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Abstract: The construction industry is developing rapidly along with the acceleration of urbanization
but accompanied by an increased amount of construction and demolition waste (CDW). From the
perspective of sustainability, the existing research has mainly focused on CDW treatment or landfill
disposal, but the challenge of reverse logistics of CDW recycling that provides overall CDW route
planning for multiple participants and coordinates the transportation process between multiple
participants is still unclear. This paper develops an optimization model for multi-depot vehicle
routing problems with time windows (MDVRPTW) for CDW transportation that is capable of
coordinating involved CDW participants and suggesting a cost-effective, environment-friendly, and
resource-saving transportation plan. Firstly, economic cost, environmental pollution, and social
impact are discussed to establish this optimization-oriented decision model for MDVRPTW. Then,
a method combined with a large neighborhood search algorithm and a local search algorithm is
developed to plan the transportation route for CDW reverse logistics process. With the numerical
experiments, the computational results illustrate the better performance of this proposed method than
those traditional methods such as adaptive large neighborhood search algorithm or adaptive genetic
algorithm. Finally, a sensitivity analysis considering time window, vehicle capacity, and carbon tax
rate is conducted respectively, which provides management implications to support the decision-
making of resource utilization maximization for enterprises and carbon emission management for
the government.

Keywords: construction and demolition waste; recycling; sustainable; reverse logistics; route

1. Introduction

Construction and demolition waste (CDW) is a major component of urban solid waste,
usually generated in the process of demolition, construction, renovation, and maintenance
of buildings [1]. It’s estimated by The United Nations that 68% of the world population will
live in urban areas by 2050. With increasing urbanization, the vigorous development of the
construction industry and the improvement of community living standards bring a rapid
acceleration of the generation of CDW [2]. In recent years, as a large number of projects
have been implemented, such as large-scale infrastructure construction and transformation
and city comprehensive management, China has become the country with the largest
output of CDW in the world. According to the data from the Ministry of Housing and
Urban-Rural Development of China, the annual output of city construction waste is over
2 billion tons in 2021, which is about 10 times the amount of domestic waste generated,
accounting for 40% of the total urban solid waste. It is estimated by EPA that 600 million
tons of CDW were generated in the United States in 2018. However, the recycling rate
of CDW in China is very low, approximately 3% to 10% [3], while US is around 76% [4].
According to Eurostat, the recycling rate considering non-hazardous CDW ranges from 24%
to 100% in the EU-28, with 73% in France, 98% in UK, and 100% in Netherlands, Ireland,
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Malta and North Macedonia. Since the growth rate of CDW utilization is lagging behind
that of CDW generation, city managers have been seeking to increase the efficacy of CDW
management methods in recent years.

The CDW management is a vital part of the government’s strategy to achieve sustain-
able development [5], which includes the collection, sorting, transportation, processing,
treatment, and disposal in an organized manner. The 3R principle (i.e., reduce, reuse, and
recycle), is playing a significant role in CDW management, as the most commonly used
universal principle [6]. When it comes to the implementation of a waste reduction strategy,
it is vital for stakeholders in the construction industry to communicate and cooperate
properly and reach an agreement on the understanding of 3R [7]. After that, it is of great
importance to sort, remove or crush CDW through special equipment and select reusable
resources. Most CDW can be reused after demolition works [7]. Implementing on-site CWD
separation is one of the most important CDW recycling methods, which promotes materials
recovery and reduces waste disposal at landfill sites [8]. At present, China advocates
on-site classified disposal of CDW, which can be divided into metal, inorganic non-metal,
and other categories. No matter how efficient the reduce and reuse strategies are, the
recycling strategy is an inevitable strategy to reprocess the waste into products or materials
in CDW management. The recycling of CDW can achieve greater social, economic, and
environmental effects by conserving resources, reducing pollution, and stimulating the
economy [9]. The non-recyclable CDW is finally sent to the incineration plant or landfill.

Reverse logistics is a process to recycle used, outdated or damaged products from
customers to final treatment. As CDW is viewed as a valuable resource because many types
of construction waste can be reused or recycled, such as concrete, metal, brick, wood, paper,
glass, and rubber. Reverse logistics of CDW management is viewed as one of the essential
components to move toward sustainability [10]. On the one hand, efficient recycling of
CDW from generation sites to final disposal centers could reduce production costs by
saving natural resources. On the other hand, it could reduce CO2 emissions and landfilled
waste mitigation. However, the existing waste management suffers from high costs of trans-
portation [11]. Managers are eager to choose the optimal transportation plans, as an optimal
waste transportation plan can effectively reduce the cost of waste transportation [12,13]. An
optimal vehicle route planning can effectively bring travel cost reduction and ultimately im-
prove waste resource efficiency [14]. Hence, how to optimize the reverse logistics and find
a transportation plan for sustainable operations which considers economic, environmental,
and social benefits has arisen research attention [15,16].

This paper discusses a vehicle routing problem for reverse logistics of CDW from the
perspective of economic, environmental, and social impact, and provides a cost-effective,
environment-friendly, and resource-saving transportation scheme suitable for multiple par-
ticipants involved from CDW generation to transfer station. This could assist owners in the
decision-making of resource utilization maximization and carbon emission management in
the whole transportation process of CDW management. Therefore, the main contributions
of this paper are presented in the following aspects. First, we establish a collaborative
optimization model for multi-depot vehicle routing problems with time windows for recy-
cling construction and demolition waste from the perspective of the economy, environment,
and society. Next, we suggest a cost-effective, environment-friendly, and resource-saving
transportation plan with a hybrid adaptive neighborhood search algorithm. After that, we
discuss the computational results concerning performance analysis, time window analysis,
vehicle capacity analysis, and carbon tax rate analysis with the numerical experiments.
Finally, several useful management implications are given to support the decision-making
of resource utilization maximization for enterprises and carbon emission management for
the government.

2. Literature Review

Recycling CDW can lead to significant reductions in emissions, energy use, and global
warming potential, and conserves landfill space when compared to the disposal of wastes
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in landfills [17]. Reverse logistics has attracted the attention of a large number of scholars as
it can improve the efficiency of recycling. Therefore, CDW transportation is quite a relevant
segment of the entire CDW management system, and it is of great importance to find
suitable transportation routes. Three parts of related literature are discussed in this section:
sustainability in the construction industry, reverse logistics, and vehicle routing problems.

2.1. Sustainability in Construction Industry

The necessity of sustainable development has become a topic widely recognized by
the international community. In 2015, the United Nations formulated the 2030 Agenda for
Sustainable Development, which set out the Sustainable Development Goals (SDGs), com-
prising 17 global goals gathered from the economic, environmental, and social dimensions.
In addition, the circular economy is an essential measure for achieving sustainable devel-
opment, which aims to reduce resource input and promote the efficient use of resources.

With the increasing concern on large resource consumption in the construction in-
dustry, sustainable development has received growing attention among various parties.
Jin et al. [18] designed an empirical study on the current practice and trend of CDW manage-
ment in China and provide directions on the sustainable treatment of CDW in developing
countries. A literature review was conducted by Ghisellini et al. [19] to assess if the circular
economy approach is environmentally and economically sustainable for CDW management.
The result showed that, in most cases, the recycling of CDW at the end-of-life of a building
as well as the production of recycled products can contribute to sustainable development.
Hossain et al. [20] identified the implications, considerations, contributions, and challenges
of circular economy in the construction industry, which might promote effective implemen-
tation of the circular economy into the industry for promoting sustainable construction.
It is integral to establish a detailed relationship between the SDGs, CDW management,
and the circular economy [21]. These linkages can improve competitiveness, stimulate
innovation, and boost economic growth.

In recent years, Life Cycle Assessment (LCA) has gained increasing attention in the
building industry as it is an efficient tool to investigate sustainability. LCA focuses on
the whole life cycle of products, including production, manufacturing, use, disposal, etc.
The LCA model for evaluation of CDW management could be divided into two main
subsystems: collection and transportation, and treatment and disposal [22]. In the process
of collecting and delivering CDW, it’s of great importance to find the most appropriate
route so as to realize sustainable construction [23]. The transport distance is a significant
factor to realize environmental and economic sustainability [19]. The recycling of CDW
from building projects is beneficial to promoting the practice of sustainable development
and activating its applications within construction sectors by emphasizing its economic
and ecological benefits [24].

2.2. Reverse Logistics

With the enhancement of people’s awareness of sustainable development, people are
committed to building an environment-friendly and resource-saving society. Due to its
contribution to environmental protection and resource conservation, reverse logistics has
gradually attracted the attention of academia and enterprises.

The difference between reverse logistics and traditional forward logistics lies in the
flow direction of goods. In traditional forward logistics, goods flow from manufacturers to
intermediaries. After the interaction of intermediaries at all levels, goods are delivered to
the customers. The corresponding relationship ranges from “one to many” to “many to
many”. Conversely, reverse logistics refers to the process of returning goods from the point
of consumption back to the starting point of production [25]. Its corresponding relationship
during the period is “many to one”. In waste management, reverse logistics refers to the
process of regaining value from the generation nodes to the final disposal nodes.

Reverse logistics has attracted the attention of most researchers because of its great
significance for building an environment-friendly and resource-saving society. Nowadays,
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waste material in reverse logistics has attracted increasing attention from both academics
and practitioners. A reverse logistics network design problem was considered for end-of-
life vehicles [26,27]. Bottani et al. [28] proposed an economic evaluation of several reverse
logistics scenarios for collecting packaged food waste from the retail chain in Italy. A
multi-objective reverse logistics network was designed to manage medical waste [29,30].
Fathollahi-Fard et al. [31] gave a sustainable framework for an integrated water supply
and wastewater collection system. Reverse logistics was also applied in the sustainable
management of municipal waste collection [32].

In the construction industry, the reverse logistics of CDW has become the main re-
search object in recent years. Oliveira Neto and Correia [33] assessed the advantages of
implementing reverse logistics to recycle CDW from economic and environmental perspec-
tives. Rana and Xueqing [34] used LINGO software to solve a multi-stage network-based
model for the reverse logistics management of inert construction waste. They also pre-
sented a lean thinking-based multi-layer value stream assessment approach to assess the
overall reverse logistics network of inert construction waste management [35]. A hybrid
Genetic Algorithm is proposed to optimize vehicle route planning for CDW collection from
construction projects to recycling facilities [36]. Bi et al. [37] proposed three improvement
strategies (optimal facility choice, order sequencing, and raising load ratio) to optimize
CDW collection and transportation.

And for the objectives of reverse logistics, most of the research aims at profit maximiza-
tion or cost minimization. For example, Erfan et al. [38] proposed a two-stage stochastic
mixed-integer linear programming of reverse logistics network design considering profit
maximization. Rana and Xueqing [34] considered the minimization of the total cost at
starting nodes, intermediate nodes, and ending nodes which are composed of facility-based
cost and non-facility-based cost. With the strengthening of environmental protection, the re-
quirement of environmental objectives occurs. Santander et al. [39] formed a mixed-integer
linear programming model for plastic recycling to realize the maximization of economic and
environmental benefits, with money saved and carbon emissions reduced. Reddy et al. [40]
presented a mixed-integer linear programming model to solve a green reverse logistics
network incorporating carbon emission costs. Shahparvari et al. [41] developed a stochastic
optimization model for reverse logistics in closed-loop supply chains to minimize the over-
all costs of the network, such as costs of carbon emission, as well as opening new facilities.
Meanwhile, there are a few research considering social objectives. Budak [16] designed
a recycling network for end-of-life mobile phones by minimizing reverse logistics costs
and maximizing social goals. Safdar et al. [42] proposed a multi-objective reverse logistics
network for electronic waste management which aimed to maximize profit and minimize
carbon emissions as well as maximize the job opportunities in a reverse logistics network.

As mentioned above, due to the challenge of reverse logistics of CDW recycling, to
meet economic, environmental, and social requirements, this paper is devoted to studying
the reverse logistics of CDW recycling with the aim of minimum economic cost, minimum
environmental pollution, and minimum social impact.

2.3. Vehicle Routing Problem

Vehicle routing problems (VRP) as one of the most critical problems in logistics net-
work design, is a classic optimization problem in operations research, composed of multiple
participants such as vehicles, depots, and customers [43]. By planning a reasonable trans-
portation route, an objective such as minimum cost, shortest time, or shortest distance can
be achieved with the requirements of customer satisfaction and other constraints (e.g., vehi-
cle capacity limitation, vehicle quantity restriction, vehicle driving distance limitation, etc.).

In recent decades, VRP has attained massive popularity as it is close to real-life scenes.
A proper solution of VRP could bring high logistics efficiency and low logistics cost. For
different constraints, many subproblems have been derived from traditional VRP.
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2.3.1. Vehicle Routing Problem with Time Windows (VRPTW)

VRPTW is a variant of VRP considering time windows for customer satisfaction. The
time window is usually divided into a hard time window and a soft time window. Under
the constraint of a hard time window, if one vehicle reaches the customer early, the vehicle
has to postpone the beginning of the service until the time window opens [44]. If one
vehicle arrives after the end of the time window, the vehicle can only return with the
undelivered goods. Besides, a soft time window is also frequently adopted. Under the
constraint of a soft time window, if one vehicle arrives early or late, the vehicle can deliver
goods to the customer, but certain compensation is required.

2.3.2. Multi-Depot Vehicle Routing Problem (MDVRP)

MDVRP discusses the routing problem in which multiple depots provide services to
customers by reasonably dispatching vehicles and selecting appropriate driving routes.
Generally, exact algorithms or heuristic algorithms can be used to solve MDVRP. Exact
algorithms were used to solve MDVRP studied by Contardo and Martinelli [45] and Lalla-
Ruiz et al. [46]. However, heuristic techniques seem to be more viable to find the optimal
solution for MDVRP [47]. There were some studies for MDVRP using heuristic algorithms,
such as genetic algorithm [48–50], variable neighborhood search algorithm [47,51,52], and
large neighborhood search algorithm [53,54]. Although the genetic algorithm has a good
global search ability, it is easy to fall into local optimum, and cannot solve large-scale
computational problems well. The search range of the variable neighborhood search
algorithm in the solution space is large, but it also has large randomness, which is prone to
producing poor results. In the large neighborhood search algorithm, the destroy operator
and repair operator can be used to accelerate the generation of a better solution, but it is
easy to fall into local optimal.

2.3.3. Multi-Depot Vehicle Routing Problem with Time Windows (MDVRPTW)

Based on MDVRP and VRPTW, researchers began to study MDVRPTW which was
firstly proposed by Cordeau et al. [55]. Dondo and Cerdá [56] proposed a hybrid lo-
cal improvement algorithm for large-scale MDVRPTW to minimize total service cost.
Bettinelli et al. [57] presented a branch-and-cut-and-price algorithm for the exact optimiza-
tion of a multi-depot heterogeneous vehicle routing problem with a time window. Bae and
Moon [58] developed a heuristic algorithm and a hybrid genetic algorithm for MDVRPTW
considering delivery and installation vehicles to minimize the total relevant cost of depots,
vehicles, transportation, and labor. Zhen et al. [59] studied a mixed integer programming
model to minimize total traveling and service time for the last-mile distribution networks.
Wang et al. [60] designed a hybrid genetic algorithm with tabu search to solve a multi-depot
pickup and delivery vehicle routing problem under time window constraints. Fan et al. [61]
applied a hybrid genetic algorithm with variable neighborhood search for MDVRPTW
considering speed changes and road types.

In recent years, route planning for a fleet of vehicles in reverse logistics has attracted
attention from researchers. Hannan et al. [62] proposed a particle swarm algorithm to
determine the route optimization solutions for solid waste in a capacitated VRP model.
To collect returned goods, Foroutan et al. [63] applied a simulated annealing algorithm
in order to find near-optimal solutions. Emre and Umut [64] gave a short transportation
route for medical waste vehicles. To recycle municipal solid waste, Mojtahedi et al. [65]
built a sustainable routing optimization model based on the financial, environmental, and
social goals. Marampoutis et al. [66] studied a multi-objective VRP with several real-life
constraints in reverse logistics management of refillable glass bottles.

The recycling of CDW is of great importance to promote the practice of sustainable
development. An optimal vehicle route planning can effectively reduce travel costs and
ultimately improve waste resource efficiency. However, from the literature, little attention
has been given to VRP in the construction industry, especially to the reverse logistics of
CDW recycling. Hence, this paper tries to propose an optimization model on MDVRPTW
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for the reverse logistics process of CDW recycling from the perspectives of economic effect,
environmental effect, and social effect. A method combined with a large neighborhood
search algorithm and a local search algorithm is developed to plan the transportation route
for CDW reverse logistics process.

3. Problem Description

The transfer station as an intermediate station can increase the efficiency of the waste
management system [67]. The transfer station recycles and transfers CDW from scattered
CDW generation sites. As shown in Figure 1, transfer stations play a vital role in the con-
nection of CDW generation sites and final facilities. Different types of CDW are expected to
be treated in specific different ways [68]. Therefore, on-site sorting is implemented at CDW
generation sites, where CDW can be divided into three categories: directly recycled, repro-
cessed, or landfilled according to their characteristics. After that, all CDW are transported
centrally to the transfer station, which can effectively save transportation costs.
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Considering an MDVRPTW of CDW recycling, a reverse logistics system is illustrated
in Figure 2. The reverse logistics system of CDW in this problem is composed of two
participants, including CDW generation sites and transfer stations. At CDW generation
sites, CDW is generated, such as construction sites of new-build, rebuild, demolition or
expansion. At transfer stations, all CDW transported from CDW generation sites are
classified and collected according to CDW management specifications. An example is
shown in Figure 2, there are 25 CDW generation sites, each with a random number from
1–25, and 3 transfer stations named T1, T2 and T3 respectively. CDW is transported directly
from CDW generation sites to transfer stations by vehicles. A transfer station can handle
CDW from multiple CDW generation sites. The relationship between them is viewed as
“many-to-one”. In this paper, all vehicles start and return to transfer stations.
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For this MDVRPTW, there are some assumptions given below.

(1) The location and quantity of CDW generation points, transfer stations, recycling
centers, and disposal plants are known.

(2) Each vehicle departs from the transfer station at the beginning and returns to the
transfer station after completing the recycling tasks.

(3) Each CDW generation site can be serviced by only one vehicle.
(4) The fleet of vehicles is homogeneous.
(5) Traffic jam is ignored.

4. Model and Solution Method
4.1. Model Construction

Due to the challenge of reverse logistics of CDW recycling that provides a CDW route
plan for multiple participants and coordinates the transportation process between them,
this paper is devoted to building an optimization model for MDVRPTW which could
coordinate relevant CDW participants and plan a cost-effective, environment-friendly and
resource-saving transportation route.

4.1.1. Symbols and Notations

Hence, the proposed mathematical model takes economic, environmental, and social
effects into consideration. In this paper, the economic effect is represented by time penalty
cost, vehicle fixed cost, and vehicle variable cost. Besides, the environmental effect is
estimated by carbon emission cost as diesel vehicles are generally used to transport CDW.
The social effect is represented by the emotional compensation cost of people along the
routes and sites [69]. The objective function of this proposed optimization model is to
minimize the total cost consisting of economic, environmental, and social costs. The related
notations are given in Table 1.
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Table 1. Related notations for pr01 benchmark instance.

Sets:

N = (V, A) the transportation network of nodes V and arcs A
G = {1, 2 . . . , g} the CDW generation sites, G ∈ V
C = {1, 2, . . . , c} the transfer stations, C ∈ V
H = {1, 2, . . . , h} the fleet of collection vehicles

Parameters:

fh: the fuel consumption per unit distance of an empty vehicle h ∈ H
f ′h: the fuel consumption per unit distance of a vehicle h ∈ H with a full load
k: the unit fuel consumption cost
f ch: the fixed cost for using a vehicle h ∈ H
d: the driver cost per time unit
caph: the maximum capacity of the vehicle h ∈ H
disij: the traveling distance from the node i ∈ G to node j ∈ C
vij: the traveling speed between node i ∈ G and node j ∈ C
u: the carbon tax rate
w: the carbon emissions per unit of fuel consumed
pdi: the population density in the neighborhood of the node i ∈ G
θi: the impact radius of the node i ∈ G
pd′ ij: the population density in the link from a node i ∈ G to node j ∈ C
λ: the emotional compensation cost of each person
qi: the amount of CDW at the CDW generation site i ∈ G
ei: the earliest service time of CDW generation site i ∈ G
li: the latest service time of the CDW generation site i ∈ G
bj: the latest service time of the transfer station j ∈ C
ti: the service time pe of CDW generation site i ∈ G
pe: the penalty cost per unit time for vehicles arriving earlier than ei at the CDW generation site i ∈ G
pl: the penalty cost per unit time for vehicles arriving later than li at the CDW generation site i ∈ G
pb: the penalty cost per unit time for vehicles arriving later than bj at the transfer station j ∈ C
tha
i : the time when the vehicle h reaches the CDW generation site i ∈ G

thl
i : the time when the vehicle h leaves the CDW generation site i ∈ G

thb
j : the time when the vehicle h goes back to the transfer station j ∈ C

Decision variables:

xijh: equals to 1 if the vehicle h travels from node i to j; 0 otherwise
vh: equals to 1 if the vehicle h is used; 0 otherwise

4.1.2. Object Functions

As this paper discusses the economic effect, environmental effect, and social effect of
MDVRPTW for the reverse logistics process of CDW recycling, the corresponding economic
cost, environmental cost, and social cost are considered in this proposed model to obtain a
cost-effective, environment-friendly, and resource-saving transportation plan.

Firstly, the economic costs including vehicle fixed cost, penalty cost, and vehicle
variable cost are given below.

(1) Vehicle cost

Once a vehicle is put into use, the corresponding fixed costs including depreciation,
repairing, and maintenance of vehicles are required. Hence, the vehicle fixed cost VC can
be expressed as

VC = ∑i∈G ∑j∈C ∑h∈H f chvh (1)

(2) Penalty cost

As customers always want to be served at the right time, according to time window
constraints, this paper introduces a corresponding penalty cost. [ei, li] is set to be a desired
service period for CDW generation site i, which means there is no penalty cost if the
customer is served in this period. However, if the vehicle reaches earlier than ei or later
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than li, the corresponding penalty cost will be incurred. Moreover, if the vehicle returns to
transfer stations beyond the time window, a penalty cost should also be paid. Hence, the
penalty cost PC considering the time window constraint is given as

PC = ∑i∈G max((ei − tha
i )pe, 0) + ∑i∈G max((thl

i − li)pl , 0) + ∑j∈C max((thb
j − bj)pb, 0) (2)

(3) Variable cost

The variable cost of a vehicle traveling along a route mainly depends on distance
and load. Transportation costs and driver wages account for a vital part of the whole
transportation process.

Here, the transportation cost from node i ∈ G to node j ∈ C is as follows

ct = ∑i∈G ∑j∈C qikijxij (3)

The driver’s wages depend on the total traveling time of routes, which is expressed as

dw = ∑i∈G ∑j∈C ddisij/vijxij (4)

Hence, the total vehicle variable cost FC can be expressed as

FC = ∑i∈G ∑j∈C qikijxij + ∑i∈G ∑j∈C ddisij/vijxij (5)

Secondly, for the environmental cost, carbon emission cost is given as below.

(4) Carbon emission cost

CDW has multiple negative impacts on the environment, including land use, landfill
consumption, the pollution of soil, water, and air, resource consumption, etc. In the
process of recycling CDW, a large number of harmful pollutants that are harmful to the
environment, such as nitrogen oxides, hydrocarbons, carbon monoxide, and particulate
matter, are released. The environmental pollution caused by the driving process mainly
includes two parts: solid particle pollution and gaseous gas pollution.

As total greenhouse gas emissions continue to increase, more and more serious conse-
quences for the environment and public health are likely to occur, such as food production
risks, sea-level rise hazards, and global ecological balance disruption. An increasing
number of governments turn carbon neutrality into national strategies, and more than
110 countries are determined to achieve the carbon-neutral target by 2050 [70]. It is esti-
mated by International Energy Agency that the building industry accounts for nearly 40%
of total direct and indirect CO2 emissions. In this paper, carbon emission costs are used
to estimate the bad effects of gaseous gas pollution in the transportation process for the
reverse logistics of CDW recycling, which can be viewed as the tax imposed on carbon
emission. As carbon emission of the transportation process comprises an empty vehicle and
a loaded vehicle, based on the research of Qian and Eglese [71] and Cai et al. [72], carbon
emission could be considered in direct proportion to fuel consumption. Diesel engines
have found broad use in transporting CDW and a standard CO2 emission for diesel fuel is
2.61 kg/L [65]. Following Xiao et al. [73] and Mojtahedi et al. [65], this paper adopts fuel
consumption rate (FCR) to study fuel consumption, which considers fuel consumption per
unit distance under two kinds of vehicle load conditions: empty load and full load. When
the vehicle’s unloaded weight is Qvehicle and the shipped load is Q1, we can formulate the
FCR as a linear function dependent on load Q1 approximately as

f (Q1) = a(Qvehicle + Q1) + b (6)

Therefore, the vehicle’s FCR with a full load can be expressed as

f ′h = aQ f ull + b (7)
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The vehicle’s FCR with an empty load can be expressed as

fh = aQvehicle + b (8)

By considering these two vehicle load conditions, when the shipped load is Q, FCR
can be expressed as

f (Q) = fh +
(

f ′h − fh
)
Q/caph (9)

Hence, the carbon emission cost CC for a vehicle from node i to node j under a load of
Q is formulated as

CC = ∑i∈G ∑j∈C ∑h∈H uw
(

fh +
(

f ′h − fh
)
Q/caph

)
disijxijh (10)

At last, for the social cost, the emotional compensation cost is given below.

(5) Emotional compensation cost

The use of vehicles and machinery in the recycling process may also bring some negative
effects, including dust and noise pollution. The research conducted by Lampert et al. [74]
explained that negative emotions including anger, anxiety, sadness, and stress could trigger
atrial fibrillation. Thacher et al. [75] found that transportation noise was associated with
a small increase in atrial fibrillation risk. In the process of CDW recycling, noise and
dust will inevitably cause negative emotions to surround residents due to loading and
unloading operations and vehicle operating. Moreover, in the transportation process,
recycling vehicles will also bring some negative emotions when they come into people’s
sight. Hence, emotional compensation costs could be built to realize the minimum total
social effect which includes the total site effect for people living around CDW generation
sites and the transportation effect for all routes between CDW generation sites and transfer
stations. Based on this, the emotional compensation cost is related to population density,
and can be divided into two parts: emotional compensation cost in transportation and
emotional compensation cost in sites.

The emotional compensation cost in transportation is defined as

rt = ∑i∈G ∑j∈C λpd′ ijdisij (11)

The emotional compensation cost in sites is defined as

rl = ∑i∈G λpdiπθ2 (12)

Hence, the total negative emotional compensation cost EC can be calculated as

EC = ∑i∈G ∑j∈C λpd′ ijdisij + ∑i∈G λpdiπθ2 (13)

4.1.3. The MDVRPTW Model

According to the cost analysis, the objective function with the aim to minimize the
total cost TC is given as

min TC = VC + PC + FC + CC + EC (14)

There is

=
min
∑

i∈G

TC
∑

j∈C
∑

h∈H
f chvh + ∑

i∈G
max((ei − tha

i )pe, 0) + ∑
i∈G

max((thl
i − li)pl , 0)

+ ∑
j∈C

max((thb
j − bj)pb, 0) + ∑

i∈G
∑

j∈C
qikijxij + ∑

i∈G
∑

j∈C
ddisij/vijxij

+ ∑
i∈G

∑
j∈C

∑
h∈H

uw( fh + ( f ′h − fh)Q/caph)disijxijh + ∑
i∈G

∑
j∈C

λpd′ ijdisij

+ ∑
i∈G

λpdiπθ2

(15)
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Subject to
∑i∈G ∑j∈C xijh = 1, ∀h ∈ H (16)

∑i∈C ∑j∈C xijh = 1, ∀h ∈ H (17)

∑i∈G ∑j∈C xijh −∑i∈G ∑j∈C xjih = 0, ∀h ∈ H (18)

∑i∈G ∑j∈C qixxjh ≤ caph, ∀h ∈ H (19)

ei ≤ tha
i ≤ li, ∀i ∈ G, ∀h ∈ H (20)

thb
j ≤ bj, ∀j ∈ C, ∀h ∈ H (21)

xijh ∈ {0, 1}, ∀i ∈ G, ∀j ∈ C, ∀h ∈ H (22)

yjh ∈ {0, 1}, ∀j ∈ C, ∀h ∈ H (23)

Here, Equation (16) ensures that all CDW generation sites are visited once. Equation (17)
guarantees no vehicle can travel between two transfer stations. Equation (18) means each
vehicle begins and finishes at the same node. Equation (19) guarantees a load of vehicles is
no more than its capacity. Equation (20) is the time windows constraint of CDW generation
site i (i ∈ G). Equation (21) is the time constraint of transfer station j (j ∈ C). Equations (22)
and (23) state the binary restrictions of the decision variables.

4.2. Model Solution

VRP and its variants derived from the Traveling Salesman Problem (TSP) belong to
NP-hard problems [76]. Adaptive large neighborhood search (ALNS) is a variant of large
neighborhood search, which was proposed by Ropke and Pisinger [77] firstly. Yu et al. [78]
proposed that ALNS had an excellent performance in solving various real-world transporta-
tion problems, such as the orienteering problem and vehicle routing problems. According
to the literature review, the ALNS is one of the best-preferred algorithms to address the
MDVRPTW. Hence, this paper introduces a hybrid adaptive neighborhood search algo-
rithm (HALNS) to solve the VRP from multiple CDW generation sites to multiple transfer
stations.

This paper proposes two destroy operators (i.e., random destroy and worst destroy)
and three repair operators (i.e., random repair, greedy repair, and regret repair). Besides
the multiple groups of destroy operators and repair operators, seven types of local search
operators are used to expand the search range of solution space. An adaptive method is
applied to update the weight of the operators, and the acceptance criteria of the simulated
annealing framework are used to further optimize the initial solution until the maximum
number of iterations is reached.

Figure 3 shows the flow chart of HALNS. In the beginning, the initial parameters are
set and the initial solution S1 is generated which is taken to be the optimal solution. Then,
it comes to the iterative process. In each iteration, scores of the destroy operator, the repair
operator, and the selected times are updated. The roulette method is used to select destroy
and repair operators. After performing the destroy and repair operations, a new solution
S2 is generated. By comparing S2 and S1 as well as the value of the objective function,
scores of the destroy operator and repair operator are dynamically adjusted. This process is
accompanied by the updated optimal solution, and the idea of simulated annealing is used
to accept the poor solution with probability, where T represents the initial temperature, and
α represents the cooling ratio. When the number of iterations and the maximum number of
iterations are equal, the algorithm stops.
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4.2.1. Initiation

Firstly, the maximum number of iterations P, the initial temperature T, and the cooling
rate α are set. In the initial stage of annealing, a large value T is used to make all transition
states acceptable at the beginning. T is gradually reduced with α as the annealing progresses.
α is a positive number less than 1, generally between 0.8 and 0.99. Then the generated point
sequence is randomly shuffled. By considering the constraints of vehicle capacity and time
window, vehicles are allocated to transfer stations. Finally, the initial vehicle driving route
and the required number of vehicles can be obtained.

4.2.2. Destroy Operators

Two destroy operators: random destroy and worst destroy are performed within the
proposed HALNS algorithm, which is explained as follows. An initial feasible solution
becomes an incomplete solution after performing destroy operation. It could be seen in
Figure 4, that a shorter route with two CDW generation sites unserved by vehicles is
obtained after performing destroy operation. The initial solution in Figure 4 is a part of
Figure 2, with 10 CDW generation sites and a transfer station T1.

(1) Random destroy

The random destroy aims to increase the diversity of the search process. In this paper,
a random number between rmin and rmax is generated, where rmin represents the minimum
degree of destruction and rmax represents the maximum degree of destruction. Then, this
random number is multiplied by the number of CDW generation points, and the number of
generation points to be removed by rounding is obtained. Finally, CDW generation points
of these quantities are removed randomly.

(2) Worst destroy

The purpose of worst destroy is to remove the CDW generation points with great
contribution to the objective. First, calculate the difference between the original objective
value and the objective value after removing a CDW generation point. Then randomly
generate a number between rmin and rmax, and calculate the product of this number and
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the number of CDW generation points. Finally, sort the differences in descending order,
and remove the previous part of the CDW generation points of the product number.
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4.2.3. Repair Operators

The repair operation can make the solution after the destroy operation to be feasible.
Three repair operators: random repair, greedy repair, and regret repair are presented below.
After the destroy operation in Figure 4, Figure 5 shows a better solution through the repair
operation which shows the solution after the reinsertion of the previously unserved CDW
generation sites into tours.
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(1) Random repair

The removed CDW generation points are inserted into the assigned node sequence randomly.

(2) Greedy repair

The removed CDW generation points are inserted into the assigned node sequence
in turn. The objective function is calculated to obtain the increment size of each solution.
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Then, the CDW generation point with the smallest increment and the insertion position is
selected until all the removed CDW generation points are reinserted.

(3) Regret repair

The difference in the objective function value between the optimal solution and the
solution when the CDW generation point is inserted back to the σ sub-optimal position is
calculated. After summing the difference up, the CDW generating point with the largest
sum and its optimum location is selected.

4.2.4. Roulette Selection

The roulette wheel method is used to select destroy operator and repair operator. The
probability that the operator is selected is proportional to its weight. First, the weight wi of
each operator is calculated. Hence, the proportion pi of each operator in the total weight of
all operators can be obtained as

pi = wi/ ∑n
i=1 wi (24)

Then, the cumulative weight qj of each operator is calculated as

qj = ∑i
j=1 pj (25)

Finally, a sample value r ∈ [0, 1) is generated randomly. If qi > r, the i-th operator is
selected.

4.2.5. Local Search

In order to get better solutions, seven types of local search operators are proposed.
Figure 6 represents an example, and some local search operators are implemented on the
initial solution. The initial solution in Figure 6 is a part of Figure 2, with 10 CDW generation
sites and a transfer station T1.

Move_1: select a node in the current solution randomly and remove this node to a
new position after the node randomly. An example is given in Figure 6a, node 1 is selected
randomly, and a new solution is obtained.

Move_2: select two non-adjacent nodes in the current solution randomly and move
the nodes between the selected first node and the second node backward in one position.
Then, move the selected second node to the position after the selected first node. As shown
in Figure 6b, node 3 and node 21 are randomly selected to obtain a new solution.

Move_3: select two non-adjacent nodes in the current solution randomly and move
the nodes between the selected first node and the selected second node forward. Then,
move the selected first node to the position after the selected second node. As shown in
Figure 6c, node 12 and node 8 are selected randomly, and a new solution is obtained.

Swap_1: select two nodes in the current solution randomly and exchange the positions
of the two nodes. Node 21 and node 25 are selected randomly, and a new solution is
obtained in Figure 6d. The number of vehicles is reduced from three to two.

Swap_2: select two nodes in the current solution randomly and swap the selected
second node with its following nodes. Then, swap the selected first node with its following
nodes. In Figure 6e, node 25 and node 17 are selected randomly to get a new solution.

Reverse_1: select two nodes in the current solution randomly and exchange the
positions of these two nodes and reverse the nodes between the swapped ones. Node 3
and node 24 are selected randomly in Figure 6f, and a new solution is obtained.

Reverse_2: in addition to Reverse_1, reverse the selected second node and its following
nodes first, then reverse the selected first point and its following nodes. The final solution
is shown in Figure 6g, the node 3 and node 16 are selected randomly.
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4.2.6. Adaptive Mechanism

At first, all operators have the same weight and score. In the iterative process, the
score is given in a stepwise manner according to the different performances of the operator,
and the score is proportional to the performance of the operators. Then, this paper sets four
classifications as follows:

The new solution S2 is better than the current solution S1 and the best solution Sb, that
is, the solution is updated by S1 = S2 and Sb = S2 after destroying or repairing the operator.
In this case, r1 is added to the score of operators.

The new solution S2 is worse than the current best solution, Sb, but better than the
current solution S1, that is, the current solution is updated by S1 = S2 after destroying or
repairing the operator. In this case, r2 is added to the score of operators.
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Although the new solution S2 is worse than the current solution S1, it satisfies the
Metropolis criterion of simulated annealing algorithm, that is, the current solution S1 is
updated by S1 = S2. In this case, r3 is added to the score of operators.

The new solution S2 is worse than the current solution S1, and it does not meet the
Metropolis criteria of simulated annealing algorithm, that is, the new solution S2 is not
accepted. In this case, r4 is added to the score of operators.

Finally, the weight of operators is updated adaptively so as to improve the optimization
ability of this proposed algorithm, shown as

wi =

{
wi , si = 0

(1− β)wi + β(si/ui) , si > 0
(26)

where si is the operator score and ui is the number of times the operator is used. β is
the reaction factor of action weight which influences the speed of weight change, where
β ∈ [0, 1]. The larger the value of β is, the more the weight depends on the previous
performance of the operator.

4.2.7. Metropolis Criteria

After performing destroy and repair operations, a new solution S2 is generated. Com-
paring the value of the objective function solved by S2 and the original solution S1, there
is θ = obj(S2)− obj(S1), where θ is the difference. The probability of accepting the new
solution S2 is determined according to the size of θ and 0.

p =

{
1 , θ < 0

Exp(−θ/T) , θ ≥ 0
(27)

If θ < 0, the new solution is accepted as the current solution (i.e., S1 = S2). Otherwise,
the new solution is accepted under probability Exp(−θ/T). Using the Metropolis criteria
to accept inferior solutions at a certain probability can avoid falling into the local optimum.

5. Numerical Experiments
5.1. Parameter Setting

After a series of testing experiments, the parameters of MDVRPTW are set, as shown
in Table 2.

Table 2. The relevant parameters of the model.

Parameters Value

fh 0.16 L/Km
f ′h 0.2 L/Km
k 5.6 RMB/L

f ch 80 RMB
w 2.61 kg/L
u 0.5 RMB/kg
pe 1 RMB/min
pl 1 RMB/min
pb 2/3 RMB/min
λ 1.3 RMB/person

The difference between HALNS and ALNS lies in that ALNS does not implement local
search operators. Therefore, the parameters for ALNS and HALNS are the same as shown
in Table 3.
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Table 3. The relevant parameters of HALNS.

Parameters Description Value

P The maximum number of iterations 1000
T The initial temperature 1000
α The cooling ratio 0.99
β The reaction factor of action weight 0.1

rmin The minimum degree of destruction 0.1
rmax The maximum degree of destruction 0.4

σ The number of best insertions 5
r1 The operator score when θ < 0 and Sb ≥ S2 15
r2 The operator score when θ < 0 and Sb < S2 9
r3 The operator score when θ ≥ 0, but accept 4
r4 The operator score when θ ≥ 0, but does not accept 1

Compared with a genetic algorithm, an adaptive genetic algorithm (AGA) can adap-
tively adjust the crossover probability and mutation probability to maintain the population
diversity and ensure the convergence of the algorithm. Hence, the fitness function in this
paper is described as

fi =
1

TCi
(28)

The parameters of AGA are given: the number of the initial population pop is 100, the
number of iterations n is 5000, the selection probability s is 0.9, the minimum crossover
probability pc1 is 0.1, the maximum crossover probability pc2 is 0.9, the minimum mutation
probability pm1 is 0.001, the maximum mutation probability pm2 is 0.1.

Then, the crossover probability can be calculated as

pc =

{
pc1+pc2

2 + pc1−pc2
2 sin( f− favg

fmax− favg
· π

2 ) , favg ≤ f
pc1 , favg > f

(29)

And the mutation probability can be calculated as

pm =

{
pm1+pm2

2 + pm1−pm2
2 sin( f− favg

fmax− favg
· π

2 ) , favg ≤ f
pm1 , favg > f

(30)

where favg is the average fitness, and fmax is the maximum fitness.

5.2. Basic Data

In this paper, the dataset proposed by Cordeau et al. [79] is applied. The dataset
is composed of 20 instances (pr01–pr20), which originated from 10 instances (p01–p10)
established by Cordeau et al. [80]. The time windows for MDVRPTW are set randomly. Set1
(pr01–pr10) adopts tighter time windows, and Set2 (pr11–pr20) adopts wider time windows.

Table 4 shows the data of pr01. There are four transfer stations and 48 CDW generation
sites. The first column shows the name of nodes. The other columns give their location
coordinates (X, Y), amount of CDW (Q), the earliest time to start service (ET), the last time
to start service (LT), and service time (T).
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Table 4. Information for pr01 benchmark instance.

Node X Y Q ET LT T

T1 4.163 13.559 0 1000
T2 21.387 17.105 0 1000
T3 −36.118 49.097 0 1000
T4 −31.201 0.235 0 1000
1 −29.73 64.136 12 399 525 2
2 −30.664 5.463 8 121 299 7
3 51.642 5.469 16 389 483 21
4 −13.171 69.336 5 204 304 24
5 −67.413 68.323 12 317 458 1
6 48.907 6.274 5 160 257 17
7 5.243 22.26 13 170 287 6
8 −65.002 77.234 20 215 321 5
9 −4.175 −1.569 13 80 233 7

10 23.029 11.639 18 90 206 1
11 25.482 6.287 7 397 525 4
12 −42.615 −26.392 6 271 420 10
13 −76.672 99.341 9 108 266 2
14 −20.673 57.892 9 340 462 16
15 −52.039 6.567 4 226 377 23
16 −41.376 50.824 25 446 604 18
17 −91.943 27.588 5 444 566 3
18 −65.118 30.212 17 434 557 15
19 18.597 96.716 3 319 460 13
20 −40.942 83.209 16 192 312 10
21 −37.756 −33.325 25 414 572 4
22 23.767 29.083 21 371 462 23
23 −43.03 20.453 14 378 472 20
24 −35.297 −24.896 19 308 477 10
25 −54.755 14.368 14 329 444 4
26 −49.329 33.374 6 269 377 2
27 57.404 23.822 16 398 494 23
28 −22.754 55.408 9 257 416 6
29 −56.622 73.34 20 198 294 8
30 −38.562 −3.705 13 375 467 10
31 −16.779 19.537 10 200 338 7
32 −11.56 11.615 16 456 632 1
33 −46.545 97.974 19 72 179 21
34 16.229 9.32 22 182 282 6
35 1.294 7.349 14 159 306 4
36 −26.404 29.529 10 321 500 13
37 4.352 14.685 11 322 430 9
38 −50.665 −23.126 15 443 564 22
39 −22.833 −9.814 13 207 348 22
40 −71.1 −18.616 15 457 588 18
41 −7.849 32.074 8 203 382 10
42 11.877 −24.933 22 75 167 25
43 −18.927 −23.73 24 459 598 23
44 −11.92 11.755 3 174 332 4
45 29.84 11.633 25 130 225 9
46 12.268 −55.811 19 169 283 17
47 −37.933 −21.613 21 115 232 10
48 42.883 −2.966 10 414 531 17

5.3. Results Discussion

In this section, we analyze the performance of proposed HALNS with ALNS and AGA
first. After that, we examine the effects of different time windows on transport routes using
two sets. Based on benchmark pr01, the sensitivity analysis is conducted to explore the
impact of vehicle capacity and carbon tax rate.
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5.3.1. Performance Analysis

The computational results tested on dataset pr01 of AGA, ALNS, and HALNS are
shown in Table 5. It can be seen that HALNS performs better than AGA and ALNS. The
total cost of HALNS is minimum in the optimal results and is 22.20% and 3.83% less
than AGA and ALNS respectively. Under the optimal results, the vehicle cost, the time
penalty cost, the variable cost, the carbon emission cost, and the emotional compensation
cost of HALNS are all less than AGA and ALNS. In the average results, the total cost of
HALNS improves by −23.43% and −1.08% than AGA and ALNS. About four vehicles
are needed for ALNS and HALNS under the average results but six vehicles for AGA.
The vehicle cost, the time penalty cost, the variable cost, the carbon emission cost, and the
emotional compensation cost of HALNS are 33.33%, 63.51%, 20.35%, 20.35%, and 6.83%
less than AGA respectively. The vehicle cost, the time penalty cost, the variable cost, the
carbon emission cost, and the emotional compensation cost of ALNS are 0.81%, 20.99%,
1.01%, 1.01%, −0.95% greater than HALNS respectively. The reason why the emotional
compensation cost of ALNS is lower than HALNS may be its high population density.

Table 5. Comparison results of three algorithms.

Algorithm VC PC FC CC SC TC

Optimal AGA 720 47 1468.41 342.19 310.75 2888.34
ALNS 480 77 1242.24 289.49 247.81 2336.54

HALNS 480 40 1207.49 281.39 238.11 2246.99

Average AGA 746.67 88 1585.79 369.55 295.11 3085.12
ALNS 501.82 40.64 1275.99 297.35 272.34 2388.13

HALNS 497.78 32.11 1263.08 294.34 274.94 2362.26

Note: Optimal is the best solution obtained of 10 runs, Average is the average result of 10 runs of the algorithm.
The best result of the three algorithms is bold.

Meanwhile, Figures 7–9 present the convergence curve respectively which state
HALNS has better convergence than AGA and ALNS. Under the AGA algorithm, conver-
gence occurs at about 2700 iterations, while 600 iterations for ALNS, and 400 iterations for
HALNS, which further verifies the optimization ability of the ALNS algorithm. The result
of the optimal route obtained by HALNS is given in Figure 10. As we can see, in the case
of 48 CDW generation sites and four transfer stations, six routes are required to reach the
optimal solution. The six routes are as follows:
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Route 1: T1-9-42-46-39-2-44-31-37-22-T1.
Route 2: T2-27-3-48-11-T2.
Route 3: T2-34-10-45-6-T2.
Route 4: T3-13-33-20-8-29-26-15-25-23-5-17-18-16-T3.
Route 5: T4-30-12-21-24-38-40-T4.
Route 6: T5-47-35-7-41-28-4-19-1-14-36-32-43-T5.

5.3.2. Time Window Analysis

As the choice of time window greatly affects the solution of the transportation plan, the
experiments are made with the datasets: Set1 (pr01, pr02, pr07, pr08) and Set2 (pr11, pr12,
pr17, and pr18). The results are shown in Table 6 presents different results of eight datasets
under three algorithms. The results illustrate the effectiveness of HALNS is superior to
AGA and ALNS in each dataset. Compared with Set2, the vehicle cost, the time penalty
cost, the variable cost, the carbon emission cost, the emotional compensation cost, and the
total cost of Set1 are higher than Set2 due to its tight time windows.

Table 6. Comparison results of different benchmarks.

Dataset Algorithm VC PC FC CC SC TC

pr01 AGA 720 47 1468.41 342.19 310.75 2888.34
m = 48, n = 4 ALNS 480 77 1242.24 289.49 247.81 2336.54

HALNS 480 40 1207.49 281.39 238.11 2246.99

pr02 AGA 960 173 2683.94 741.97 990.06 5548.97
m = 96, n = 4 ALNS 800 23 2159.89 503.33 824.36 4310.59

HALNS 720 24 2197.14 512.01 798.70 4251.86

pr07 AGA 1520 165 2113.70 492.57 661.60 4952.87
m = 72, n = 6 ALNS 720 24 1792.87 417.80 568.21 3522.88

HALNS 640 47 1746.81 407.07 537.94 3378.82

pr08 AGA 2240 250 4811.90 1121.34 1399.59 9822.83
m = 144, n = 6 ALNS 1360 51 3190.27 743.45 1044.25 6388.96

HALNS 1280 65 3107.79 724.23 953.09 6130.10

pr11 AGA 640 34 1367.90 318.77 273.64 2634.32
m = 48, n = 4 ALNS 400 5 1006.22 234.49 203.90 1849.61

HALNS 400 11 978.24 227.96 208.70 1825.91

pr12 AGA 1200 68 2469.82 575.56 728.64 5042.02
m = 96, n = 4 ALNS 880 73 1917.86 446.93 618.91 3936.71

HALNS 880 5 1921.47 447.77 611.49 3865.74

pr17 AGA 880 3 2044.53 476.45 596.49 4000.47
m = 72, n = 6 ALNS 640 7 1507.55 351.31 464.37 2970.23

HALNS 640 0 1449.74 337.84 492.61 2920.19

pr18 AGA 1840 6 3639.82 848.21 1092.65 7426.68
m = 144, n = 4 ALNS 1200 7 2585.66 602.55 822.55 5217.77

HALNS 1200 30 2561.08 596.82 765.11 5153.01

Note: m is the number of CDW generation sites, and n is the number of transfer stations.

The comparison result with different datasets is illustrated in Figure 11. The total cost
of these datasets can be ranked from lowest to highest as follows: pr11, pr01, pr17, pr07,
pr12, pr02, pr18, pr08. Of these datasets, the dataset pr08 has the highest cost because it
has the highest number of CDW generation sites and transfer stations as well as a tighter
service time window. The cost of dataset pr11 is the lowest since it has the least number
of CDW generating sites and transfer stations and a looser service time window. It can be
seen that, for datasets with the same generation point and transfer station, the total cost
curve of Set 2 is lower than that of Set1 which illustrates that a wider time window has a
better economy.



Int. J. Environ. Res. Public Health 2022, 19, 7366 22 of 28

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 23 of 29 
 

 

𝑚 = 72, 𝑛 = 6 ALNS 720 24 1792.87  417.80  568.21  3522.88  
 HALNS 640 47 1746.81  407.07  537.94  3378.82  

pr08 AGA 2240 250 4811.90  1121.34  1399.59  9822.83  𝑚 = 144, 𝑛 = 6 ALNS 1360 51 3190.27  743.45  1044.25  6388.96  
 HALNS 1280 65 3107.79  724.23  953.09  6130.10  

pr11 AGA 640 34 1367.90  318.77  273.64  2634.32  𝑚 = 48, 𝑛 = 4 ALNS 400 5 1006.22  234.49  203.90  1849.61  
 HALNS 400 11 978.24  227.96  208.70  1825.91  

pr12 AGA 1200 68 2469.82  575.56  728.64  5042.02  𝑚 = 96, 𝑛 = 4 ALNS 880 73 1917.86  446.93  618.91  3936.71  
 HALNS 880 5 1921.47  447.77  611.49  3865.74  

pr17 AGA 880 3 2044.53  476.45  596.49  4000.47  𝑚 = 72, 𝑛 = 6 ALNS 640 7 1507.55  351.31  464.37  2970.23  
 HALNS 640 0 1449.74  337.84  492.61  2920.19  

pr18 AGA 1840 6 3639.82  848.21  1092.65  7426.68  𝑚 = 144, 𝑛 = 6 ALNS 1200 7 2585.66  602.55  822.55  5217.77  
 HALNS 1200 30 2561.08  596.82  765.11  5153.01  

Note: 𝑚 is the number of CDW generation sites, and 𝑛 is the number of transfer stations. 

The comparison result with different datasets is illustrated in Figure 11. The total cost 
of these datasets can be ranked from lowest to highest as follows: pr11, pr01, pr17, pr07, 
pr12, pr02, pr18, pr08. Of these datasets, the dataset pr08 has the highest cost because it 
has the highest number of CDW generation sites and transfer stations as well as a tighter 
service time window. The cost of dataset pr11 is the lowest since it has the least number 
of CDW generating sites and transfer stations and a looser service time window. It can be 
seen that, for datasets with the same generation point and transfer station, the total cost 
curve of Set 2 is lower than that of Set1 which illustrates that a wider time window has a 
better economy. 

 
Figure 11. Comparison of experimental results with different datasets. 

5.3.3. Vehicle Capacity Analysis 
In real situations, different companies may use different types of vehicles to complete 

transportation tasks, hence vehicle capacity is viewed as an important factor in the trans-
portation plan. In this section, a sensitivity analysis is conducted to explain the impacts of 

Figure 11. Comparison of experimental results with different datasets.

5.3.3. Vehicle Capacity Analysis

In real situations, different companies may use different types of vehicles to complete
transportation tasks, hence vehicle capacity is viewed as an important factor in the trans-
portation plan. In this section, a sensitivity analysis is conducted to explain the impacts of
different vehicle capacities. Figure 12 shows the relationship between total cost, number
of used vehicles, and vehicle capacity when the vehicle capacity ranges from 60 to 220.
It can be seen that vehicle capacity affects the number of vehicles used, which in turn
affects the total cost. The total cost decreases gradually as the vehicle capacity increases at
the beginning. When the vehicle capacity reaches 150, the cost curve started to show an
upward trend. Within a certain range, the number of vehicles used is inversely proportional
to the vehicle capacity, until the saved vehicle fixed cost cannot make up for the increased
transportation cost and time penalty cost. If the vehicle capacity is too small, it will increase
the number of vehicles used and increase the fixed vehicle cost. However, once the vehicle
capacity becomes too large, it would cause a waste of resources. Thus, the use of vehicles
with reasonable capacity is beneficial to saving costs and avoiding waste.
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5.3.4. Carbon Tax Rate Analysis

Since different countries are at different stages of development, carbon tax rates vary
greatly. The implementation of the carbon tax on carbon emissions plays a positive role in
environmental protection. In this section, a sensitivity analysis is conducted to explain the
impacts of different carbon tax rates. Figure 13 shows the relationship between total cost,
carbon emission cost, and carbon tax rate when the carbon tax rate ranges from 0.1 to 1. It
can be seen that when the carbon tax rate ranges from 0.1 to 1, the total cost and carbon
emission cost have been on an upward trend.
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Figure 14 illustrates the relationship between the ratio of carbon emission cost/total
cost and carbon tax rate. It is obvious that the larger the carbon tax rate is, the larger
the ratio of carbon emission cost/total cost is. This indicates that the increased carbon
tax rate will lead to a change in other costs. When the carbon tax rate is relatively small,
companies may sacrifice carbon emissions to gain higher profits in other areas. Otherwise,
when the carbon tax rate is high, although carbon emissions are reduced, the burden on
the company increases. Therefore, a reasonable carbon tax rate should be determined to
achieve a cost-effective, environment-friendly, and resource-saving transportation plan.
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6. Managerial Implications

It is of great importance for the government and enterprises to pay more attention to
the recycling of CDW. The model proposed in this paper can support the decision-making
of resource utilization maximization for enterprises and carbon emission management for
the government.

Nowadays, it is feasible to predict the output of CDW in advance by means of infor-
mation technology. Therefore, the enterprise can determine the fleet size and formulate
the optimal vehicle route in advance according to the geographical location and output of
the CDW generation sites. The fixed cost and fuel consumption cost of vehicle use can be
effectively reduced by reasonably allocating vehicles of different capacities to close facilities
as it maximizes vehicle utilization.

The objective function of the model in this paper takes into account the cost of carbon
emissions in the transportation process, which can provide strong support for government
organizations to make decisions. However, raising the price per unit of emissions does not
always lead to environmental improvements. In order to better achieve carbon peaking
and carbon neutrality, local government organizations should set a reasonable price for
carbon tax according to the actual situation of each region.

7. Conclusions

The recycling of CDW is considered a vital stage to mitigate CDW impacts due to
the huge negative impacts on the economy, environment, and society. This paper studies
transportation routes among multiple CDW generation sites and transfer stations in the
recycling process of CDW. We propose an optimization model for MDVRPTW of CDW recy-
cling to coordinate relevant participants and suggest a cost-effective, environment-friendly,
and resource-saving transportation plan. Under the constraints of the time window and
vehicle capacity, the distribution and transportation route between CDW generation sites
and transfer stations are studied, while the transportation process for reverse logistics of
CDW recycling is discussed from the perspectives of economic effect, environmental effect,
and social effect. From the numerical experiments, we can reach the following conclusions:
(1) The tighter the service time window, the higher the total cost. It’s feasible to take
advantage of information technology to plan transportation time in advance and improve
service levels. (2) The capacity of recycling vehicles has an impact on the transportation
plan. When it doesn’t meet its optimal capacity, the total cost will not be the lowest. The
allocated capacity and vehicle routes are conductive to achieve the maximum utilization of
vehicles. (3) The carbon tax rate within a certain range has a positive effect on reducing
carbon emissions.

From the perspective of sustainability, HALNS is proposed to solve the optimization
model, and the computational results show its better performance. The total cost of HALNS
is minimum in the optimal results and is 22.20% and 3.83% less than AGA and ALNS
respectively. In the average results, the total cost of HALNS improves by −23.43% and
−1.08% than AGA and ALNS. Through the sensitivity analysis of vehicle capacity and
carbon tax rate, the results can support the decision-making for resource-saving, waste
reduction, and environmental protection. It is feasible for enterprises to reduce economic,
environmental, and social impacts by controlling the capacity of recycling vehicles. The
government should introduce a reasonable carbon tax policy to achieve a cost-effective,
environment-friendly, and resource-saving transportation plan as a higher price per unit of
emissions does not always lead to greater efficiency.

In future work, heterogeneous vehicles would be considered for reverse logistics of
the CDW recycling process. Other algorithms are also considered to be hybridized with
ALNS to solve MDVRPTW to obtain better results. Another extension is to take the facility
location of transfer stations and transportation routing into consideration simultaneously.
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