of profile similarity.

Once a pairwise measurement for pairs of genes and their corre-

sponding co-annotations from a reference standard are available,

FLEX calculates how well the measurements agree with the co-

annotations. A traditional way to capture this agreement is to use a

receiver operating characteristic (ROC) curve. However, as all of our

reference standards are highly imbalanced (i.e., positive to negative

ratio is small), a more appropriate metric to use is precision-recall

(Myers et al, 2006; Saito & Rehmsmeier, 2015). FLEX uses a

precision-recall (PR) curve to summarize the gene-level (global)

functional performance, although it plots the number of TPs (equiv-

alent to recall on a log scale) on the x-axis instead of recall.

Precision¼ TP

TPþFP

Recall¼ TP

TPþFN

Contribution diversity
As biological annotation standards are modularized, FLEX computes

a contribution diversity matrix to understand how different modules

contribute to the overall performance. Due to inherent redundancies

among modules, a true positive in the standard is sometimes associ-

ated with multiple modules. To account for redundancies at the

module level, FLEX estimates a subset of modules that explains all

of the TPs for a set of precision levels from the gene-level PR curve.

Calculating such a subset optimally is an NP-hard problem (Binsh-

tok et al, 2007), and hence, FLEX uses a greedy approximation algo-

rithm (shown below). To illustrate the algorithm (and all methods

from here on), we will use CORUM as the reference standard and

CORUM complexes as modules.

Algorithm: calculate contribution diversity.

Input: a set of precision thresholds, P, profile similarity PCCs,

CORUM standard.

Output: a 2D matrix, C (row: CORUM complexes, col: precision

thresholds, entry: number of TP pairs uniquely contributed by the

complex at that precision threshold).

Calculate sets of TPs (also the associated complexes) for all preci-

sion thresholds, P

for i = 1 : |P| (length of P)

Q <- set of TPs at P[i]
while Q is not empty

Compute the number of TPs associated with individual

complexes.

Rank the complexes by the number of TPs contributed (descending).

S <- TPs associated with the highest ranked complex, j

C[j,i] = |S| (number of contributions for complex j)

Q <- SetDifference(Q,S) (remove S from Q)

end while

end for

The algorithm outputs a precision versus complex contribution

matrix that is next visualized using a Muller plot. This is termed the

contribution diversity plot, and it visualizes the diversity of

complexes that constitute global performance. When applied to the
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CORUM reference standard, the contribution diversity analysis

reduces the number of effective complexes to 1,697 (out of 2,916

total complexes), highlighting the minimal set of required

complexes to explain the functional performance.

Module-level performance
A module-level performance evaluation encapsulates the local

performances of individual modules (e.g., complexes). For each

complex in the CORUM reference standard, FLEX generates a per-

complex subset of the reference standard that includes gene pairs

between all of the genes from the complex (within-complex pairs)

and pairs between genes from the complex and genes from the rest

of the complexes (between-complex pairs). For each complex,

within-complex pairs constitute the positive standard whereas

between-complex pairs comprise the negative standard. Using these

per-complex standards, FLEX calculates an area under the PR curve

(AUPRC) for all individual complexes. This is visualized using a

scatter plot with the AUPRC values on the x-axis and the size of the

complexes on the y-axis.

Module-level summary
FLEX generates a module-level summary plot to account for the

disproportionate nature of modules in genome-wide datasets. It first

calculates a module-level precision-recall (mPR) metric by comput-

ing a contribution diversity matrix (contribution diversity, method)

and then counting, at each precision, the number of modules that

are represented.

FLEX then visualizes this using a module-level summary plot

that outputs the number of represented modules along the x-axis

and precision values along the y-axis. To qualify, a complex must

contribute at least one TP pair toward the global performance and

10% of all of the possible within complex (TP) pairs must be

present at that precision.

Pooled CRISPR HAP1 dropout screens
Pooled CRISPR dropout screens, including CRISPR library virus

production and virus titer determination, were performed as described

recently (Chan et al, 2019; Aregger et al, 2020). In brief, human HAP1

cells were obtained from Horizon Discovery (wt: clone C631, sex:

male with lost Y chromosome, RRID: CVCL_Y019) and maintained in

DMEM, low glucose (10mM), 1mM glutamine, 10% FBS.

CRISPR library virus production was performed in HEK293T

cells. Therefore, 10 million cells were seeded per 15-cm plate in

DMEM medium containing high glucose, pyruvate, and 10% FBS.

Twenty-four hours after seeding, the cells were transfected with a

mix of 8 µg lentiviral lentiCRISPRv2 vector containing the TKOv3

gRNA library (Hart et al, 2015) (Addgene #90294), 4.8 µg packaging

vector psPAX2, 3.2 µg envelope vector pMD2.G, and 48 µl X-

tremeGene 9 transfection reagent (Roche) in 1.4 ml Opti-MEM

media (Life Technologies) for a total volume of 800 µl. Virus-

containing media was harvested 48 h post-transfection.

For pooled CRISPR dropout screens, 3 million HAP1 cells were

seeded in 15-cm plates in 20 ml of specified media. A total of 50–-
90 million cells were transduced with the lentiviral TKOv3 library at

a MOI~0.3, so that each gRNA is represented in about 200–300 cells.

24 h post-infection, transduced cells were selected in 1 µg/ml puro-

mycin for 48 h. Cells were then harvested and pooled, and

30 million cells were collected for subsequent genomic DNA

extraction and determination of the library representation at day 0

(i.e., T0 reference). The pooled cells were seeded into three techni-

cal replicate plates, each containing 15 million cells (> 200-fold

library coverage) and passaged every 3–4 days and at > 200-fold

library coverage until T18. Cell pellets from each replicate were

collected at each timepoint of cell passage.

Genomic DNA was extracted using the Wizard Genomic DNA

Purification Kit (Promega). Sequencing libraries were prepared

from 50 µg of the extracted genomic DNA in two PCR steps, the

first to enrich guide-RNA regions from the genome, and the

second to amplify guide-RNA and attach Illumina TruSeq adapters

with i5 and i7 indices. Barcoded libraries were gel purified, and

final concentrations were estimated by quantitative RT–PCR.
Sequencing libraries were sequenced on an Illumina HiSeq2500

instrument using single-read sequencing. The T0 and T18 time

point samples were sequenced at 400- and 200-fold library cover-

age, respectively.

Mapping of reads to gRNAs
FASTQ files from single-read sequencing runs were first trimmed by

locating constant sequence anchors and extracting the 20 bp gRNA

sequence preceding the anchor sequence. Trimmed reads were

aligned to the TKOv3 library reference using Bowtie (v0.12.8) allow-

ing up to 2 mismatches and 1 exact alignment (specific parameters:

-v2 -m1 -p4 --sam-nohead). Successfully aligned reads were counted

and merged along with annotations into a matrix.

LFC precision-recall analysis
To control quality of genome-wide CRISPR/Cas9 screens in HAP1

cells, gene-level fitness effects were estimated by first computing a

log2 fold-change (LFC) quantifying the dropout of a gRNA from the

population between T0 (after puromycin selection) and a given mid

or end point (T3 - T19). The LFC values of the four gRNAs targeting

a given gene were mean summarized. Gold-standard essential (ref-

erence) and non-essential (background) gene sets were taken from

Hart et al, (2015) and Hart et al (2017). The identification of refer-

ence (essential) genes using LFC values of a given screen was

assessed by computing precision-recall statistics.

Calculation of ranks for HAP1 screen time points
Using the common essential and non-essential gene sets that were

used for scaling the DepMap CERES scores, we scaled the gene

dropout effects in HAP1 cells. At each time point between T3 and

T19, LFC values, which represent the difference between a given

time point and T0, were scaled to ensure a median score of −1.0 for

the essential genes and 0 for the non-essential genes. We then

merged each of the 31 HAP1 screen time points with the 563 Broad

DepMap screens and calculated median scores for a subset of genes

(genes from ETC-related complexes, spliceosome, 26S proteasome,

cytoplasmic ribosome). Finally, we ranked all HAP1 screens (time

points between T3 and T19) separately by the calculated median

score. Spearman’s rank correlation between the resulting ranks for

all 27 screens sampled between T6 and T19, and the time points at

which a given screen had been sampled was computed using the R

function ‘cor.test’ and the statistical significance was based on 25

degrees of freedom. Note that due to strongly varying drop out

patterns of core essential genes as well as strongly variable LFC

values for non-essential genes at very early time points (T3), LFC
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scaling generated several extreme values. Therefore, to compute

more conservative correlations coefficients between sampling time

and ranking, the four T3 screens were excluded.

Estimating the gene and protein complex dropout speed
For each of the 71k gRNAs in the TKOv3 library, 31 LFC measure-

ments were taken between T3 and T19 in wild-type HAP1 cells. A

loess model was fit through the 31 measurements and T0, estimat-

ing the interpolated LFC at 0.2 days resolution. All possible differen-

tial (d)LFC values were computed by contrasting interpolating LFC

values 3 days apart:

dLFCn¼ LFCn�LFCm;

where n is between T3 and T19, m is between T0 and T16, and n

– m is equal to 3 days. Furthermore, LFC is the interpolated LFC

value for a given gRNA. Since absolute dLFC values depend on the

maximal dropout (Fig EV3D and E), the time point of the maximal

dropout was estimated by maximizing the separation of non-

essential and core essential gene LFC values. The gRNA-level

dependency of dLFC values on the LFC at this maximum dropout

point was removed by computing the residuals from a Loess fit

(Fig EV3D and E). For each gene, gRNA residuals are mean

summarized at each point between T3 and T19 to define the

dropout speed. For each of the CORUM complexes, the respective

gene-level dropout speed was median summarized.

Code availability
The FLEX R package can be obtained from https://github.com/csb

io/FLEX_R.

Data availability

Processed LFC data from all time-resolved genome-wide CRISPR

screens in HAP1 cells are provided in Table EV2.

Expanded View for this article is available online.
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