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Background: Successful treatment of glioblastoma (GBM) remains futile despite

decades of intense research. GBM is similar to most other malignant cancers in requiring

glucose and glutamine for growth, regardless of histological or genetic heterogeneity.

Ketogenic metabolic therapy (KMT) is a non-toxic nutritional intervention for cancer

management. We report the case of a 32-year-old man who presented in 2014 with

seizures and a right frontal lobe tumor on MRI. The tumor cells were immunoreactive

with antibodies to the IDH1 (R132H) mutation, P53 (patchy), MIB-1 index (4–6%), and

absent ATRX protein expression. DNA analysis showed no evidence of methylation of the

MGMT gene promoter. The presence of prominent microvascular proliferation and areas

of necrosis were consistent with an IDH-mutant glioblastoma (WHO Grade 4).

Methods: The patient refused standard of care (SOC) and steroid medication after

initial diagnosis, but was knowledgeable and self-motivated enough to consume a

low-carbohydrate ketogenic diet consisting mostly of saturated fats, minimal vegetables,

and a variety of meats. The patient used the glucose ketone index calculator to maintain

his Glucose Ketone Index (GKI) near 2.0 without body weight loss.

Results: The tumor continued to grow slowly without expected vasogenic edema until

2017, when the patient opted for surgical debulking. The enhancing area, centered in

the inferior frontal gyrus, was surgically excised. The pathology specimen confirmed

IDH1-mutant GBM. Following surgery, the patient continued with a self-administered

ketogenic diet to maintain low GKI values, indicative of therapeutic ketosis. At the time

of this report (May 2021), the patient remains alive with a good quality of life, except for

occasional seizures. MRI continues to show slow interval progression of the tumor.

Conclusion: This is the first report of confirmed IDH1-mutant GBM treated with KMT

and surgical debulking without chemo- or radiotherapy. The long-term survival of this
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patient, now at 80 months, could be due in part to a therapeutic metabolic synergy

between KMT and the IDH1 mutation that simultaneously target the glycolysis and

glutaminolysis pathways that are essential for GBM growth. Further studies are needed to

determine if this non-toxic therapeutic strategy could be effective in providing long-term

management for other GBM patients with or without IDH mutations.

Keywords: standard of care, glycolysis, glutaminolysis, fasting, mitochondrial substrate level phosphorylation

(mSLP), 2-hydroxyglutarate, carnivore diet

INTRODUCTION

Glioblastoma (GBM) has among the highest mortality rates
for primary brain tumors and remains poorly manageable.
Despite the hype surrounding recent therapies (1–5), median
life expectancy following diagnosis remains poor for most
GBM patients (6–9). Survival is slightly better, however, for
younger GBM patients compared to older GBM patients and
for patients with GBM tumors that express IDH1 mutations
(10–14). Most GBM patients receive the current standard
of care (SOC) involving surgical debulking, radiotherapy,
and temozolomide (TMZ) chemotherapy (15, 16). Many
GBM patients can also receive corticosteroid medication
(dexamethasone) and bevacizumab for managing edema
and angiogenesis, respectively. Use of steroids is now
under serious reevaluation, as steroids can elevate blood
glucose, which is associated with more rapid tumor growth
and shortened overall survival (17, 18). The current SOC
for GBM has only marginally improved overall survival
compared to “best supportive care,” which is ambiguous
at best (19, 20). Equally distressing to management failure
is evidence that the incidence of GBM is increasing in the
United Kingdom (21).

We recently reviewed studies describing the adverse effects
that can be associated with the current SOC for GBM
management (17). GBM, like most malignant cancers, is
driven by glucose and glutamine fermentation through the
glycolysis and glutaminolysis pathways, respectively (22–27). The
dependency on glucose and glutamine fermentation arises from
inefficient oxidative phosphorylation (OxPhos) that is linked
to abnormalities in the number, structure, and function of
mitochondria in GBM tissue (17, 26–33). Surgical debulking
followed by radiotherapy inadvertently increases the availability
of glucose and glutamine in the tumor microenvironment (17,
34, 35). TMZ chemotherapy can further damage mitochondria
while, at the same time, increasing systemic inflammation and
tumor driver mutations (36, 37). Bevacizumab is even more
likely than TMZ to cause mitochondrial dysfunction in human
brain tumors, and is remarkable in its ability to facilitate
distal tumor cell invasion through the neural parenchyma and
the perivascular network (38–40). Use of dexamethasone can
further accelerate GBM growth by increasing blood glucose
levels and glutamine metabolism (25, 41–44). In light of this
information, the poor progression free and overall survival
experienced by most GBM patients receiving the SOC should not
be surprising.

Winter and colleagues coined the term “Ketogenic Metabolic
Therapy (KMT)” to describe an anti-neoplastic nutritional
strategy, using ketogenic or low-glycemic diets, for the
management of malignant gliomas (45). KMT is gaining
recognition as a complementary therapeutic strategy for the
management of a broad range of cancers in addition to
malignant gliomas (17, 19, 45–60). Low carbohydrate, high fat
ketogenic diets (KD) reduce the glucose needed to drive aerobic
fermentation (Warburg effect) while also elevating ketone bodies,
which cannot be effectively metabolized for energy in tumor cells
due to defects in mitochondrial OxPhos (17, 26, 45, 56, 61–
67). Moreover, ketone body metabolism enhances the 1G′ATP
hydrolysis in normal cells from −56kJ/mole to −59kJ/mole,
thus providing normal cells with an energetic advantage over
tumor cells (27, 68, 69). Calorie restriction and restricted KD
are also anti-angiogenic, anti-inflammatory, anti-invasive, and
can kill tumor cells directly through pro-apoptotic mechanisms
(17, 62, 70–73). Evidence also shows that therapeutic ketosis can
act synergistically with several drugs and procedures to enhance
cancer management thus improving both progression free and
overall survival (26, 74–76). Hence, KMT targets the multiple
drivers of rapid GBM growth while enhancing the metabolic
efficiency of normal brain cells (56).

CASE REPORT

A 26-year-old male from South Devon presented on August
16, 2014 at University Hospitals Plymouth NHS Trust, PL6
8DH, UK, with two episodes of left-sided facial numbness
and bilateral tonic-clonic seizures originating from the right
temporal lobe. There was no history of malignancy or chronic
disorders. The patient’s blood pressure was within normal limits
(110/70). Laboratory investigation revealed unremarkable blood
chemistry, with liver and renal functions within normal limits.
Fasting blood glucose and C-Reactive protein were within normal
ranges. Prior to therapeutic intervention, the patient’s weight,
height, and body mass index (BMI) were 63 kg, 180 centimeters,
and 19.4 kg/m2, respectively. The contrast enhanced brain MRI
(August 22, 2014) showed an intra-axial lesion, centered in the
right inferior frontal lobe. The lesion, which was mainly non-
enhancing and solid, disclosed the presence of an eccentric
contrast enhancing nodule (Figure 1, Panel 1, D).

Enhanced MRI of the brain (August 22, 2014) showed
a lobar T2 signal abnormality without restricted diffusion
and with central ring enhancement centered on the opercula
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FIGURE 1 | MRI images of the patient’s brain tumour. Panel 1. Fluid Attenuated Inversion Recovery (FLAIR) images show the IDH1-mutant GBM at diagnosis in

August 2014 (A–D) and ∼8 months later, at the last follow-up MRI examination (December 2016) prior to surgical excision of the enhancing nodule (E–H). The lesion

discovered on August 2018 is centered in the right inferior frontal lobe (A,B, arrowheads), and abuts the premotor cortex (C, arrowhead). There is an enhancing nodule

within the lesion, as seen in the magnified post-contrast image (D) (arrow). This enhancing lesion measured 1.25mL, which is calculated using the V = ABC/2 formula.

Follow-up MRI (E–H) demonstrates interval progression of the non-enhancing tumor (arrowheads). Interval increase in size of the enhancing lesion, measuring

5.97mL, was also observed (H, arrow). Panel 2 shows the evolution of the lesion between the May 2017 surgical excision (A–C), and in the most recent MRI

evaluation, dated March 2020 (D–F). T2-weighted images indicate the residual GBM (arrowheads). (B) shows the T2-hyperintense GBM filling the surgical cavity. The

(Continued)
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FIGURE 1 | lesion in the premotor cortex is clearly seen in (C). Please note that the surgical debulking involved only the enhancing tumor, while the largest

non-enhancing part of the GBM was not excised by the neurosurgeon. The most recent brain MRI (D–F) shows interval increase in size of the GBM (arrowheads),

which remains circumscribed to the right frontal region without infiltrating the white matter tracts.

FIGURE 2 | Histopathological analysis of excised brain tumor tissue. (A) Diffusely-infiltrating astrocytic tumor (star) with focal microvascular proliferation (arrows).

Tissue taken from 2014 biopsy, H&E stain 200x. (B) Immunohistochemistry using MIB-1 antibody showing a proliferation index of ∼4–6%. Tissue taken from 2014

biopsy, Immunostain 200x. (C) Section showing necrosis and palisading of astrocytic tumor cells around the necrotic area (arrows). Tissue taken from 2017 biopsy,

H&E stain 200x. (D) Section showing glomeruloid vascular proliferation (arrows). Tissue taken from 2017 biopsy, H&E stain 400x.

portion of the inferior frontal gyrus. Signal change also
extended into the precentral gyrus (Figure 1, Panel 1, C).
The preliminary impression was a transforming low-grade
glioma. Histopathological analysis (September 16, 2014) of seven
cream and white cores of brain biopsy tissue revealed a diffuse
cortical infiltration by a paucicellular glial neoplasm composed
of predominantly fibrillary and occasional gemistocytic
astrocytes. The tumor cells were moderately pleomorphic with
infrequent/rare mitosis. There was focal micro-calcification and
focal microvascular proliferation (Figure 2A), but no necrosis
was about present. The MIB-1 (Ki67) proliferation index was
4–6% (Figure 2B). The tumor cells were immune-reactive
with antibodies to mutant IDH1 (R132H) and to patchy P53
expression. DNA analysis showed no evidence of the MGMT
gene promoter methylation. The presence of rare mitoses, focal
microvascular proliferation and MIB-1 proliferation index
was compatible with an IDH-mutant glioblastoma (WHO
Grade 4).

Due to the patient’s cultural beliefs regarding toxic therapies,
he refused the recommended SOC. Instead, he opted for self-
administering ketogenic metabolic therapy (KMT) that was
initiated 2 weeks after the histopathological diagnosis of GBM.

The patient was motivated to educate himself on proper
implementation of the diet, replacing the recommended SOC
with KMT despite pressure from his healthcare providers to
use SOC. The energy composition of his daily diet consisted
of fat (1,696 kcal), protein (264 kcal), and carbohydrates (48
kcal) with the addition of MCT oil (medium chain triglycerides).
He was prescribed levetiracetam (750mg, 2x/day) for seizure
management, and MCT oil (3 tsp daily with food). He
strictly followed the ketogenic diet guidelines found on Patricia
Daly’s website (https://patriciadaly.com/the-ketogenic-diet-for-
cancer), and used the Precision Xtra glucose/ketone meter
(Abbott Labs) and the glucose/ketone index calculator tomonitor
his blood glucose (mmol) and blood β-hydroxybutyrate (β-OHB)
(mmol) values (77). It took the patient 2 weeks to enter the
predicted zone of therapeutic ketosis, i.e., glucose/ketone index
(GKI) values near 2.0 or below, as previously described (77). A
secondMRI of his tumor conducted on January 24, 2015 revealed
no noticeable progression.

Serial MRIs preformed on April 14, 2015; July 17, 2015;
November 16, 2015; February 20, 2016; July 9, 2016; and October
29, 2016 revealed evidence of interval slow contrast-enhanced
tumor progression over that seen on the original 2014 MRI.
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MRI evidence of contrast-enhancing disease progression was
more concerning on the follow-up MRI from December 15, 2016
(Figure 1, Panel 1, H). In response to these observed changes, the
patient opted for an awake debulking craniotomy in April 2017.
Excision was uneventful, resulting in gross complete removal
of the mixed solid-necrotic contrast enhancing component of
the GBM. However, the largest T2 hyperintense part of the
GBM remained untouched (Figure 1, Panel 2, A–C). Histological
analysis of the tumor tissue showed a diffusely invasive astrocytic
tumor with infrequent/rare mitosis, prominent microvascular
proliferation (Figure 2C) and areas of necrosis (Figure 2D). The
tumor cells expressed mutant IDH1 (R132H), P53 (patchy), and
showed loss of nuclear ATRX expression. The overall histological
features were in keeping with the diagnosis of IDH1-mutant
glioblastoma (WHO Grade 4).

The patient continued with a strict ketogenic diet regimen
following tumor debulking and maintained his GKI values at or
near 2.0 and below. The following medications were taken for 1
week only after the craniotomy and included Epilim (200mg),
dexamethasone (2mg), omeprazole (20mg), and paracetamol
(1 g) for post-surgical pain management. Tonic-clonic seizure
activity, which increased after the craniotomy, gradually subsided
over time. Various supplements were added to the diet that
included vitamins, minerals, turmeric, resveratrol, omega-3, and
boswellia serrata. No further tumor growth was seen on the
MRI preformed on August 17, 2017. As the patient believed that
his GBM was under control, he relaxed his adherence to low-
carbohydrate foods. This resulted in modest body weight gain
(89 kg) and elevated his GKI values to the 5–10 range indicative
of increased blood glucose and reduced ketone levels.

FIGURE 3 | The patient’s blood glucose, ketone, and GKI values from 2014 to 2019. (A) Blood glucose, and ketone (β-OHB) values determined using Precision Xtra

blood glucose & ketone meter as described in text. (B) GKI values were determined from the individual glucose and ketone values in A using the glucose ketone index

calculator, as previously described (77). Individual values were pooled over 3-month time intervals and are expressed as means ± 95% confidence intervals (CI). The

number of readings for each data point in A and B ranged from a high of n = 151 (July-September, 2017), to a low of n = 7 (April-June 2018), and are given in the

Supplementary Tables 1A–F arranged by year from 2014 to 2019.

Frontiers in Nutrition | www.frontiersin.org 5 May 2021 | Volume 8 | Article 682243

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Seyfried et al. Metabolic Management of IDH-1 Glioblastoma

FIGURE 4 | Timeline of clinical course with dates of dietary treatments and MRI.

An MRI preformed on October 9, 2018 showed interval
progression of the lesion. The patient quickly realized that the
regrowth of his tumor might have been linked in part to the
relaxation of his dietary rigor. Along with optimization and
intensification of the dietary regime, the patient adopted lifestyle
interventions including moderate physical training, breathing
exercises, and physiological stress management. As of November
2018, the patient has adhered to a two-meal/day schedule with
a rigorous time-restricted eating regimen (20 h/day fasting).
The diet consisted of eggs, bacon fried in ghee/butter (11:00 h),
and steak, lamb chops, beef patties, and liver, all fried in
ghee/butter/lard (16:00 h). The patient did not continue with
MCT oil after he started the carnivore diet. The patient did
not keep a specific food diary. When he was on a restricted
calorie ketogenic diet, he would start out by weighing his food
and keeping under 2,000 calories/day, but he ended up learning
to judge food intake by how hungry he was and ate until he
was satiated. Carbohydrates were strictly eliminated from the
patient’s diet. The patient recognized that a well-formulated
animal-based Paleo-carnivore diet would provide most bio-
available micronutrients (78). This carnivore nutritional fasting
schedule returned the patient’s GKI values to 2.0 or below.
The patient’s BMI normalized to 22.2 (72 kg) at the time of
this report. In addition, the patient participated in a breathing
program involving breath-holding that increased the weekly
average from 15 to 60 s. and lowered the morning average
resting heart rate from 80 to 60 bpm. The patient was weaned
off all medications except for Zebanex (eslicarbazepine acetate,
1,200mg) needed for seizure control, which is taken once at
16:00 h. each day. The patient’s blood glucose and β-OHB
values are shown in Figure 3A over an almost 5-year period,
and his computed GKI values over this period are shown in

Figure 3B. The raw numbers for these values are presented in the
Supplementary Tables.

An additional seven MRI evaluations, spanning from
December 28, 2017 to March 10, 2020, showed continued
slow interval progression of disease, without formation of
noticeable vasogenic edema. At the time of this report
(April 2021), the patient is active with a good quality
of life, except for occasional tonic-clonic seizures and no
signs of increased intracranial pressure. The patient was
a speaker at the September 2018 Childhood and TYA
Cancer Conference (http://www.childhoodcancer2018.org.uk/
programme.asp; Children with Cancer; London, UK). He
maintains a Facebook page that provides updates on his health
status (http://www.childhoodcancer2018.org.uk/speakers/pablo-
kelly.asp). Figure 4 presents a schematic diagram showing the
clinical time course of MRI analysis and dietary treatment.

DISCUSSION

Although long-term survival is rare in patients with GBM, about
5–13% of GBM patients can survive > 5 years with SOC for
reasons that are unclear (79). This case study describes long-term
survival and therapeutic management with KMT in a 32-year-
old man diagnosed with a histopathologic and radiographically
verified IDH1-mutant GBM. Several factors could contribute
to the long-term and continued survival of this patient (now
at 80 months). First, the patient refused SOC and steroid
medication. Due to his preference for non-toxic therapies and the
recognized potential of KMT for GBM management, the patient
opted for a self-administered KD with various supplements.
This strategy, in association with the surgical debulking, could
have contributed in part to the slow growth and more effective
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FIGURE 5 | Predicted and observed tumor volume for untreated IDH1-mutant

GBM. Measured growth of the patient’s tumor compared to its estimated

growth, based on the stochastic model of untreated human glioblastomas

(84). The size of the tumor, measured at diagnosis in August 2014, is

calculated by measuring the post contrast images only, since the current

literature does not provide growth models based on the total volume of the

tumor represented by the enhancing and non-enhancing tumor. Based on this

stochastic model, the predicted growth rate (blue dashed line), shows that the

enhancing tumor would have reached a volume incompatible with life around

April 2015. In striking contrast to what was expected, the patient’s IDH1

mutant GBM, treated with the KMT alone, demonstrated a much lower growth

rate (green dashed line). It should be noted that over 70% of the patient’s GBM

did not enhance as would expected for IDH mutation. The patient’s tumor

volume measurements were determined from MRI, as described in text.

resection of his GBM. It is well-documented that survival is
longer in younger GBM patients (< 50 years) than in older
GBM patients (> 50 years), and that patients receiving a more
complete tumor resection generally survive longer than patients
receiving a subtotal resection (10, 80–82). Total or subtotal
neurosurgical resection, however, is generally obtained early after
diagnosis to achieve a longer survival. In contrast, this patient
opted for a watch and wait strategy due to his refusal of the
SOC. Consequently, tumor debulking was performed almost 3
years after diagnosis. It is also known that median survival is
longer in GBM patients that express the IDH1 (R132H) mutation
(31 months) than in patients that express the wild type allele
(15 months) (13, 83). While we recognize that the therapeutic
response seen in this patient might not be seen in other similarly-
treated GBM patients, there are decades of compelling science
supporting the mechanisms by which this metabolic therapy
could reduce progression of GBM (17).

The remarkably slow growth of the patient’s tumor stands
in contrast to previous studies on the MRI growth dynamics of
untreated glioblastomas (82). Analysis of 106 untreated GBMs
showed a median volume of 17.7mL at the diagnostic MRI
scan, and 27.5mL at the preoperative scan with an estimated
volume doubling time of 49.6 days. Moreover, volume doubling
time was significantly faster for smaller tumors at diagnosis (<

3.88mL) than for larger tumors (> 39.88mL). Previous studies
also showed that surgical resection did not significantly increase
survival in patients with small tumors no matter what percentage
of the tumor could be debulked (84). GBM survival time was
estimated at 292 days following immediate surgical resection
and 492 days if the first surgical resection debulked 80% of
the tumor (84). We used the ABC/2 formula to measure the
volume change in the patient’s tumor over time (85). The patient’s
tumor measured 1.25mL at diagnosis (August, 2014) and grew to
5.97mL at the time of the preoperative scan (April 2017), a 32-
month time interval (Figure 5). The estimated volume doubling
time for the patient’s tumor was 432 days and his survival time,
after resection, is now over 1,400 days. Clearly, the enhancing
tumor growth rate and overall survival of this patient is markedly
better than those of most previously reported cases. The patient’s
tumor is consistent with IDH1 mutant GBM with a mass-like
morphology > 33% of non-contrast enhancing tumor (nCET),
as previously described (86). It is not likely that loss of the ATRX
protein or absent MGMT methylation could have contributed
to the patient’s survival in light of previous information linking
these markers to poor survival (87). Could the patient’s chosen
KMT and the chance acquisition of the IDH1 mutation have
contributed to his long-term survival with GBM?

It is well-known that GBM survival and tumor growth
is linked directly to blood glucose levels, i.e., high blood
glucose is associated with faster disease progression and shorter
survival times (18, 41, 88–97). Glucose is the fuel for aerobic
fermentation (Warburg-effect), which is a driver of most
malignant cancers including GBM (26, 98). Although the
patient did not keep a food diary, he was able to maintain
low GKI values with intermittent fasting and his chosen low-
carbohydrate food choices. The patient’s ability to maintain
his GKI values consistently near 2.0 and below would target
the Warburg-effect thus inhibiting growth of his tumor and
improving his overall survival (99). Reduced blood glucose levels
will not only starve the tumor of growth metabolites through
glycolysis and one-carbon metabolism, but will also down-
regulate the PI3K/Akt/Hif1-1α/mTOR signaling cascades that
would further inhibit dysregulated tumor cell growth (17, 58,
100–103). The low GKI values were also in the direction of
predicted therapeutic success for reducing lactic acid production
(17, 56, 58, 77). Reduced glucose-driven lactic acid would reduce
NF-kappa-β-induced inflammation and edema in the tumor
microenvironment, thus reducing tumor cell angiogenesis and
invasion (17, 58, 70–72, 77, 102, 104). Reduced inflammation
in the tumor microenvironment could account in part for the
absence of robust vasogenic edema and the slower growth of the
GBM seen in our patient, as we observed previously in KMT-
treated unirradiated preclinical GBM (75). It is also important
to mention that the survival of our patient was much longer than
that of most other GBM patients receiving KMT following SOC
(45, 54, 59, 105–108). Few of the adult patients treated with KMT
in these studies, however, were able to reach or maintain the
GKI values predicted to have the greatest therapeutic benefit for
managing GBM (77). The avoidance of radiotherapy would also
prevent liquefactive necrosis, vascular hyalinization, and rapid
tumor progression, as occurred in our previous KMT-treated
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FIGURE 6 | KMT/IDH1 synergistic interaction for targeting GBM energy metabolism. KMT can reduce glucose availability for glycolysis while also interfering with the

glutaminolysis pathway. Glutamine-driven mitochondrial substrate-level phosphorylation (mSLP), in the glutaminolysis pathway, is a major source of ATP synthesis for

GBM cells (25, 26). The glutaminolysis pathway (red) becomes dominant in tumor cells with inefficient OxPhos and that express the dimeric PKM2 isoform. PKM2 is

expressed in GBM and produces less ATP through glycolysis than does the PKM1 isoform (109–111). The elevation of ketone bodies (β-hydroxybutyrate and

acetoacetate) through KMT could indirectly reduce ATP synthesis through the succinate CoA ligase (SUCL) reaction by diverting CoA from succinate to acetoacetate.

The IDH1 mutation could further reduce ATP synthesis through mSLP by increasing synthesis of 2-hydroxyglutarate from α-ketoglutarate and thus reducing the

succinyl CoA substrate for the SUCL reaction (26, 112). Besides its potential effect in reducing glutaminolysis, 2-hydroxyglutarate can also target multiple

HIF1α-responsive genes and enzymes in the glycolysis pathway thus limiting synthesis of metabolites and one-carbon metabolism needed for rapid tumor growth

(25, 26, 103, 113). The down-regulation of Hif1-α-regulated lactate dehydrogenase A (LDHA), through the action of both KMT and the IDH1 mutation, would reduce

extracellular lactate levels thus reducing microenvironment inflammation and tumor cell invasion. Hence, the simultaneous inhibition of glycolysis and glutaminolysis

through the synergistic effects of KMT and the IDH1 mutation will stress the majority of signaling pathways necessary for rapid GBM growth. BDH, β-hydroxybutyrate

dehydrogenase; FAD, flavin adenine dinucleotide; GLSc, glutaminase, cytosolic; GLSm, glutaminase; mitochondrial; GLUD, glutamate dehydrogenase; GOT2,

aspartate aminotransferase; KGDHC, α-ketoglutarate dehydrogenase complex; LDHA, lactate dehydrogenase A; NME, nucleoside diphosphate kinase; OXCT1,

succinyl-CoA:3-ketoacid coenzyme A transferase 1; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PEP, phosphoenolpyruvate; PKM2, pyruvate kinase

M2; SDH, succinate dehydrogenase; SUCL, succinate-CoA ligase. Reprinted with modifications from Seyfried et al. (26).

GBM patient that was of similar age at diagnosis (17, 56). The
patient’s decision to use KMT as an alternative to SOC and his
ability to maintain low GKI values could have contributed in part
to his long-term survival and accompanying good quality of life.

The potential mechanism by which the IDH1mutation might
reduce GBM growth and increase survival is discussed below
and in Figure 6. We recently described how chemical energy
by itself is the central issue for neoplastic cell viability. Tumors
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cannot grow without ATP, regardless of their cellular or genetic
heterogeneity (26). In addition to glucose, glutamine is the other
major fermentable fuel that can drive ATP synthesis in most
cancers including GBM (24, 26, 114). Glutamine is the only
amino acid that can generate ATP synthesis through mSLP in
the glutaminolysis pathway (25). While KMT might not be as
effective in targeting glutaminolysis as it is in targeting glycolysis,
elevation of the patient’s blood ketone bodies (β-hydroxybutyrate
and acetoacetate), evident from his low GKI values, could
indirectly target the glutamine-driven glutaminolysis pathway;
also known as the Q-effect (25, 26). ATP synthesis through
mitochondrial substrate-level phosphorylation (mSLP) at the
succinate CoA ligase reaction (SUCL) in the glutaminolysis
pathway can compensate for diminished ATP synthesis through
both glycolysis and OxPhos (Figure 6). The synthesis of
acetoacetyl-CoA from acetoacetate and β-hydroxybutyrate would
siphon off some of the CoA needed for the synthesis of succinyl-
CoA thus reducing substrate for ATP synthesis through mSLP
(26). Additionally, a reduction in α-ketoglutarate levels through
action of the IDH1-induced increase in 2-hydroxyglutarate could
further reduce substrate for ATP synthesis through mSLP (25,
26, 112, 115). Recent studies also show that IDH1-derived 2-
hydroxyglutarate can facilitate degradation of Hif1-α and thus
reduce the Warburg-effect through down-regulation of multiple
genes in the glycolytic pathway (113). Further evidence of an
inhibitory effect of the IDH1 mutation on glucose consumption
and glycolysis was obtained recently from PET analysis (116).
The long-term survival of the patient could therefore result in
part from a synergistic interaction between his self-directed KMT
and the anti-cancer effects of the IDH1-R132H mutation.

If a capability is truly important for the biology of tumors,
then its inhibition should be considered as a therapeutic strategy
for effective management (99, 117). The capability in this case is
the fermentation metabolism needed for the synthesis of growth
metabolites and ATP through the glycolytic and glutaminolysis
pathways (26). As GBM “stem cells” are more dependent
on glucose than on glutamine for growth, whereas GBM
“mesenchymal cells” are more dependent on glutamine than on
glucose, it becomes essential to inhibit both the glycolysis and
the glutaminolysis pathways simultaneously to achieve maximal
GBM management (24, 75). The glutamine-addicted GBM
mesenchymal cells arise from neoplastic microglia/macrophages
(118, 119). A recent study showed that expression of the
macrophage/microglial marker, CD163, was lower in an IDH1-
mutant GBM than in IDH1 wild-type GBM (120). CD163 is a
biomarker for glutamine-dependent neoplastic macrophages in
tumor tissue (119, 121). Hence, a synergistic interaction between
the effects of the IDH1mutation and KMT could simultaneously
down-regulate both the Warburg-effect and the Q-effect in
the GBM neoplastic cell populations thus providing a novel
mechanism contributing to the long-term survival of our patient.

Although N-of-one single subject studies have been
considered the ultimate strategy for individualizing medicine
(122), we cannot predict if the therapeutic response to KMT seen
in our GBM patient will also be seen in other similarly treated
GBM patients, especially those with tumors that are wild-type
at the IDH1 locus. For those GBM patients not fortunate

enough to have acquired the spontaneous IDH1 mutation in
their tumor, glutamine targeting drugs used with KMT will be
necessary to reduce tumor growth. Our recent bench-to-bedside
translational studies show that simultaneous targeting of glucose
and glutamine availability, using KMT and the pan-glutaminase
inhibitor, 6-diazo-5-oxo-L-norleucine (DON), can significantly
prolong survival in preclinical syngeneic glioblastomas (75).
It is also important to note that ketogenic diets can facilitate
delivery of small-molecule therapeutic drugs through the blood
brain barrier without toxicity (75, 123, 124). As GBM, like
most malignant cancers, is dependent on fermentation for
ATP synthesis and survival, the simultaneous restriction of
fermentable fuels, i.e., glucose and glutamine, while elevating
non-fermentable ketone bodies, offers a non-toxic therapeutic
strategy for managing GBM. Further studies will be needed to
test this hypothesis in other patients diagnosed with GBM.
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