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Slovakia; katarina.soltys@gmail.com (K.Š.); boris.bokor@gmail.com (B.B.); jaroslav.budis@cvtisr.sk (J.B.)

3 Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovičova 6,
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Abstract: Cucumber mosaic virus (CMV), with extremely broad host range including both monocots
and dicots around the world, belongs to most important viral crop threats. Either natural or genetically
constructed sources of resistance are being intensively investigated; for this purpose, exhaustive
knowledge of molecular virus-host interaction during compatible and incompatible infection is
required. New technologies and computer-based “omics” on various levels contribute markedly
to this topic. In this work, two cucumber cultivars with different response to CMV challenge were
tested, i.e., sensitive cv. Vanda and resistant cv. Heliana. The transcriptomes were prepared from both
cultivars at 18 days after CMV or mock inoculation. Subsequently, four independent comparative
analyses of obtained data were performed, viz. mock- and CMV-inoculated samples within each
cultivar, samples from mock-inoculated cultivars to each other and samples from virus-inoculated
cultivars to each other. A detailed picture of CMV-influenced genes, as well as constitutive differences
in cultivar-specific gene expression was obtained. The compatible CMV infection of cv. Vanda caused
downregulation of genes involved in photosynthesis, and induction of genes connected with protein
production and modification, as well as components of signaling pathways. CMV challenge caused
practically no change in the transcription profile of the cv. Heliana. The main differences between
constitutive transcription activity of the two cultivars relied in the expression of genes responsible
for methylation, phosphorylation, cell wall organization and carbohydrate metabolism (prevailing
in cv. Heliana), or chromosome condensation and glucan biosynthesis (prevailing in cv. Vanda).
Involvement of several genes in the resistant cucumber phenotype was predicted; this can be after
biological confirmation potentially applied in breeding programs for virus-resistant crops.
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1. Introduction

Cucumber mosaic virus (CMV) is the type member of the genus Cucumovirus (family Bromoviridae).
Each of its tripartite (+)ssRNA genome segments is separately encapsidated in non-enveloped virions
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with icosahedral symmetry. CMV is world-wide spread and its known natural host range is extremely
broad [1]. CMV infects over 1200 plant species in more than 100 families of monocots and dicots [2].
Many host species are economically important vegetable crops where the CMV infection causes severe
damage. Natural sources of resistance are continually sought and potentially resistant plants are
constructed using targeted genetic manipulations as well [3–5]. Virus-host interaction represents
a complex process where many plant factors are included. Virus infection influences expression of
various plant genes to redirect biosynthetic pathways in favor of viral progeny production. On the
other hand, host defense genes try to eliminate the infection. Mutual influence of these processes on
several levels results in both virus-beneficial and unintended consequences of infection for the host
plant [6].

CMV is a relatively intensively studied virus also regarding interactions with host organisms [7,8].
Most data have been obtained from the model plant Arabidopsis thaliana, where several coordinated
mechanisms of defense response have been discovered, including RNA-mediated gene silencing,
salicylic acid (SA)-dependent and independent regulation patterns and expression of resistance genes [9].
Analysis of CMV resistome in Arabidopsis showed mainly directed regulation of kinases/phosphatases,
of protein degradation factors, transcription regulators and many short polypeptides of unknown
function [10].

Recently we tested several cucumber cultivars for their sensitivity to various viruses and found
an appropriate virus-host system for detailed study of interactions during viral infection [11]. The cv.
Vanda appeared to be very sensitive to CMV infection, showing severe symptoms, the high virus
concentration detected in the plants immunochemically, as well as by RT-PCR. On the other hand, the cv.
Heliana showed no symptoms under identical experimental conditions and CMV could be detected
neither by RT-PCR, nor by immunoblotting in any inoculated plant. In this cultivar obviously extreme
resistance (immunity) was manifested. In this work we show the results of comparative transcriptomics
analysis of sensitive and resistant cultivars before and after exposition to the CMV challenge.

2. Results and Discussion

Individual samples were labeled as H- (Heliana mock), H+ (Heliana/CMV), V- (Vanda mock) and
V+ (Vanda/CMV). Four independent comparisons were performed. Transcriptomes of mock-inoculated
and CMV-inoculated plants in frame of each cultivar (H-/H+, V-/V+) were compared; furthermore,
gene expression analysis within the mock-inoculated cultivars (H-/V-) and within virus-inoculated
cultivars (H+/V+) was determined, too. Each of the four comparisons provides different evidence
(Figure 1) and their combination enables a complex evaluation of cucumber reaction to the middle-late
state of CMV infection. Particular comparisons fairly differed by the number of detected significant
differentially expressed genes (DEGs) (Table 1). The most divergent gene expression was detected
in comparative analyses V-/V+ and H+/V+, total, the number of up- and down-regulated genes was
similar in these analyses. The lowest number of significant DEGs showed the transcriptomes of mock-
and CMV-inoculated (but also not infected) cv. Heliana. Mutual comparison of mock-inoculated
cultivars showed approximately four times less DEGs as CMV-inoculated cultivars. In CMV-free cv.
Vanda totally app. two-times less genes as in cv. Heliana was expressed, however, upon inoculation
slightly more DEGs were found in cv. Vanda. These quantitative results were in accord with the
reactivity of respective cultivars to the viral infection.
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Table 1. Number of differentially expressed genes (DEGs) in particular comparisons.

Comparison 1 Significant DEGs Down-Regulated 2 Up-Regulated 2

H-/H+ 9 (1) 8 (1) 1 (0)
V-/V+ 3006 (359) 1379 (168) 1627 (191)
H-/V- 617 (53) 427 (32) 190 (21)

H+/V+ 2456 (219) 1112 (99) 1344 (120)
1 H = Heliana, V = Vanda, - = mock-inoculated, + = CMV-inoculated; 2 Down- and up-regulation in sense
“CMV-inoculated vs. mock” or “Vanda vs. Heliana”; Numbers of DEGs where values from biological triplicates
differed by less than 10% are given in parentheses.
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2.1. Gene Ontology Categorization of DEGs

Only minimal differences were found between the control and CMV-inoculated cv. Heliana
(H-/H+), which did not enable quantitative evaluation of functionally annotated DEGs.

Comparison of mock- and CMV-inoculated cv. Vanda (V-/V+) showed negative influence of CMV
on activities connected with photosynthesis (GO:0009535, chloroplast thylakoid membrane; GO:0009941,
chloroplast envelope; GO:0009570, chloroplast stroma; GO:0009507, chloroplast; GO:0009523,
photosystem II; GO:0016168, chlorophyll binding; GO:0018298, protein-chromophore linkage;
GO:0015979, photosynthesis; GO:0009522, photosystem I; GO:0045156, electron transporter, transferring
electrons within the cyclic electron transport pathway of photosynthesis activity; GO:0048038, quinone
binding), protein modification (GO:0006470, protein dephosphorylation), polysaccharide metabolism
(GO:2001070, starch binding; GO:0030244, cellulose biosynthetic process; GO:0010411, xyloglucan
metabolic process), redox balance (GO:0015035, protein disulfide oxidoreductase activity; GO:0051213,
dioxygenase activity; GO:0051287, NAD binding), stress signal transduction (GO:0009409, response to
cold; GO:0009611, response to wounding; GO:0009414, response to water deprivation; GO:0009734,
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auxin-activated signaling pathway; GO:0006662, glycerol ether metabolic process; GO:0005992,
trehalose biosynthetic process; GO:0009734, auxin-activated signaling pathway; GO:0006855,
drug transmembrane transport) or lipid metabolic process (GO:0006629).

On the other hand, several processes were stimulated during infection, including proteosynthesis,
maturation and degradation of proteins (GO:0005789, endoplasmic reticulum membrane; GO:0005788,
endoplasmic reticulum lumen; GO:0003735, structural constituent of ribosome; GO:0006412, translation;
GO:0006886, intracellular protein transport; GO:0004298, threonine-type endopeptidase activity;
GO:0051082, unfolded protein binding; GO:0006486, protein glycosylation; GO:0006886, intracellular
protein transport; GO:0000502, proteasome complex; GO:0006457, protein folding), transport
(GO:0042626, ATPase activity, coupled to transmembrane movement of substances; GO:0016192,
vesicle-mediated transport; GO:0006811, ion transport) and some other activities (GO:0042744, hydrogen
peroxide catabolic process; GO:0043531, ADP binding; GO:0030246, carbohydrate binding; GO:0005516,
calmodulin binding; GO:0031047, gene silencing by RNA; GO:0004568, chitinase activity; GO:0035235,
ionotropic glutamate receptor signaling pathway).

GO categories with most expressive differences in expression levels are depicted in the Figure 2.
Generally, this picture reflected that the metabolic processes were redirected to produce new
virus particles. Virus replication and virion maturation require enhanced proteosynthesis while
transformation of solar energy by photosynthesis is reduced by reason of lower number and quality
of chloroplasts. In later stage of the compatible infection (33 dpi) in the same virus-host system,
the abundance of proteins involved in translation decreased, as showed the proteomic analysis [12].
In the late phase the supplied energy obviously cannot suffice both function and repair of the
overloading proteosynthetic apparatus which undergo consecutive degradation.
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Figure 2. GO categories and number of relevant DEGs substantially repressed or induced by cucumber
mosaic virus (CMV) infection in the cv. Vanda.

Transcriptome analysis of both CMV-free cultivars (H-/V-) revealed markedly predominating GO
groups in the resistant cultivar Heliana, connected with regulation on various levels (GO:0032259,
methylation; GO:0016301, kinase activity; GO:0003700, DNA binding transcription factor activity),
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metabolism (GO:0030246, carbohydrate binding; GO:0016747, transferase activity, transferring acyl
groups other than amino-acyl groups; GO:0004553, hydrolase activity, hydrolyzing O-glycosyl
compounds), redox processes (GO:0050660, flavin adenine dinucleotide binding; GO:0016614,
oxidoreductase activity, acting on CH-OH group of donors) and iron transport (GO:0020037,
heme binding; GO:0005506, iron ion binding).

In the sensitive cv. Vanda groups targeting regulation and degradation of DNA
(GO:0000737, DNA catabolic process, endonucleolytic; GO:0042138, meiotic DNA double-strand break
formation; GO:0007076, mitotic chromosome condensation; GO:0016889, endodeoxyribonuclease
activity, producing 3′-phosphomonoesters) and metabolism of fungal cell wall (GO:0006075,
(1->3)-beta-D-glucan biosynthetic process) prevailed.

As summarized in Figure 3, the main differences between constitutive transcriptomes of the two
cultivars were detected in expression of genes involved in methylation, phosphorylation, cell wall
organization and carbohydrate metabolism (prevailing in cv. Heliana), or chromosome condensation
and glucan biosynthesis (prevailing in cv. Vanda).
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Figure 3. GO categories and number of relevant DEGs substantially differently expressed in CMV-free
cultivars Heliana and Vanda.

Comparison of the cultivars after CMV inoculation (H+/V+) was similar as differences between
mock- and CMV-inoculated sensitive cultivar. In cv. Heliana prevailing gene groups were
connected with photosynthesis (GO:0009535, chloroplast thylakoid membrane; GO:0009570, chloroplast
stroma), regulation and signal transduction, especially in stress conditions (GO:0005992, trehalose
biosynthetic process; GO:0009734, auxin-activated signaling pathway; GO:0000160, phosphorelay
signal transduction system; GO:0003951, NAD+ kinase activity; GO:0009611, response to wounding),
cell wall synthesis (GO:0030244, cellulose biosynthetic process; GO:0010411, xyloglucan metabolic
process) and lipid catabolic process (GO:0016042).

On the other hand, in cv. Vanda predominating transcripts belonged to groups connected with
proteosynthesis, protein modification and degradation (GO:0003735, structural constituent of ribosome;
GO:0006412, translation; GO:0006486, protein glycosylation; GO:0006457, protein folding; GO:0015031,
protein transport; GO:0051082, unfolded protein binding; GO:0006511, ubiquitin-dependent protein
catabolic process; GO:0000502, proteasome complex; GO:0006511, ubiquitin-dependent protein
catabolic process; alpha-subunit complex; GO:0004298, threonine-type endopeptidase activity),
DNA replication (GO:0006260, DNA replication; GO:0007076, mitotic chromosome condensation) and
other activities (GO:0030246, carbohydrate binding; GO:0005516, calmodulin binding; GO:0006096,
glycolytic process; GO:0006032, chitin catabolic process; GO:0035235, ionotropic glutamate receptor
signaling pathway). GO categories with highest differences between CMV-inoculated cultivars are
depicted in the Figure 4.

The strongest differences between cultivars concerning GO groups of both constitutive and
virus-induced gene expression were GO:0007076, mitotic chromosome condensation and GO:0006075,
(1->3)-beta-D-glucan biosynthetic process (both intensively expressed in cv. Vanda and absent in
Heliana), and GO:0032259, methylation (clearly prevailing in cv. Heliana). As DNA methylation
is a key process of epigenetic regulation, different expression of genes for relevant enzymes could
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explain different sensitivity of the cultivars to CMV challenge. Further we describe selected specific
genes/proteins which markedly differed in their expression in frame of particular comparisons.
The values of samples from biological triplicates were often considerably variable. Therefore, we focused
on the significant DEGs, where the standard deviation was lower than 10% of mean value of the
triplicates (the numbers in parentheses in the Table 1).
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2.2. Mock- and CMV-Inoculated cv. Heliana (Comparison H-/H+)

Very low number of DEGs found after CMV inoculation of cv. Heliana is in agreement with the
absence of any visible symptoms and zero detected level of the virus in plant tissues. Nine genes were
significantly influenced (Table S1), of which only for one the consistent results from triplicates were
obtained (Table 1). Approximately twofold decrease of L-ascorbate oxidase (AO) gene expression was
observed. This apoplast protein (localized in the cell wall) binding copper ions reduces molecular
oxygen to water using ascorbate as electron donor [13]. Influence of AO on the cell growth and
negative correlation of its expression with wound healing were found [14,15]. This enzyme obviously
participates in general maintenance of redox equilibrium, in signaling pathways and mutualistic
interactions between plants and microorganisms [16]. Several authors found correlation between
reduced level or activity of AO and plant tolerance to various stress types [17,18]. Ascorbic acid is
an important antioxidant protecting plants from oxidative stress induced by pathogen attack and
AO is a key regulator of the cellular ascorbate level balance [19]. We can only speculate if decreased
expression of AO and CMV challenge were causally connected in this case. Recently, an interaction
of AO with CMV movement protein (MP) in a compatible infection of cucumber was detected and
experimental knock-out of the AO gene lead to decreased virus accumulation in systemic infected
leaves. The results indicated importance of MP-AO interaction for the virus transport in the early
infection state [20]. On the other hand, experimental AO degradation negatively influenced the rice
resistance to the rice strip virus, probably due to decrease of reactive oxygen species accumulation [21].

Regarding the group of differentially expressed genes with higher deviation among samples
triplicates, the biggest difference was detected for patatin (decreased expression after inoculation).
The group of patatins and patatin-like proteins (PLPs) includes storage glycoproteins with
enzyme activities focused on lipid metabolism (esterase, acyl transferase, lipidacyl hydrolase,
phospholipase) [22]. Their role at Ca-dependent signal transduction in plants has been presumed [23].
Overproduction of PLPs has been correlated with biotic and abiotic stress including viral
infection [24–27]. On the other hand, Cheng et al. [28] found a negative influence of PLP on
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resistance to fungal attack of Nicotiana attenuata. Our results (3-fold fall of expression in cv. Heliana
versus 29-fold depression in the sensitive cv. Vanda) also supported possible involvement of patatin in
plant stress pathways.

2.3. Mock- and CMV-Inoculated cv. Vanda (Comparison V-/V+)

In the cv. Vanda CMV infection was manifested by intensive leaf symptoms and high virus
concentration was confirmed immunochemically. Concerning V-/V+ DEGs, we detected comparable
number of induced and repressed genes (Table S2).

2.3.1. Down-Regulation by CMV Infection

The most visible change in gene expression of the down-regulated genes (over 6-fold) was detected
for the MIZU-KUSSEI 1 (MIZ1), recently discovered factor influencing the root hydrotropism [29].
MIZ1 regulates negatively the cytokinin sensitivity on root development and is important for
development of lateral roots through auxin level in Arabidopsis [30].

Expression of inositol-tetrakisphosphate kinase (ITPK1) was 3.6-times reduced. This enzyme
takes part in phosphorylation/dephosphorylation of inositol phosphates, the precursors of inositol
pyrophosphates—universal energetic signal molecules [31]. IPTK1 may play regulation role
in various processes. Contrary to our result, rather its stress-induction has been documented.
In geminivirus-infected tomato its level increased twice [32]. IPTK1 induction has been recorded also
during tobacco flooding stress [33]. Repression of this enzyme during induction of dormancy in peach
has been interpreted as blocking the phosphorylation signals and ATP production connected with
lowered photosynthesis level [34]. Such explanation correlates also with photosynthesis drop during
CMV infection of the compatible host.

The proteins with pentatricopeptid repetitions (PPRs) are massively represented in plant proteomes.
Their expansion due to retrotransposition is presumed [35]. They regulate expression of mitochondrial
and plastid genes by various mechanisms and their combined actions dramatically affect the biogenesis
and function of organelles in plant cells [36]. Expression of several PPRs was 1.3–3-times repressed
by the CMV infection in cv. Vanda, probably influencing chloroplast formation and chlorotic
symptom production.

Over 3-fold down-regulation of cytochrome P450 could influence many processes in which this
monooxygenase take part, including growth, differentiation, organogenesis and stress reactions [37].
Narusaka et al. [38] found in Arabidopsis mostly stress-induction of P450, but several its forms were
repressed by some abiotic factors.

The TIFY group proteins are transcription factors involved in regulation of
phytohormone-dependent biological processes [39]. A subgroup of them, proteins with jasmonate
ZIM-domain (JAZ) repress the jasmonic acid (JA) signalization. These proteins have been induced e.g.,
by bicarbonate stress in soybean [39], by various types of abiotic and biotic stress in rice [40,41] or
Brassica rapa [42]. However, particular elements of JA-mediated defense response against cellular
pathogens are generally rather negatively influenced by viral infection [43]. Several genes coding for
TIFY proteins (TIFY 10a, TIFY 10b-like, TIFY 10c-like) were found to be repressed (1.9–2.5-times lower
expression) after CMV infection in the cv. Vanda. TIFY expression has been correlated with some plant
infections caused by geminiviruses or reoviruses [41,44], however, no data for CMV or other ssRNA
viruses were found in the literature.

2.3.2. Up-Regulation by CMV Infection

The differences between expression levels of virus-induced genes were more expressive
(1.5–22.5-fold compared to transcriptome from uninfected plants). Slightly higher expression of
ribosomal proteins reflected higher requirement on proteosynthesis in infected tissues.

SPO-11-1 (nearly 15-fold induced) is part of topoisomerase 6 complex, necessary for meiotic
recombination [45]. Exposition of plants to pathogen challenge may lead to enhanced somatic
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recombination, as demonstrated for tobacco mosaic virus (TMV)-infected tobacco [46]. Higher gene
rearrangement frequency may by an adaptive advantage in defense against pathogens [47].

Enzymes from the ubiquitous family of glutathion S-transferases (GSTs) are generally involved in
detoxification processes in living organisms. Inducibility by various stress factors (often SA-mediated)
is typical for GST genes [48]. Concerning plant-virus relation, different correlation between virus
level and plant GSTs have been detected. In tobacco plants with hypersensitive reaction to TMV
infection the GST concentration transiently dropped just before symptom creation, but thereafter
substantially increased [49]. Similarly, GST was induced after lesion development in Arabidopsis
infected by CMV [50]. During infection by Rice tungro spherical virus induction of GST genes has
been found in the resistant rice cultivar. In the susceptible cultivar several of them have been repressed
in the early state, however, later they have been induced again [51]. Up-regulation of GST during viral
infections has been repeatedly demonstrated [52,53]. It is possible that this enzyme directly supports
the replication of some viruses [54]. In the light of these facts our data showing 11-times higher GST
expression in the susceptible cucumber cultivar after CMV infection were expectable.

Derlin (6-times up-regulated) is a part of machinery for misfolded protein degradation in the
endoplasmic reticulum (ER), although detailed mechanism of its action in plants is not known [55].
Accumulation of misfolded proteins in ER induced derlin expression in rice [56]. At least for some
picornaviruses the host derlin is even essential for successful infection [57,58]. Derlin expression has
been repressed by bacterial infection of pepper [59], but induced by rhabdovirus in maize [60]. Massive
proteosynthesis during viral infection leads to ER stress and following induction of relevant proteins
including derlin [61].

Many other detected induced DEGs could be directly or indirectly bound to the virus infection,
as they have been positively correlated with plant stress reaction: signal and regulation factors
like chloroplast sigma factor-binding protein [62], sterile alpha motif-containing protein [63],
resistance protein with TIR-NBS-LRR domain [64], numerous protein kinases, proteases and parts of
proteasome [65]. It has been shown, that the 26S proteasome system participates in degradation of
TMV MP, specific inhibition experiments, however, have indicated that TMV infection rather benefits
from this process [66]. Plant aspartate protease Asp1 interacted with the begomoviral C4 protein in the
yeast two-hybrid system [67], which may indicate its activity and intervention during viral infection.
The NRT1/PTR family proteins (nitrate/peptide transporters) take part in abscisic acid transport in
plant tissues [68].

For some DEGs several forms were detected with different range of change (both up- and
down-regulated). It was the case of diacylglycerol kinase, glycerol-3-phosphate dehydrogenase,
kinesin-like protein, transcription factor WRKY, protein DETOXIFICATION, RING E3 or
ubiquitin transferase.

2.4. Mock-Inoculated Cultivars (Comparison H-/V-)

Comparison of the two CMV-free cultivars provides the information about transcriptome
differences irrespective of viral infection. It summarizes the list of genes, the presence/expression of
which could have preventive (prophylactic) influence on the CMV challenge—potential resistance
genes. The fact, that only few genes were influenced by Heliana inoculation confirmed the “non-host“
status of this cultivar as result of constitutive genome expression and implicates expectations to spot
the genes responsible for the resistant phenotype.

For 60% from the 53 analyzed DEGs (Table S3), the expression was lower in the cv. Vanda
compared to cv. Heliana. The highest detected difference concerned the UBX-domain protein 4 (PUX4),
which was not found in Vanda at all. Ubiquitin-regulating region X (UBX) proteins create a group of
cofactors of the AAA ATPase Cdc48/p97. It is an ubiquitinated protein-binding chaperon active at
degradation of misfolded proteins. The proteins with ubiquitin-regulating region X (UBX) participate
in Cdc48/p97-substrate binding, as well as in time and space regulation its activity [69]. It probably
substantially contributes to plant immunity by precise control of produced proteins in virus-attacked
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cells [70]. On the other hand, some authors presume positive influence of the ubiquitin-proteasome
system on infection by (+)ssRNA viruses by regulation of concentration of particular viral proteins [71].
Our results are in line with the former scenario, as the absence of PUX4 correlated with the susceptibility
to CMV infection. The difference was of constitutive nature, inoculation did not affect the PUX4
expression in neither cultivar. Similar correlation was found also with PUX9 (2.8-fold lower in Vanda),
other members of this group showed no significant differences. PUX4 is an eminent candidate gene
which may serve as key factor influencing the sensitivity of analyzed cucumber cultivars to the
CMV infection.

Another possible candidate is RPM1-interacting protein 4 (RIN4), an essential regulator of plant
defense reaction. RPM1 is localized in the cytoplasmic membrane where (by the medium of RIN4)
it interacts with bacterial virulent factors and induces the hypersensitive reaction and infection
elimination [72]. RIN4 interacts with integrin-like factor NDR1, which mediates the stress signalization
and modified stomatal apertures during the pathogen attack [73]. It is still not clear if this system plays
a role also at viral infections [74]. RPM1 expression was more than two-fold lower in the sensitive
cv. Vanda.

For several glycosyl transferases 1.5–3-times lower expression in cv. Vanda was detected.
These enzymes participate in creation and modification of various glycoconjugates. Repression
of glycosyl transferase led to decrease of tobacco resistance to TMV [75]. On the other hand,
its overproduction increased the resistance to potato virus Y [76]. Majority of Arabidopsis glycosyl
transferase genes have been induced by infection of several bacterial pathogens [77]. We also detected
over 10-fold increase of glycosyl transferase expression in the cv. Vanda due to CMV infection, while in
the cv. Heliana its level did not change.

Furthermore, the susceptibility to the infection reflected by other DEGs was in accord with
published data, including the nudix hydrolase [78], the lipid-transport protein [79], the resistance
protein with NB-ARC domain [80], GDSL esterase/lipase [81], MLO protein [82], annexin [83], or protein
SPO11-1 [47].

A meaningful meta-comparison, (H-/V-) vs. (V-/V+), shows how the genes influenced by infection
in the sensitive cultivar are expressed in the resistant one. When overlaps of these datasets were
investigated, totally fifteen DEGs were found (Table 2). All of them displayed opposite type of
regulation in the two datasets. In other words, CMV infection induced in the cv. Vanda such changes
that made the expression profile more similar to the cv. Heliana. Constitutive expression level of
these genes in cv. Heliana (several of them are mentioned in the Section 2.3) may contribute to its
resistant phenotype.

Table 2. Genes with opposite expression change in comparisons H-/V- and V-/V+.

ID Function
Fold Change

H-/V- V-/V+

CsGy7G013580.1 sodium/metabolite cotransporter BASS3, chloroplastic −1.68 1.58
CsGy7G019210.1 pentatricopeptide repeat-containing protein At1g15510, chloroplastic −1.62 1.71
CsGy6G013240.1 ubiquinone biosynthesis O-methyltransferase, mitochondrial 1.65 −2.06
CsGy4G018480.1 extradiol ring-cleavage dioxygenase 1.73 −1.53
CsGy2G023650.1 U-box domain-containing protein 12-like 1.83 −2.62
CsGy6G033990.1 epoxide hydrolase 1.93 −1.74
CsGy1G011590.1 sugar transporter, putative 2.29 −1.58
CsGy2G004500.1 26S proteasome regulatory subunit 6A homolog A 2.48 −2.11
CsGy7G018670.1 receptor like protein 9 2.57 −1.83
CsGy7G019140.1 serine/threonine-protein kinase receptor 3.35 −1.87
CsGy4G009730.1 receptor-like protein kinase FERONIA 4.02 −1.88
CsGy1G016880.1 sugar transporter, putative 4.88 −1.83
CsGy1G017330.1 sterile alpha motif, type 2 5.19 −2.82
CsGy4G004000.1 derlin 6.08 −1.83
CsGy4G018180.1 sigma factor binding protein 2, chloroplastic 9.84 −2.91



Pathogens 2020, 9, 145 10 of 18

2.5. CMV-Inoculated Cultivars (Comparison H+/V+)

This comparison per se (Table S4) is less informative, in fact it is combination of previously
mentioned comparisons. A meta-comparison (H-/V-) versus (H+/V+) is more interesting, as it reflects
how the differences between CMV-free cultivars changed after their inoculation by CMV (Figure 1).
A total of 34 of the 53 analyzed H-/V- DEGs did not significantly differ in the comparison H+/V+.
Most of the remaining 19 DEGs belonged to the category with H+/V+ triplicate variance higher
than 10%. Some of them, however, are mentioned in further text. Six DEGs showed equal type
of difference between cultivars, but the expression difference was more intensive after inoculation.
Three of them were more induced in the cv. Vanda—caffeoyl shikimate esterase (CSE), annexin and
alanin aminotransferase (AlaAT).

CSE was constitutively prevalent in cv. Vanda (1.8-times over cv. Heliana) and after CMV
challenge this difference increased to 4.8-fold. CSE is an enzyme essential for lignin biosynthesis,
connected with growth, as well as with defense against pathogens [84,85].

Expression difference of annexin changed after inoculation from 2.4-fold to 5-fold. Annexins
are group of proteins interacting with intracellular membranes and participating in organization of
membrane-associated protein nets and relevant Ca2+-dependent signaling [86]. Expression or activity
changes due to various types of abiotic and biotic stress may consist in their peroxidase activity or their
function as signal molecules [87]. Thiel and Varrelmann [83] discovered interaction of filamentous
annexin with the pathogenity factor P25 of beet necrotic yellow vein virus and hypothesized possible
virus-targeted signal transfer in infected plants.

AlaAT is important for nitrogen and carbon metabolism in all living cells, especially at hypoxic
stress [88], in some cases its expression has been correlated also with plant infection by viruses or
cellular pathogens. It has been induced by powdery mildew in grapevine [89]. In pepper infected by
different TMV pathotypes the AlaAT level was enhanced during incompatible interaction compared to
compatible infection [90]. In our case there was an opposite situation (enhanced expression during
compatible interaction), however, both experiments are not simply comparable (two host cultivars
versus two virus pathotypes). Other authors found induction of AlaAT in Arabidopsis by tobacco rattle
virus infection [91], which better corresponds to our data (1.5-times higher level changed after CMV
infection to 2.1-fold).

Three DEGs were lower expressed in the susceptible cultivar and this difference even deepen after
CMV challenge—genes for MRE11 protein, 7-etoxycoumarin-O-deetylase (ECOD) and protein from
the family STRUBBELING-RECEPTOR 7.

MRE11 is repair protein of double-stranded breaks which acts by the mechanism of homologous
recombination. Genome repair mechanisms are important for plant tolerance of biotic stress [92].
We recorded the change from 2.7 to 3.5-fold lower level in cv. Vanda.

ECOD (change from 1.7 to 2.5-fold lower level in cv. Vanda) is an oxidoreductase participating in
monoterpenoid synthesis [93]. It is inducible by hydrogen peroxide during rooting [94]. No connection
with pathogens or other type of stress has been observed till now.

STRUBBELING-RECEPTOR 7 family protein (change from 1.5 to 2-fold lower level in cv. Vanda)
is potential R-protein with kinase activity. Its expression has been correlated positively with resistance
of groundnut to tomato spotted wilt virus [95].

2.6. Context with Other Published Data

Comparison of transcriptomes of inoculated and control cucumber plants points the
infection-induced and repressed genes. They code for both pro-viral factors helping the virus
replication and anti-viral host defense factors. During the compatible response the expression of
both gene groups oscillates. The balance shift in favor of anti-viral products and processes results
in resistant phenotype. Several types of resistance (qualitative, quantitative, recessive or dominant
genes-mediated) have been found in plants and particular genes have been mapped, e.g., RCY1 in
Arabidopsis [96], Cmr1 in French bean [97], cmr2 in pepper [98], cmv1 in watermelon [99].
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Biological function and mechanisms of action of these genes are still poorly understood. Jian et
al. [100] discovered that the NO-producing nitrate reductase and an alternative oxidase pathway
are important for the SA-mediated defense reaction against CMV in A. thaliana. In frame of
a quantitative trait locus on the cucumber chromosome 6 ten candidate genes for CMV resistance
were recently mapped [101]. They code for several RING finger proteins including E3 ubiquitin
ligase, ethylene-sensitive and bZIP transcription factors and F box or LRR-domain containing proteins.
According to our results, none of these specific genes showed significantly high expression in the
resistant cv. Heliana, however, some functionally relative genes were found in positive correlation with
published results (RING finger proteins with 1.5–2-fold lower expression in susceptible cv. Vanda).
None of the relevant transcription factors clearly prevailed in any cultivar. It implicates potential
differences in resistance genetics for various cucumber cultivars. On the other hand, considering the
broad genetic and biological diversity within CMV [102], the specificity of virus isolate used in our
experiment could also influence the obtained results.

CMV has an extremely broad host range, thus the reactions of different species to the virus challenge
may differ considerably. Nevertheless, it is interesting that in frame of one biological species (Cucumis
sativus) such dramatic difference between cultivars, i.e., high sensitivity and complete resistance to the
same virus isolate was recorded. The majority of “omics“ works related to interaction with pathogens
focus on the early infection states as the mechanisms leading to high resistance (hypersensitive reaction
or immunity) must be initiated immediately after pathogen recognition. A detailed comparative
analysis of CMV-induced tobacco transcriptome in different infection stages (6–20 dpi) showed that
the number of DEGs more-or-less correlated with symptom manifestation [103]. Generally less data
are for disposal from later stages of compatible and incompatible reactions. Therefore, we analyzed
the plants 18 dpi when the infection of susceptible cultivar was well established with a high virus titer,
while the resistant cv. Heliana showed no indicia of infection. Based on comparison of constitutive
transcriptoms of the cultivars, potential resistance genes included especially PUX4, RIN4, MRE11 or
nudix hydrolase 2. Further verification by independent biological experiments targeting these genes
are needed. Thereafter, such genetic factors can be potentially applied in breeding programs for
virus-resistant crops.

3. Materials and Methods

3.1. Virus and Plants

CMV isolate PK1 used in this study has been originally obtained from oilseed poppy (Papaver
somniferum) plant [104]. The complete genome of RNA1, RNA2 and RNA3 segments (submitted to
Genbank under accessions MN792886, MN792887 and MN792888, respectively) was obtained by high
throughput sequencing of ribosomal-depleted total RNAs on an Illumina MiSeq platform (200-bp
paired-end sequencing). Based on the Blast and phylogenetic analyses, the PK1 isolate is assigned to
the subgroup II strain [102].

The cotyledons of C. sativus cv. Vanda and Heliana (Zelseed, Ltd.) were mechanically inoculated
before true leaves development by the CMV isolate PK1 or by PBS solution (mock). The plants were
cultivated under controlled insect-proof conditions (12 h light/12 h dark photoperiod, 55 µmol m−2 s−1

photon flux density, constant 22 ◦C temperature). Biological triplicates of the 2nd and 3rd true leaves
were sampled 18 days post inoculation (dpi) and stored at −80 ◦C until analyzed. At this time the leaf
symptoms (chlorotic spots) were fully developed in the case of infected cv. Vanda.

3.2. RNA Isolation, cDNA Library Preparation and Sequence Analysis

A total of 100 mg aliquots of stored leaf samples were ground and powdered using liquid nitrogen
homogenization followed by total RNA extraction protocol using Spectrum Plant Total RNA Kit
(Sigma). Extracted RNAs were quantified spectrophotometrically and 5 µg of total RNAs were used as
input for ribosomal depletion reaction. Ribosomal RNAs were depleted using the Ribo-Zero rRNA
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Removal Kit (Illumina, San Diego, CA, USA). Freshly depleted RNA samples were fluorometrically
quantified using Qubit™ RNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) and
40–65 ng were used for library preparation. RNA was fragmented 15 min at 94 ◦C and after reverse
transcription the cDNA was used in PCR amplification with NEBNext Multiplex Oligos for Illumina
(New England BioLabs, Ipswich, MA, USA) with 8 cycling steps. The final library was purified using
NEBNext Sample Purification Beads. The concentration of samples was determined using Qubit™
dsDNA HS Assay Kit with Qubit Fluorometer v.2 (Thermo Fisher Scientific, Waltham, MA, USA) and
fragment size assessed on Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
Finally. 2 × 150 paired end sequencing was performed using an Illumina NextSeq550 platform.

3.3. Data Analysis

Expression of individual genes from the cucumber genome (version Gy14 v2) [105] was estimated
using Salmon (version 0.7.2) [106] for each sequenced sample separately. Count vectors were aggregated
into the summary table and normalized for different sequencing depth between samples using edgeR
(version 3.12.1) [107]. The tool was also used to assess the statistical significance of a change in
expression between biological replicates of selected groups (H-, H+, V-, V+). We considered as
significantly changed only transcripts that met 2 conditions; (1) the fold change between two conditions
was at least 1.5; (2) the calculated false discovery rate was at most 0.05. GO annotations of those
transcripts [108] were summarized with REVIGO [109] for more comprehensible visual inspection
of affected functions. Data analysis processing was automated using pipelines implemented in the
SnakeLines framework (manuscript in preparation) running on the Snakemake workflow engine
(version 5.2.2) [110].

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/2/145/s1,
Table S1: Significant DEGs in cv. Heliana due CMV inoculation, Table S2: Significant DEGs in cv. Vanda due CMV
inoculation, Table S3: Significant DEGs in mock-inoculated cvs. Vanda and Heliana, Table S4: Significant DEGs in
CMV-inoculated cvs. Vanda and Heliana.
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