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INTRODUCTION

Reactions of dihalogens (I2, Br2) and interhalogens (IBr, ICl)
with organic molecules containing group 16-donor atoms
(LE; L = organic framework, E = S, Se) have received re-
newed interest in recent years. This is due to two principal
reasons: their intrinsic interest and their implications in dif-
ferent fields of research which span from synthetic to bio-
logical, material, and industrial chemistry. For example, 1-
methyl-imidazole-2-thione and related molecules show con-
siderable antithyroid activity in vivo via I2 complexation [1–
3]; I2 and IBr adducts of perhydrodiazepine-, and piperazine-
2, 3-dithione derivatives can oxidize gold(0), palladium(0),
and platinum(0) [4–6]; a similar activation of metal(0) pow-
ders is observed with the I2 adducts of phosphine sulfide
compounds [7–9]; complexes between I2 and sulfur con-
taining molecules can have interesting electrical properties
[10].

These reactions, particularly using chalcogenone donors
featuring a >C=E (E = S, Se) double bond can follow a
variety of pathways depending on both the acid/base na-
ture of the reactants and the experimental conditions used,
the most important one being the formation of neutral
charge-transfer (CT) “spoke” adducts featuring almost linear
E−X−Y moieties [X = Y = I, Br or X = I, Y = Br, Cl (E = S);
X = Y = I or X = I, Y = Br, Cl (E = Se)] [5, 6, 11–84] or
insertion adducts containing “T-shaped” X−E−Y fragments

[X = Y = Br, Cl (E = S); X = Y = I, Br, Cl, or X = I,
Y = Br (E = Se); other X−E−Y hypervalent compounds are
obtained by different synthetic strategies, see Devillanova et
al in this issue of BC&A] [59, 65, 66, 69, 71, 85–89]. Other
different structural archetypes have also been established by
X-ray diffraction analysis for the products of these reactions;
they mainly include ionic products such as two-chalcogen-
coordinated halogen(I) complexes [(LE−X−EL)+] [43, 45,
65, 90], and dications containing a chalcogen-chalcogen sin-
gle bond [(LE−EL)2+] [3, 65, 72, 91, 92]. Polyhalides of ex-
citing structural complexity can be found as counteranions
of these ionic compounds [3, 91, 92]. A significant example
is represented by the distribution of products from the re-
actions of N-methylbenzothiazole-2(3H)-thione (1) and N-
methylbenzothiazole-2(3H)-selone (2) with I2, Br2, IBr, or
ICl (Figure 1).

This variety of products, besides being very puzzling
from a kinetic and thermodynamic point of view [66, 77, 88,
89, 93], represents a serious challenge when it comes to char-
acterize the outcome of the reactions between chalcogen-
donor ligands and dihalogens and interhalogens, especially
when an X-ray crystal structure determination is not possi-
ble. The FT-Raman spectroscopy was proved to be of par-
ticular help in giving qualitative structural information par-
ticularly in the case of compounds from reactions with di-
iodine [65]. However, a confident correlation between struc-
tural features and vibrational properties requires the analysis
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Figure 1: Schematic representation of the compounds obtained from the reactions of N-methylbenzothiazole-2(3H)-thione (1) and N-
methylbenzothiazole-2(3H)-selone (2) with I2, Br2, IBr, or ICl characterized by X-ray diffraction analysis. This scheme must be intended
purely as an illustration of the various compounds with no implications on the nature of the chemical bonds involved.

of a large number of crystallographically characterized com-
pounds for each structural motif available.

Here we will not attempt to give an overview of all of the
knowledge on the reactivity of chalcogen-donor molecules
towards dihalogens and interhalogens; instead, we will fo-
cus our attention exclusively on the chemical bond and
structural features, and on the main information the FT-
Raman spectroscopy can confidently give about each par-
ticular structural motif so far characterized for the com-
pounds obtained by reacting chalcogen donors with dihalo-
gens/interhalogens.

DISCUSSION

Charge-Transfer adducts

Most of the reported structurally characterized neutral CT
adducts have sulfur as the donor atom and diiodine as the ac-
ceptor molecule [5, 11–61]. Those obtained from molecules
containing selenium and diiodine are less numerous [14,
25, 69–81], while few adducts of S- and Se-donors with IBr
[57–60, 62–67, 81–83] and ICl [60, 61, 67, 68, 83, 84] have
been reported and structurally characterized in the litera-
ture. Three Br2 adducts of S-donors have been characterized
by X-ray diffraction analysis [65, 94], and no CT adducts of
Te-donors are known with any dihalogen or interhalogen.

The interaction between LE chalcogen-donor molecules
(E = S, Se) and XY dihalogens and interhalogens (X = Y =
I, Br; X = I, Y = Br, Cl) to give adducts containing an almost
linear E−X−Y fragment can be seen as a charge-transfer pro-
cess. It occurs via the transfer of charge density from a lone
pair of electrons on the donor atom to the empty σ∗ or-
bital of the halogen species, producing a lowering in the X−Y
bond order. The consequent increase in the X−Y bond length
can be finely tuned by using donors of different strengths,
which means changing either the chalcogen-donor atom or
its chemical environment.

Under such circumstances, the E−X and X−Y bond dis-
tances should be strongly correlated in CT adducts. In fact,
a scatter plot of d(S−I) against d(I−I) distances (Figure 2)
for all I2 adducts with sulfur-containing molecules (in-
cluding those featuring I2 bridging two donor molecules,
and those featuring chains of I2 molecules anchored to a
donor molecule) shows a close relationship between these
two distances [63, 65, 68], which initially was defined as
a hyperbola-like [24]. A similar relationship is found be-
tween d(Se−I) and d(I−I) for all I2 adducts with Se-donors
(Figure 3) [65, 68]. Analogous relationships should be ex-
pected for IBr and ICl adducts with S- and Se-donors, but
the number of the reported structures is so low that it is
not possible yet to establish them conclusively. However, it
is possible to demonstrate that the structural features of the
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Figure 2: Scatter plot of d(I−I) versus d(S−I) for all structurally
characterized I2 adducts with S-donors reported in the literature:
(�) [5, 11–44, 46–61]; benzimidazole-2(3H)-thione ·I2(�) [45].
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Figure 3: Scatter plot of d(I−I) versus d(Se−I) for all structurally
characterized I2 adducts with Se-donors reported in the literature
[14, 25, 69–81].

E−I−Y moiety (E = S, Se, Y = I, Br, Cl) for I2, IBr, and
ICl adducts are subject to the same kind of relationship,
by considering the net increase in the I−Y bond distances
upon coordination Δd(I−Y) instead of the absolute d(I−Y)
value [Δd(I−Y) = d(I−Y)adduct − d(I−Y)gas phase] [63, 65–
68]. In fact, the scatter plot of Δd(I−Y) versus d(E−I) (Fig-
ures 4 and 5) clearly indicate that for both S- and Se-donor
molecules, the d(E−I) and d(I−Y) bond distances (E = S, Se;
Y = I, Br, Cl) observed within CT adducts with IY acceptor
molecules are correlated and show the same degree of vari-
ability.

The experimental data in Figures 4 and 5, except those
for I2 adducts characterized by bridging I2 molecules (E−I
distances lying between 3.01 and 3.30 Å and I−I distances
between 2.74 and 2.79 Å, E = S, Se) [65] and the data for
the adduct benzimidazole-2(3H)-thione·I2 [45], can be fit-
ted very well to the equation [66]

Δd(I−Y) = −b1ln
{

1− exp
[(

d0(E−I)− d(E−I)
)

b2

]}
(1)

obtainable by assuming a valence (bond order) model for the
description of the E−I−Y system within CT adducts, with
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Figure 4: Scatter plot of Δd(I−Y) [Δd(I−Y) = d(I−Y)adduct − d0
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[45].
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Figure 5: Scatter plot of Δd(I−Y) [Δd(I−Y) = d(I−Y)adduct −
d0(I−Y)gas phase (Y = I, Br, Cl)] [95] versus d(Se−I) [Y = I(�)
[14, 25, 69–81], Br(Δ) [81–83], Cl(o) [68, 83, 84]].

n(I−Y) + n(E−I) = 1 (E = S, Se; n = bond order) [12, 77],
with d0(E−I) = 2.396 Å and 2.528 Å (experimental values for
E = S, and Se, resp) [12], b1 and b2 are parameters.

The exclusion of the experimental data for CT I2 adducts
characterized by I2 bridging two-donor molecules from the
fitting procedure is justified by the fact that these systems
are very different from the usual CT adducts in terms of MO
description. In fact, the consequence of extending the simple
n → σ∗ description for the donor/acceptor interaction in
terminal I2 adducts to a system in which an I2 molecule
bridges two-donor molecules (n → σ∗ ← n) is that only two
electrons have a bonding nature, since the other two occupy
a nonbonding orbital. However, these two bonding electrons
are distributed over three bonds instead of over two, and
much longer S · · · I and shorter I−I bond distances are
expected [22, 65]. On the other hand, the fact that the struc-
tural data for the adduct benzimidazole-2(3H)-thione·I2 do
not fit the generalized Δd(I−Y) versus d(S−I) correlation
(Figures 2 and 4) can be accounted on the basis of the fact
that, in this compound, the terminal iodine atom is strongly
H-bonded to an adjacent and symmetry-related adduct
unit [45]. This interaction lengthens both the S−I and the
I−I bonds with respect to the values generally observed in
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terminal I2 adducts. In fact, in this adduct, the sum of S−I
and I−I distances is 5.81 Å, which is quite different from the
value of 5.61 ± 0.05 Å [66] obtained by averaging the values
for the other “spoke” I2 adducts reported in the literature
(5.34 ± 0.03 Å is the average value for the sum of S−I and
I−Br in IBr adducts, 5.22 Å is the average value for the sum
of S−I and I−Cl in ICl adducts, whereas 5.70 ± 0.04, 5.53,
and 5.33 Å are the average values for the corresponding
sums for I2, IBr, and ICl adducts with Se-donors, resp, stan-
dard deviation is reported only for mean values obtained
by averaging a conspicuous number of data (more than
10)). Interestingly, for the adduct 5-chloro-benzimidazole-
2(3H)-thione·I2 [44], where the terminal iodine atom also
participates in a strong hydrogen bond, the sum of S−I and
I−I distances is 5.55 Å, and the structural parameters very
well fit the generalized Δd(I−Y) versus d(S−I) correlation.

CT I2 adducts (the most numerous) were classified into
three categories [34, 65]. (i) Weak or medium-weak adducts
characterized by a mutual perturbation effect between the
donor and the I2 molecules. The I−I bond order [n(I−I)],
defined by the equation d(I−I) = d0 − c logn (where d0

is the I−I bond distance for I2 in the gas phase and c is
an empirical constant with a value of 0.85), in these sys-
tems ranges from values slightly lower than 1 (unperturbed
I2 molecule, d(I−I) = 2.715(6) Å in the solid state) [96]
to no less than 0.6 (d(I−I) < 2.86 Å). (ii) Strong adducts
characterized by n(I−I) ranging between 0.4 and 0.6 (2.86 Å
< d(I−I) < 3.01 Å). (iii) Very strong adducts in which the
donor-acceptor interaction is so strong that n(I−I) becomes
lower than 0.4 (d(I−I) > 3.01 Å). Figures 2 and 3 clearly
show that I2 adducts with S-donors are mainly weak adducts,
whereas those with Se-donors are strong ones.

Considering the Δd(I−Y) parameter, this classification
can be extended to IBr and ICl adducts under the approx-
imation that the range of Δd(I−I) defining the three cate-
gories for I2 adducts are roughly valid also for IBr and ICl
adducts: values of Δd(I−Y) lower than 0.18 Å are indicative
of weak or medium-weak adducts; Δd(I−Y)> 0.34 Å is in-
dicative of a very strong donor/acceptor interaction; 0.18 Å
< Δd(I−Y)< 0.34 Å corresponds to strong adducts. Figures 4
and 5 clearly show that IBr and ICl adducts with both S- and
Se-donors are strong adducts [63, 65, 66, 68].

This classification was initially introduced to bring or-
der among FT-Raman data recorded for a large number of
structurally characterized I2 adducts [97]. Indeed for weak
or medium-weak I2 adducts (d(I−I) < 2.86 Å) a linear cor-
relation was found between the measured ν(I−I) Raman fre-
quency and the I−I bond length, with ν(I−I) shifted towards
lower values (in the range 180–135 cm−1) as compared to the
stretching frequency of I2 at the solid state (180 cm−1) [97]
as a consequence of adduct formation (Figure 6). For strong
I2 adducts, two main peaks are generally detected in their
FT-Raman spectra, ascribable to the symmetric (ν1, 120–
115 cm−1) and antisymmetric (ν3, 145–125 cm−1) stretch-
ing modes of the E−I−I three-body system (E = S, Se); a
much less intense peak in the range 100–80 cm−1 due to a
bending mode (ν2) is also observed (lower attention will be
paid to this vibrational mode in this paper) [65, 71, 81].
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medium-weak adducts (�, data from [13, 14, 17–19, 21, 22, 25, 28,
30–33, 39, 43–46, 48, 54–56, 59, 60, 67]), solid diiodine (∗) [97],
and strong adducts (Δ, data from [14, 44, 45, 48, 71, 72, 81, 97]).

Figure 7 clearly points out the differences in terms of FT-
Raman behavior between weak and strong I2 adducts; in
fact, the antisymmetric (ν3) stretching frequency (having a
major contribution from the I−I stretching) observed for
the strong adducts does not fall within the linear correla-
tion ν(I−I) versus d(I−I) found for weak I2 adducts. For
IBr and ICl adducts, which are strong adducts according to
the above classifications, much less structural and FT-Raman
data are available, therefore generalizations are less reliable.
IBr adducts with both S- and Se-donors show one main
peak in their FT-Raman spectra in the range 190–140 cm−1

[16, 59, 60, 62–67, 81] at a lower frequency with respect to
solid IBr [216 cm−1, d(I−Br) = 2.521(4) Å] [98], and it is
assignable to a stretching vibration of the E−I−Br three-
body system having a major contribution from the ν(I−Br)
vibration [63]. ICl adducts (only four out of seven are both
structurally and vibrationally characterized) [60, 67, 68] gen-
erally show in their FT-Raman spectra two main peaks:
one in the range 240–180 cm−1 presumably due to the an-
tisymmetric (ν3) stretching vibration of the E−I−Cl three
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body-system (E = S, Se), and the other at about 130 cm−1

due to the symmetric (ν1) stretching vibration (solid ICl is
characterized by a single peak at 283 cm−1 in its FT-Raman
spectrum with a d(I−Cl) = 2.446(6) Å) [99]. Interestingly,
by considering the Δd(I−Y) parameter (Y = I, Br, Cl), a
linear correlation appears also to exist between Δd(I−Br)
and ν(I−Br) for IBr adducts, and between Δd(I−Cl) and the
ν(E−I−Cl) stretching mode corresponding to the νantisym in
symmetric three-body systems, for ICl adducts (Figure 8).

Very few examples of very strong adducts with chalco-
gen donors are known, for which no vibrational characteriza-
tion has been reported. Very strong adducts between group-
15 donors (P, As, Sb) and dihalogens/interhalogens are more
numerous [100–104]. The vibrational properties of these sys-
tems reflect the nature of the [D−X]+ cation interacting with
a Y− anion [100, 101].

The classification for the CT adducts based on the I−Y
bond order can also be extended to trihalides such as XY2

−

(X = I, Br; Y = I, Br, Cl). In fact, these can be formally con-
sidered CT adducts between a Y− anionic Lewis base and
an XY Lewis acid. Under this point of view, symmetrical or
slightly asymmetrical trihalides can be considered belonging
to the class of strong adducts, whereas strongly asymmetric
trihalides can be considered belonging to the class of weak
adducts. Spectroscopic implications of this are analyzed be-
low. Usually a three-centre, four-electron (3c, 4e) bonding
scheme is applied to these triatomic anions. This accounts
for the 0.5 bond order calculated in symmetric systems (the
empty pz orbital of a 6-electron low-spin central X+ cation
interacts, in theD∞h point group, with the out-of-phase sym-
metry orbital combination (σu

+ in D∞h) obtained from the
lone pairs of two terminal Y− anions to produce a bond-
ing and an antibonding MO, the other symmetry orbital
combination (σg

+ in D∞h) becoming a nonbonding orbital)
[65]. Some authors have extended this description to the
three-body system E−X−Y in CT adducts between chalcogen
donors and dihalogens/interhalogens [61, 65], thus pointing
out the strict structural and spectroscopic analogy of these
compounds with trihalides. Before considering these analo-
gies more in detail, it is better to describe from a struc-
tural and spectroscopic point of view the class of compounds

known as polyiodides which apparently have nothing to
share with CT adducts of chalcogen donors with dihalogens
and interhalogens.

TRIIODIDES AND HIGHER POLYIODIDES SPECIES

It is well known that I2 is the dihalogen having the high-
est ability to catenate, thus affording oligomeric polyan-
ions which can assume a wide range of structural motifs
[105, 106]. This tendency to catenate decreases considerably
on passing to dibromine and dichlorine [107].

Most of the known polyiodides have the general for-
mula (I2m+n)n− which formally implies the addition of m I2

molecules to n iodide ions. Examples of small polyiodides
belonging to this family, such as I3

−, I4
2−, and I5

−, are very
numerous in literature, but the occurrence of discrete I2-
rich higher polyiodides (from I7

− to I22
4−) becomes increas-

ingly rare as m and n increase [105, 106]. On the basis of
structural data, all known higher discrete polyiodides can
be considered derived from the donor/acceptor interaction
of asymmetric I3

− and/or I− with I2 molecules that emerge
slightly elongated [I−I ∼ 2.75–2.80 Å, (I3

−)I− · · · I2 ∼ 3.2–
3.6 Å]. ∠ (I3

−) I−−I−I bond angles are frequently observed
at 90 or 180◦ but can deviate considerably from these val-
ues with longer (I3

−)I− · · · I2 bond lengths. Polyiodides can
be regarded, therefore, as weak or medium-weak adducts of
the type [(I−)n−y · (I3

−)y· (I2)m−y], whose geometrical and
topological features can be very different and often unpre-
dictable. Some of these polyiodides are present in the crystal
lattice as discrete aggregates, but they frequently form poly-
meric chains or extended 2D or 3D networks in the polyan-
ionic matrix via I · · · I cross-linking soft-soft secondary in-
teractions: these generally range from 3.6 Å up to the van der
Waals sum for two iodine atoms (4.3 Å), and the identifica-
tion of the basic polyiodide unit can became arbitrary. This
extraordinary ability of I2, I3

−, and I− to interact with each
other to give polyiodides is affected profoundly by the size,
shape, and charge of the associated countercation, and these
parameters have been considered in recent papers to achieve
control over their 3D architecture [92, 105, 106, 108–110].

From the above, it is clear that in the absence of a crystal
structure determination, it becomes very hard to guess the
nature and the structural features of polyiodide anions. The
FT-Raman spectroscopy can only give valuable information
on the nature of their building blocks.

In the linear and symmetric I3
−, the Raman-active sym-

metric stretch (ν1) occurs near 110 cm−1, while the antisym-
metric stretch (ν3) and the bending deformation (ν2) are only
infrared-active. The latter two modes become Raman-active
for asymmetric I3

−, in which case they are found near 134
(ν3) and 80 cm−1 (ν2), having medium and medium-weak
intensities, respectively, as found for strong CT I2 adducts.
For highly asymmetric I3

− ions, which can be considered
weak adducts between I− and I2 [I−·I2], as found in neutral I2

adducts with S-donors, the FT-Raman spectrum shows only
one strong band in the range 180–140 cm−1, indicative of the
presence of a perturbed I2 molecule [106, 111, 112].

As already mentioned, all the higher polyiodide species
may be regarded as weak or medium-weak adducts of the
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type [(I−)n−y· (I3
−)y· (I2)m−y]. Consequently, the corre-

sponding FT-Raman spectra will show peaks due to per-
turbed diiodine molecules for [(I−)n· (I2)m] systems (y =
0), and characteristic peaks due to both perturbed diiodine
molecules and symmetric or slightly asymmetric I3

− ions for
polyiodies of the types [(I3

−)n · (I2)m−n] (n = y �= 0) and
[(I−)n−y · (I3

−)y · (I2)m−y] (n > y �= 0). It is therefore evi-
dent that except for the presence or absence of symmetric and
slightly asymmetric I3

− units, the Raman technique is un-
able to distinguish between the different types of polyiodides
or to discriminate unambiguously between the polyiodides
and the neutral I2 adducts with chalcogen donors. However,
it can give valuable information on the extent of the length-
ening of the I−I bond, whether or not it has been produced
by interaction of I2 with a neutral donor or an ion. Further-
more, FT-Raman spectroscopy cannot give any structural in-
formation on the topological features of an extended polyio-
dide network as the technique cannot elucidate the structure
beyond the basic polyiodide units in terms of combinations
of I−, I2, and I3

− units.
A further complication to the interpretation of FT-

Raman spectra of polyiodides may arise when the basic
polyiodide unit sits on special crystallographic positions. For
example, in [Ag([18]aneS6)]I7 [113], the complex cation is
embedded in a 3D polymeric polyiodide matrix of I7

− an-
ions. The overall structure of the [(I7)−]∞ network can best
be described as a distorted cube in which I− ions occupy
the lattice points of a primitive rhombohedral lattice with
one slightly elongated I2 molecule placed along each edge
bridging two I− ions. Each I− interacts with six diiodine
molecules arranged in a perfect D3d symmetry. Because all
six I2 molecules have the same I−I bond distance, only one
peak should be present in the FT-Raman spectrum below
180 cm−1. However, the stretching vibrations of the six in-
dividual I2 units can combine, and in D3d symmetry they
give rise to two Raman-active normal modes of A1g + Eg

types. The observed bands at 179 and 165 cm−1 can there-
fore be assigned to these two modes, respectively. A lower-
ing of the symmetry due to different bond distances for the
two perturbed I2 units will split the Eg mode, thus causing
the appearance of three bands in the FT-Raman spectrum.
Similarly, the case of the I5

− ion with a C2v symmetry in
[Ag([9]aneS3)2]I5 [113] can be tackled: the vibrations of the
two individual I2 units combine to give normal modes of the
A1 + B2 types. A lowering of the symmetry due to different
bond distances for the two perturbed I2 units will increase
the energy of the higher energetic stretching normal mode
and lower the energy of the lower energetic stretching nor-
mal mode.

It may also happen that polyiodides are unstable un-
der the laser beam and cause spurious peaks to appear in
their Raman spectra. This is more likely using visible ex-
citation sources and resonance Raman spectroscopy; us-
ing near-infrared laser excitation sources and FT-Raman
spectroscopy, such problems, particularly fluorescence and
photoreactions, can be considerably reduced. Nevertheless,
decomposition of polyiodides during spectrum acquisition
must be always considered and ascertained before passing on

to the assignment of the FT-Raman bands in order to avoid
confusion with the scattering from decomposition products
(generally driven from loss of diiodine molecules).

After this concise overview on polyiodides, it is worthy
to point out the vibrational analogies in terms of FT-Raman
that can exist between I3

− and I2 adducts with chalcogen
donors.

Strong CT I2 adducts, in particular those formed by Se-
donors, present two main peaks in their FT-Raman spec-
tra assigned to the antisymmetric and symmetric stretch-
ing modes of the Se−I−I three-body system (see above).
The observed frequencies are very close to those normally
recorded for asymmetric triiodides. On the other hand, weak
or medium-weak CT I2 adducts, in particular those with S-
donors, present only one peak in their FT-Raman spectra
assigned to the stretching mode of the perturbed diiodine
molecule (see above). The observed frequency is indistin-
guishable from that recorded for very asymmetric triiodides.
Thus the groups Se−I−I and (I−I−I)−, and S · · · I−I and
I− · · · I−I give very similar FT-Raman spectra. This fact can
produce confusion when chalcogen donors are reacted with
diiodine, and no X-ray diffraction analysis of the products is
available: the formation of a triiodide, and, more broadly of
a polyiodide, can be erroneously invoked in the presence of
neutral adducts and vice versa.

HYPERVALENT CHALCOGEN COMPOUNDS

The pivotal role of the vibrational properties of I3
− and other

trihalides in the assignment of the FT-Raman peaks for the
products obtained by reacting chalcogen donors with dihalo-
gens/interhalogens is even clearer by considering the class of
hypervalent compounds.

Hypervalent chalcogen compounds featuring a linear
X−E−Y moiety [X = Y = I, Br, Cl; X = I, Y = Br, Cl; E =
S, Se] can be considered to derive formally from the oxidative
addition of an X2 or XY molecule to the donor molecule con-
taining the chalcogen atom. With donors of the types R2C=E
(E = S, Se) and R2E (E = S, Se), the structural features of
the corresponding adducts is well explained by the VSEPR
model, according to which the geometry at the chalcogen
atom is a pseudotrigonal bipyramid (tbp) with the halogens
occupying the apical positions, in the case of R2C=E donors
(two lone pairs and one bond pair in the plane perpendicu-
lar to the X−E−Y direction), and disphenoidal in the case of
R2E ones (one lone pair and two bond pairs in the plane per-
pendicular to the X−E−Y direction). These compounds are
commonly referred to as, respectively, 10-E-4 and 10-E-3 sys-
tems, indicating that the chalcogen atom E is formally asso-
ciated with five pairs of electrons, only four or three of which
are bond pairs (Figure 9), respectively [114]. As with a tri-
halide or a CT adduct (see above), the chemical bond in the
X−E−Y fragment can be described using the 3c, 4e bonding
scheme, which implies a total bond order of 1 (0.5-bond or-
der for each E−X bond in symmetric systems). This descrip-
tion agrees with the qualitative observation that on increas-
ing the electronegativity difference between the halogen and
the chalcogen, hypervalent chalcogen adducts are formed
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Figure 9: Schematic representation of 10-E-4 and 10-E-3 hyperva-
lent chalcogen compounds (E = S, Se, Te).

more easily than CT adducts bearing an E−X−Y linear group
on reacting chalcogen donors with dihalogens and inter-
halogens. Indeed, no hypervalent sulfur compounds contain-
ing the I−S−I moiety are known, and only three hyperva-
lent selenium compounds containing the I−Se−I framework
have recently been structurally characterized [71, 115]. Only
three examples of a Br−S−Br type hypervalent sulfur com-
pound with dibromine have been structurally characterized
[59, 88, 116], while analogous compounds from selenium
containing substrates are numerous [65, 69, 85, 88, 117]. As
expected, hypervalent sulfur and selenium compounds con-
taining the linear Cl−E−Cl (E = S, Se) group are very well
known [65, 69, 86]. For the oxidative addition of interhalo-
gens (IBr, ICl), only two examples of “T-shaped” adducts
featuring I−E−Br (E = S, Se) moieties are known (for the
hypervalent compound featuring the I−S−Br fragment, no
X-ray characterization is reported) [89, 116].

The strict analogy between trihalides and hypervalent
chalcogen compounds is clearly pointed out also by the Ra-
man spectroscopy. In fact, it has been shown that hypervalent
Se-compounds featuring a linear I−Se−I moiety show in the
low-frequency region of their FT-Raman spectra one or two
peaks depending on whether the I−Se−I fragment is sym-
metric or slightly asymmetric, which are very similar to those
arising from a symmetric or asymmetric I3

− [71]. Therefore,
the groups Se−I−I (strong adducts), (I−I−I)− (triiodides),
and I−Se−I (hypervalent compounds) can be undistinguish-
able from a Raman point of view.

The same analogy is also found for hypervalent chalco-
gen compounds featuring a Br−E−Br linear system (E =
S, Se). In fact, the vibrational properties of a Br−E−Br
group resemble those of (Br−X−Br)− anions (X = I, Br)
[65, 66, 88, 117]. The FT-Raman spectrum of a symmetrical
Br−E−Br group only shows one Raman peak near 160 cm−1

(see Figure 10), as found in symmetric Br3
− and IBr2

− an-
ions, which can be assigned to the symmetric stretching
vibration of the three-body system. Asymmetric Br−E−Br
groups display an additional and generally less intense peak
at around 190 cm−1 (see Figure 11), as found for asymmet-
ric Br3

− and IBr2
− anions, which is assigned to the antisym-

metric stretching vibration of the Br−E−Br or (Br−X−Br)−

three-body systems (E = S, Se; X = I, Br). These analogies
are quite evident from Figures 10 and 11 [118]. Unfortu-
nately, in the literature no spectroscopic data are available for

300 250 200 150 100 50

Wavenumber cm�1

Figure 10: Superimposed FT-Raman spectra of the symmet-
ric Se-hypervalent adduct N ,N ′-dimethylbenzimidazole-2(3H)-
selone·Br2 (full line) and the salt (HL′)+Br3

− (2, 4, 6-tris(2-
pyridyl)-1, 3, 5-triazinium tribromide, dashed line) featuring a
symmetric Br3

− [118].
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Figure 11: Superimposed FT-Raman spectra of the asymmetric
Se-hypervalent adduct N ,N ′-dimethylimidazolidine-2-selone·Br2

(full line) and the salt (H2L′)2+ Br−IBr2
− (2, 2′-dipyridinium disul-

fide bromide iododibromide, dashed line) featuring an asymmetric
IBr2

− [118].

chalcogen-hypervalent Cl2 adducts, thus preventing a struc-
tural/vibrational comparison of the Cl−E−Cl (E = S, Se)
framework with the anions (Cl−X−Cl)− (X = I, Br). Over-
all, we can say that strong I2 adducts (generally deriving from
Se-donors), XY2

− trihalides (X = I, Br; Y = I, Br, Cl), and hy-
pervalent chalcogen compounds featuring a linear X−E−X
moiety (X = I, Br, Cl; E = S, Se) can all be described with the
same MO bonding scheme (3c, 4e) and show very similar vi-
brational properties whose features depend on whether they
are symmetric or asymmetric. On the other hand, weak I2

adducts (generally feturing S-donors) have FT-Raman spec-
tra similar to those recorded for very asymmetric triodides
or polyiodides of the type [(I−)n · (I2)m].

TWO CHALCOGEN-COORDINATED
HALOGEN(I) COMPLEXES

Salts of two-chalcogen-coordinated halogen(I) complexes
[(LE−X−EL)+] can be formally considered as a central X+

(X = I, Br, Cl) coordinated by two donor molecules. The
chemical bond in the resulting E−X−E almost-linear frame-
work can be described according to 3c, 4e bonding scheme, as
for CT adducts, trihalides, and hypervalent chalcogen com-
pounds. So far, only cations of this kind formally featuring a
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central I+ interacting with either S- or Se-donors have been
isolated from the direct reaction of chalcogen donors and di-
halogens (see Devillanova et al in this issue of BC&A), and
have been structurally characterized [43, 45, 65]. Similarly to
what is observed for the three-body system in CT adducts
(E−I−Y, E = S, Se; Y = I, Br, Cl), trihalides (X−I−X, X =
I, Br, Cl), and hypervalent compounds (X−E−X, E = S, X =
Br, Cl; E = Se, X = I, Br, Cl), also in these cations there is a
correlation between the two E−I bond distances (E = S, Se):
the reinforcement of one I−E bond corresponds to a length-
ening of the other, the total length of the E−I−E framework
being almost independent of the nature of the substrate in-
corporating the chalcogen. The mean value of the E · · ·E
distance is 5.28 Å for S−I−S and 5.50 Å for Se−I−Se systems
(these distances are very similar, resp, to the averaging value
for the sums of S−I and I−Cl in ICl adducts with S-donors
(5.22 Å), and Se−I and I−Br in IBr adducts with Se-donors
(5.53 Å)).

Unfortunately, very few spectroscopic data are avail-
able for iodonium salts in the literature, and generally the
FT-Raman spectra are dominated by the absorption peaks
due to the polyiodide counteranions. Therefore, a struc-
tural/vibrational relationship cannot be established. How-
ever, on the grounds of what has been said, and consider-
ing S/Cl and Se/Br mass similarities, the Raman peaks for
the stretching vibrations of the E−I−E (E = S, Se) three-
body systems could fall, depending on the organic frame-
work, at frequencies reasonably close to those observed for
ICl adducts with S-donors or ICl2

− trihalides (E = S), and
IBr adducts with Se-donors or IBr2

− trihalides (E = Se).

CONCLUSIONS

The results reviewed in this paper clearly point out that the
reactions of chalcogen donors with dihalogens or interhalo-
gens can afford a great variety of products depending on the
nature of the donor, the reaction molar ratio, and the ex-
perimental conditions (solvent and temperature). In the ab-
sence of an X-ray diffraction analysis, the FT-Raman spec-
troscopy can be of help in elucidating the nature of the prod-
ucts obtained. However, much attention must be paid in the
assignment of the Raman peaks recorded in order not to
make confusion. In fact, the vibrational behavior in the low-
frequency region is sometimes undistinguishable for very
similar three-body systems: E−I−Y (E = S, Se; Y = I, Br, Cl)
in CT adducts, X−E−X (E = S, X = Br, Cl; E = Se,
X = I, Br, Cl) in hypervalent chalcogen compounds, and
E−I−E (E = S, Se) in two chalcogen-coordinated halogen(I)
complexes, which can all be described according to a 3c, 4e
bonding scheme. Very recently, a vibrational analogy has also
been found between I2 adducts of Se-donors and complexes
of bidentate phosphate selenide ligands with mesitylenetel-
lurenyl iodide featuring a Se−Te−I linear systems [119]. The
problem is even more complex if the vibrational analogy with
trihalides IY2

− (Y = I, Br, Cl) is considered. For example,
the groups Se−I−I (strong adducts), I3

− (asymmetric tri-
iodides), and I−Se−I (hypervalent compounds) are undis-
tinguishable from a Raman point of view, as well as the

Br−E−Br group (E = S, Se) being vibrationally very similar
to Br3

− and IBr2
− anions.
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