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Outbreaks of duck Tembusu virus (DTMUV) have caused substantial economic losses in the major duck-producing regions of
China since 2010. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV
infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid
chromatography-tandem mass spectrometry to detect the protein changes in duck embryo fibroblast cells (DEFs) infected and
mock-infected with DTMUV. In total, 434 cellular proteins were differentially expressed, among which 116, 76, and 339 proteins
were differentially expressed in the DTMUV-infected DEFs at 12, 24, and 42 hours postinfection, respectively.The Gene Ontology
analysis indicated that the biological processes of the differentially expressed proteins were primarily related to cellular processes,
metabolic processes, biological regulation, response to stimulus, and cellular organismal processes and that themolecular functions
in which the differentially expressed proteins were mainly involved were binding and catalytic activity. Some selected proteins that
were found to be differentially expressed in DTMUV-infected DEFs were further confirmed by real-time PCR. The results of this
study provide valuable insight into DTMUV-host interactions. This could lead to a better understanding of DTMUV infection
mechanisms.

1. Introduction

Duck Tembusu virus (DTMUV), which belongs to the Fla-
vivirus genus, is the causative agent of egg-drop syndrome
in multiple avian hosts, including ducks, geese, chickens,
pigeons, and house sparrows [1–4]. Outbreaks of DTMUV
have caused large economic losses in China since 2010.
Moreover, DTMUV can also replicate in mice, with high
neurovirulence and age-dependent neuroinvasiveness, which
poses a potential public health concern [5–7]. Infection of
DTMUV mainly causes a decline in egg production, acute
anorexia, antisocial behavior, rhinorrhea, diarrhea, ataxia,
and paralysis [4]. Recently, diagnostic methods and vaccines
for DTMUV have been successfully developed and already
used in clinical production, which provides a method for

better prevention and treatment of the disease [8–13]. In
addition, many host factors are likely to play critical roles in
the DTMUV life cycle including glucose-regulated protein
78, heat shock protein A9, proinflammatory cytokines, and
antiviral proteins [14–18]. However, current knowledge of
proteomic information about duck cell line responses to
DTMUV infection is still limited.

Knowledge of the virus-host interaction is critical for
understanding the pathogenesis of viral infection. Currently,
proteomic approaches have been used for studying the viral
pathogenesis [19, 20]. Han et al. [21] identified 131 host
proteins that were altered in duck ovarian follicles following
DTMUV infection using a label-free quantitative proteomic
method. Isobaric tags for relative and absolute quantification
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(iTRAQ) as a high-throughput proteomics approach are
useful for the analysis of infection-associated proteins of
pathogens [22–24]. Sun et al. [25] identified 192 significantly
expressed host proteins in a DTMUV-infected baby hamster
kidney cell line using the iTRAQ approach.

We carried out our research on the basis of these previous
studies. In the current study, iTRAQ combined with tandem
mass spectrometry (LC-MS/MS) was used to conduct pro-
teomic analysis of DEFs infected with DTMUV to explore
the possible mechanisms of virus infection. A total of 116
significant and differentially expressed host proteins were
identified at 12 hours postinfection (hpi), 76 at 24 hpi, and
339 at 42 hpi. Analysis and functional studies of these altered
expression proteins might provide fundamental information
for the study of virus-host interactions and the molecular
basis underlying DTMUV pathogenesis.

2. Materials and Methods

2.1. Cells and Virus. The 10-day-old specific-pathogen-free
(SPF) duck embryos were provided by the Institute of Poultry
Science, Shandong Academy of Agricultural Sciences, and
were used to prepare DEFs. DEFs weremaintained inDMEM
(Gibco, USA) supplemented with 10% fetal bovine serum
(Gibco, USA) at 37∘C in a 5% CO

2
atmosphere. TheDTMUV

BZ-2010 strain (GenBank Accession No. KC990540) was
propagated in DEFs to a titer of 106.0 TCID

50
/ mL and

maintained in our laboratory.

2.2. Virus Inoculation. DEFs were cultured to approximately
80% confluence and then inoculated with 102.0 TCID

50
of

DTMUV. After a 2 h exposure to the virus, the cells were
washed three times with ice-cold PBS and cultured inDMEM
supplemented with 1% fetal bovine serum. Uninfected DEFs
served as mock-infected cells. The infected and uninfected
DEFs were harvested at 12, 24, and 42 hpi, respectively.
DTMUV infection was verified by observation of the cyto-
pathic effect (CPE), virus titers determination, and virus
genome copy number.

2.3. Sample Preparation, Protein Digestion, Desalting, and
iTRAQ Labeling. The infected and uninfected DEFs were
washed twice with ice-cold PBS, collected by cell scraping,
and centrifuged at 300 × g for 10 min. Three biological
replicates of the DTMUV- or mock-infected groups were
well mixed when collecting the samples. The collected cells
were lysed in 200 𝜇L of dissolution buffer (7 M urea, 2 M
thiourea, 4% SDS, 40 mM Tris-HCl, pH 8.5, 1mM PMSF)
and broken by sonication for 15 min. Then, the mixtures
were centrifuged at 15,000 × g for 20 min. The proteins were
extracted using cold acetone, dried, and then dissolved in
triethylammonium bicarbonate buffer (TEAB, pH8.0). The
extracted peptides were reduced with DTT and alkylated
with iodoacetamide (IAM), and then the concentration was
determined using the Bradford protein assay [26]. For each
sample, 100 𝜇g of protein was dissolved in TEAB buffer and
then trypsin-digested. After being purified on a Strata–X C18

column (Phenomenex, Torrance, CA, USA), the eluted pep-
tides were labeled with an iTRAQ Reagent-8 plex Multiplex
Kit (AB Sciex U.K., Ltd.) according to the manufacturer’s
instructions.

2.4. LC-MS/MS Analysis. All of the iTRAQ labeled peptides
were mixed and then fractionated by a high-performance
liquid chromatography (HPLC) system (Thermo DINOEX
Ultimate 3000 BioRS) using a Durashell C18 column (5 𝜇m,
100 Å, 4.6 × 250 mm; Agela Technologies, Tianjin, China).
The LC-MS/MS analysis was performed as described previ-
ously by using an AB SCIEX nano LC-MS/MS (TripleTOF
5600 plus, AB SCIEX, USA) system [27]. Each fraction was
dissolved in aqueous solution containing 0.1% FA and 3%
ACN. The mobile phases were composed of solvent buffer A
(5% ACN, 0.1% FA) and buffer B (95% ACN, 0.1% FA). The
gradient run was from 5 to 50% buffer B for 70 min at 300
nL/min, maintained at 80% buffer B for 15 min, and finally
returned to 5% buffer B for 5 min. During data acquisition,
MS spectra were acquired in the range 350-1,500 m/z for 250
ms. The 20 most MS/MS (resolution ≥15000) were selected
in the range 50-2,000 m/z from each MS spectrum with 100
ms. The dynamic exclusion of precursor ions was fixed for
20s.

2.5. DataAnalysis. Protein identificationwas performedwith
the ProteinPilot� software (Version: 4.5; Applied Biosys-
tems) using Paragon� Algorithm as database search engine.
The MS data were searched against the Uniprot Anas
database (34035 sequences, downloaded on July 14, 2017).
The parameters were set as follows: the instrument was
TripleTOF 5600, iTRAQ quantification, cysteine modified
with iodoacetamide, biological modifications were selected
as ID focus, trypsin digestion, the Quantitate, Bias Correc-
tion and Background Correction was checked for protein
quantification and normalization. For false discovery rate
(FDR) analysis, an automatic decoy database search strategy
was employed to estimate FDR using the PSPEP (Proteomics
System Performance Evaluation Pipeline Software, integrated
in the ProteinPilot Software) algorithm. For quantification,
proteins with at least one unique peptide and an unused
value greater than 1.3 were considered for further analysis.
Proteins with a fold change >1.5 or <0.67 and a p-value
<0.05 were considered to be significantly different expres-
sions.

2.6. Bioinformatic Analysis. Functional protein analyses were
extracted using the AmiGO tool in the Gene Ontology
platform (http://geneontology.org). Pathway analyses were
extracted using the search pathway tool in the KEGGMapper
platform (http://www.genome.jp/kegg/mapper.html).

2.7. RNA Extraction and Real-Time PCR Analysis. Total
cellular RNA was extracted from the DTMUV-infected and
mock-infected DEFs using AxyPrep Multisource Total RNA
Miniprep Kit (Axygen, CA, USA) according to the manu-
facturer’s instructions, and the cDNA was synthesized using
PrimeScript� RT Master Mix (Takara, Dalian, China). The

http://geneontology.org
http://www.genome.jp/kegg/mapper.html
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Table 1: Primers in this study.

Primers Sequence (5’→3’) Usage
DTMUV-F GATAAAGAGGACGATTGATGG Amplification of DTMUV gene
DTMUV-R TTCCGCTTATTCAGTCCGT
V-F CAGTGATGAAGAATTTGAGC Amplification of viperin gene
V-R CTTTCCGTCCATTTCTACAG
PKR-F GGCCGTCAATATTTACAG Amplification of PKR gene
PKR-R CACGGTGACATAATCAAG
Mov-F CTGCAAGGAGAAGGGCGGCTAC Amplification of Mov10 gene
Mov-R CCTGAAGGACGGCCCGTGAAAC
Ring-F AAATTGGCATGGGATGAGTTAG Amplification of RNF213 gene
Ring-R TGCTATATCCTTCTGCGATG
FASN-F GCCAACAGGATTTCTTACTTC Amplification of FASN gene
FASN-R TGTCCATTACGAATTGCCTTAT
C-F TTCCTGGATTACCGGGTCA Amplification of COL3A1 gene
C-R GGTTGGCCTGGTGATCCGTTTG
A-F CAAAGCCAACAGAGAGAAG Amplification of 𝛽-actin gene
A-R CAGAGTCCATCACAATACCAG

primers (Table 1) were synthesized by TsingKe Biotechnology
Company (Beijing, China). Quantitative real-time PCR was
performed using the Roche LightCycler 96 real-time PCR
system. In order to analyze the identified proteins at the
transcriptional level, relative quantitative real-time PCR was
performed in a 20 𝜇L volume including 10 𝜇L SYBR�
Premix Ex Taq II, 1 𝜇L each primer (10 pM), and cDNA
template. Cycle conditions were as follows: one cycle at 95∘C
for 30 s, and then 40 cycles at 95∘C for 5 s, 56∘C for 10
s, and 72∘C for 10 s, and melting curves were obtained.
In order to monitor DTMUV replication kinetics, absolute
quantitative real-time PCR was carried out. The fragment
targeting DTMUV capsid protein gene was amplified by
PCR using pair primers (Table 1) and cloned into pMD18-
T vector (TaKaRa, Dalian, China) to construct the standard
plasmid DNA, namely, pMD18-C. Then, the concentration
of the plasmid standard was quantified using optical density
determination at 260 nm, and the serial dilutions of plasmid
standard were used to establish the standard curve. Absolute
quantitative real-time PCR was performed in a 20 𝜇L volume
containing cDNA template, 10 𝜇L SYBR� Premix Ex Taq II,
1 𝜇L each primer (10 pM). Cycle conditions were as follows:
one cycle at 95∘C for 30 s, and then 40 cycles at 95∘C for
15 s, 55∘C for 15 s, and 72∘C for 20 s, and melting curves
were obtained. Each cDNA samplewas amplified in triplicate.
The data analysis was performed using the Roche LightCycler
96 real-time PCR system software. Relative transcript levels
were calculated using the ΔΔCt method as specified by the
manufacturer. 𝛽-actin was employed as an internal reference
gene. The statistical analyses were performed using the
GraphPad Prism 6.0 software. Student’s t-test and one-way
ANOVA were used to evaluate the significance of genomic
RNA copies, and a value of P <0.05 was considered signifi-
cant.

3. Results

3.1. Confirmation of DTMUV Infection in DEFs. Successful
DTMUV infection was verified by observation of the cyto-
pathic effect (CPE), virus titers determination, and virus
genome copy number. The results were presented in Figure 1.
CPE was not visible at 12 hpi and 24 hpi, and apparent
CPE could be observed at 42 hpi (Figure 1(a)). As shown
in Figure 1(b), the viral titer reached 4.68, 5.21, and 6.39
log
10
TCID

50
/mL at 12, 24, and 42 hpi, respectively. As shown

in Figure 1(c), in the DTMUV-infected group, the levels
of the viral genome were detected at 12, 24, and 42 hpi,
indicating the development of persistent infection. Virus was
not detected in DEFs in the control group.

3.2. Protein Profile Obtained by iTRAQ LC-MS/MS Anal-
ysis. A total of 4283 proteins, including 20005 peptides,
were identified in the DTMUV-infected and mock-infected
groups (data not shown). A total of 434 proteins displayed
significant and differentially expressed levels upon infec-
tion, among which 389 were known proteins, and 45 were
uncharacterized proteins (SI Table 1). Among these, 116, 76,
and 339 proteins were differentially expressed relative to
uninfected DEFs at 12, 24, and 42 hpi, respectively. Of the
116 differentially expressed proteins at 12 hpi, 22 proteins
were upregulated and 94 proteins were downregulated. Of
the 76 differentially expressed proteins at 24 hpi, 33 pro-
teins were upregulated and 43 proteins were downregulated.
Of the 339 differentially expressed proteins at 42 hpi, 143
proteins were upregulated and 196 proteins were downreg-
ulated (Figure 2(a)). In addition, a Venn diagram analysis
revealed that 14 significant and differentially expressed pro-
teins were commonly represented at all times postinfection
(Figure 2(b)).
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Figure 1: DTMUV infection in DEFs. (a) The cytopathic effects (CPE) of DEFs at 12, 24, and 42 h after infection, and mock-infected cells
as control. (b) Virus titers determination of DTMUV in DEFs at 12, 24, and 42 hpi. (c) DTMUV genome load in infected DEFs. Cells were
infected with the BZ-2010 strain of DTMUV and collected at 12, 24, and 42 hpi. DTMUV genome copy numbers were quantitated using
absolute quantitative real-time PCR. Error bars represent the standard error of the mean from three independent experiments.

3.3. GO Analysis of Differentially Expressed Proteins. A total
of 434 significantly expressed proteins were categorized
according to the GO molecular functional groups: biological
processes, cellular components, and molecular functions
(Figure 3). The biological process annotation revealed that
these significant and differentially expressed proteins were
primarily involved in cellular process (such as lactate biosyn-
thetic process, pyruvate biosynthetic process, and NADPH
regeneration), metabolic processes (such as protein folding,
ribose phosphate biosynthetic process, gluconeogenesis, and
pentose-phosphate shunt), biological regulation (such as
protein stabilization and protein destabilization), response to
stimulus, developmental processes, and cellular component

organization or biogenesis. The cellular component annota-
tion revealed that these differentially expressed proteins were
mainly involved in the cell (such as Schmidt-Lanterman cleft
and myelin sheath), cell part (such as cytoplasmic vesicle and
intracellular organelle), organelle (such as melanosome), and
extracellular region (such as extracellular vesicular exosome).
The molecular function annotation revealed that the differ-
entially expressed proteins were mainly distributed among
two molecular function groups: binding (such as cyclosporin
A binding, macrolide binding, cocaine binding, and enzyme
binding) and catalytic activity (such as GTPase regulator
activity).
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Figure 2: Numbers of differentially expressed proteins from DEFs infected with DTMUV. (a) Number of significant and differentially
expressed proteins during infection with DTMUV relative to mock-infected DEFs (p <0.05, fold change >1.5 or <0.67). (b) Venn diagram
displays the distribution of differentially expressed proteins during infection with DTMUV.

3.4. KEGG Pathway Analysis of Differentially Expressed Pro-
teins. The top 10 pathways based on the number of differ-
entially expressed proteins in the DTMUV-infected DEFs at
12, 24, and 42 hpi are shown in Figure 4. For example, of
the upregulated proteins, ubiquitin mediated proteolysis (2,
20%), pathways in cancer (2, 20%), Huntington's disease (2,
20%), toxoplasmosis (2, 20%), Alzheimer's disease (2, 20%),
amoebiasis (2, 20%), colorectal cancer (1, 10%), cell cycle (1,
10%), amyotrophic lateral sclerosis (ALS) (1, 10%), and viral
myocarditis (1, 10%) were involved in the DTMUV-infected
DEFs at 12 hpi (Figure 4(a)). Of the upregulated proteins,
pathways in cancer (4, 21.05%), endocytosis (3, 15.79%),
bacterial invasion of epithelial cells (3, 15.79%), hepatitis C (3,
15.79%), arrhythmogenic right ventricular cardiomyopathy
(ARVC) (2, 10.53%), tight junction (2, 10.53%), focal adhe-
sion (2, 10.53%), metabolic pathways (2, 10.53%), antigen
processing and presentation (2, 10.53%), and Fc gamma
R-mediated phagocytosis (2, 10.53%) were involved in the
DTMUV-infected DEFs at 24 hpi (Figure 4(b)). Of the down-
regulated proteins, metabolic pathways (43, 30.07%), micro-
bial metabolism in diverse environments (25, 17.48%), focal
adhesion (19, 13.29%), regulation of actin cytoskeleton (13,
9.09%), glycolysis/gluconeogenesis (13, 9.09%), tight junction
(11, 7.69%), protein processing in endoplasmic reticulum
(10, 6.99%), pathways in cancer (9, 6.29%), neurotrophin
signaling pathway (8, 5.59%), and MAPK signaling pathway
(8, 5.59%) were involved in the DTMUV-infected DEFs at 42
hpi (Figure 4(c)).

3.5. Analysis of the Identified Proteins at the Transcrip-
tional Level. The transcriptional alterations in 6 selected
proteins were measured by relative quantitative real-time
PCR. The results showed that the expression of viperin,

double-stranded RNA-dependent protein kinase (PKR),
mov10 RISC complex RNA helicase (Mov10), and RING fin-
ger protein 213 (RNF213) were upregulated, whereas fatty acid
synthase (FASN) and collagen alpha-1(III) chain (COL3A1)
were downregulated (Figure 5). The overall real-time PCR
results generally matched the iTRAQ data (SI Table 1).

4. Discussion

ITRAQ LC-MS/MS is a powerful tool with high sensitiv-
ity and quantitation accuracy for proteomic analysis that
has been widely applied in many studies [22, 28]. Here,
iTRAQ LC-MS/MS was applied to analyze the differential
protein expression profiles of duck source DEFs infected
with DTMUV at various time points. In this study, a total
of 116, 76, and 339 differentially expressed proteins were
identified at 12, 24, and 42 hpi based on a fold change
>1.5 or <0.67 and p value less than 0.05. The differentially
expressed proteins regarding cellular responses were mainly
associated with binding, catalytic activity, cellular processes,
biological regulation, metabolic processes, response to stim-
ulus, immune system processes, and cell parts. Alterations
in the expression of a protein may be owing to a change
in its mRNA level. In this study, real-time PCR results
were generally in accordance with the proteomic analysis. In
addition, some degree of disagreementwas observed between
these two analyses regarding the upregulated expression of
the proteins PKR and viperin at 12 hpi. The protein level of
PKR and viperin determined by iTRAQ LC-MS/MS were
upregulated with a fold change >1.5, but p value was not
less than 0.05 (SI Table 1), which did not correlate with
the transcriptional level of these proteins with a significant
upregulation (p < 0.05) at 12 hpi. There could be several
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Figure 3: Continued.
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Figure 3: GO analysis of the differently expressed proteins based on biological process, cellular component, andmolecular function at 12 hpi
(a), 24 hpi (b), and 42 hpi (c).

reasons for this. Gene expression is divided into two levels
of transcription and translation, namely, mRNA level and
protein level. The time and site of transcription and trans-
lation of eukaryotic gene expression were spatiotemporal.
Secondly, posttranscriptional mechanisms including protein
translation, posttranslational modification, and degradation
may influence the level of a protein present in a given cell
or tissue [29]. So different regulation mechanisms acting on
both the synthesized mRNA and the synthesized protein
may account for the amount of the two molecules differen-
tially.

4.1. Response to Stimulus and Immune-Associated Proteins.
The innate immune system acts as the body’s first line
of defense against virus infection. The activation of the
antiviral innate immune response depends on the pattern-
recognition receptors (PRRs) [30].ThePRR family is grouped
into the membrane-bound Toll-like receptors (TLRs), C-
type lectin receptors (CTLs), retinoid acid-inducible gene-Ι
(RIG-I)-like receptors (RLRs), nucleotide binding oligomer-
ization domain (NOD)-like receptors (NLRs), and absent-in-
melanoma (AIM)-like receptors (ALRs) [31]. In this study,
some of the differentially expressed proteins induced by
DTMUV infection in DEFs were involved in the TLR,
RLR, NLR, and MAPK signaling pathways, such as cap

methyltransferase 1 (CMTR1), DEAD-box helicase 3 X-
linked (DDX3X), heat shock protein 90 beta family mem-
ber 1 (HSP90B1), and ELKS/RAB6-interacting/CAST family
member 1 (ERC1). It has been suggested that the TLR, RLR,
and NLR signaling pathways play important roles in host cell
responses to Flavivirus [32–37].

The expression of some proteins involved in the immune
response was altered following DTMUV infection such as
interferon stimulated genes (ISGs). In this study, our data
indicated that the expression of IFN-induced protein 35
(IFI35), IFIT5, and Mx proteins were significantly upreg-
ulated in DTMUV-infected DEFs. IFI35 (also known as
IFP35) is a member of the ISGs and can be induced by
interferon [38]. IFI35 is a leucine zipper protein and plays
an important role in modulating virus infection, innate
immune, and inflammatory responses by interacting with
various host and viral proteins such as bovine Tas (BTas)
regulatory protein of bovine foamy virus [39]. In contrast
to the classical role of ISGs in antagonizing virus infections,
studies have also shown that IFI35 functions as a negative
regulator of RIG-I-mediated antiviral signaling in vesicular
stomatitis virus (VSV) infection [40]. In addition, IFI35
can enhance inflammation following H5N1 influenza virus
(IAV) infection by increasing proinflammatory cytokine
production [41]. However, the possible effects of IFI35
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Figure 4: Analysis of the KEGG pathway of the differently expressed proteins at 12 hpi (a), 24 hpi (b), and 42 hpi (c).



BioMed Research International 9

PKR

Hours post-infection (hpi)
12 24 42

0

20

40

60

80
Viperin

Hours post-infection (hpi)
12 24 42

−1

0

1

2

3

4

5

DTMUV
Control

DTMUV
Control

Mov10

Hours post-infection (hpi)
12 24 42

0

50

100

150

DTMUV
Control

RNF213

Hours post-infection (hpi)
12 24 42

0

20

40

60

80

DTMUV
Control

FASN

ns ns

Hours post-infection (hpi)
12 24 42

0.0

0.5

1.0

1.5

DTMUV
Control

COL3A1

Hours post-infection (hpi)

N
or

m
al

iz
ed

 fo
ld

 ex
pr

es
sio

n

N
or

m
al

iz
ed

 fo
ld

 ex
pr

es
sio

n
N

or
m

al
iz

ed
 fo

ld
 ex

pr
es

sio
n

N
or

m
al

iz
ed

 fo
ld

 ex
pr

es
sio

n
N

or
m

al
iz

ed
 fo

ld
 ex

pr
es

sio
n

12 24 42
0.0

0.5

1.0

1.5

DTMUV
Control

N
or

m
al

iz
ed

 fo
ld

 ex
pr

es
sio

n 
(ＦＩ

Ａ1
0) ∗∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗

∗∗∗∗ ∗

∗∗

∗∗

∗∗

Figure 5: Transcriptional profiles of the differentially expressed proteins in DTMUV-infected DEFs. Error bars represent the standard error
of the mean from three independent experiments. ∗, p <0.05, significantly different; ∗∗, p <0.01; ns, no significant difference.

during DTMUV infection need to be explored in future
studies.

The IFIT protein family is responsible for nucleic acid
sensing during virus infections [42]. The IFITs are evolu-
tionarily conserved, whereas the number of IFIT genes is
different between species [43]. Of the IFITs, only IFIT5
has been detected in birds, which was found recently, and
knowledge of its function is still obscure. The IFIT5 locus
in chicken possesses antiviral activities against negative-sense

single-stranded RNA viruses, such as Newcastle disease virus
(NDV) [44]. In the present study, the upregulated expression
of IFIT5 was induced following DTMUV infection in DEFs;
however, its role in the antiviral process and immune regula-
tion requires further study.

4.2. Alterations of Metabolism-Associated Proteins. Viral
replication requires energy. It has been reported that virus
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infection can dramatically modify cellular metabolism in a
cell. Virus-induced metabolism can increase available energy
for virus replication and virion production [45]. In this study,
some proteins involved in metabolic processes were found
to be differentially expressed in the DTMUV-infected DEFs.
Upregulated expressions of the energy metabolism proteins
such as UMP-CMP kinase 2, ATP synthase, cytochrome
P450 family 51 subfamily A member 1 (CYP51A1), and
very long-chain specific acyl-CoA dehydrogenase (VLCAD)
were observed in the DTMUV-infected DEFs. Moreover,
we also identified some differentially expressed proteins
involved in metabolism, including transketolase (TKT),
S-(hydroxymethyl) glutathione dehydrogenase, fatty acid
synthase, adenosylhomocysteinase (AHCY), and glucose-6-
phosphate isomerase (GPI), which were downregulated in
DTMUV–infected DEFs.

UMP-CMP kinase belongs to the nucleoside monophos-
phate (NMP) kinase family and is a known pyrimidine
nucleoside monophosphate kinase that phosphorylates CMP,
UMP, dCMP, and dUMP [46]. It has been shown that UMP-
CMP kinase expression was upregulated during various viral
infection [47, 48]. Moreover, UMP-CMP kinase has been
reported to be essential for the viability ofBacillus subtilis and
Streptococcus pneumoniae [49]. ATP synthase is one of the
most highly conserved enzymes and plays a central role in the
synthesis of ATP in all living organisms, and it was originally
described from the inner membrane of mitochondria and
chloroplast thylakoid membranes [50]. It was also found that
the ATP synthase 𝛽 subunit is present on the cell surface
where it may serve as a cell membrane receptor [51]. On
the other hand, ATP synthase has been identified as a virus-
interaction protein capable of mediating the entry of virus
into host cells and acts as a factor that mediates human
immunodeficiency virus-1 (HIV-1) transfer between antigen-
presenting cells and CD4+ target cells [52–55]. The rapid
replication of DTMUV in host cells will consume abundant
host ATP and impact other energy-dependent biological
functions of the host cells. Therefore, we propose that the
increased amount of ATP synthase and UMP-CMP kinase
may be beneficial for DTMUV infection. CYP51A1 is a lanos-
terol 14𝛼-demethylase involved in cholesterol biosynthesis
and is present in all biological kingdoms [56]. It has been
reported that silence of the expression of CYP51A1 signifi-
cantly decreased astrovirus replication and particle assembly
[57]. VLCAD is a mitochondrial fatty acid oxidation enzyme
that is responsible for the rate-limiting step in catabolism
of long-chain fatty acids [58]. A previous study indicated
that VLCAD deficiency mice show enhanced sensitivity to
influenza virus infection due to bioenergetic starvation [59].
Thus, it will be interesting to further investigate the precise
role of UMP-CMP kinase, ATP synthase, CYP51A1, and
VLCAD in DTMUV infection process.

TKT is a ubiquitous enzyme in cellular carbon
metabolism that catalyzes the reversible transfer between
ketoses and aldoses as part of the pentose phosphate pathway.
This shunt permits cells a flexible adaptation to different
metabolic needs as the pentose phosphate pathway produces
nicotinamide adenine dinucleotide phosphate (NADPH)
for reductive biosynthetic pathways of cholesterol and fatty

acids [60]. Furthermore, a previous study showed that TKT
had the potential importance and functional involvement in
Rhodopseudomonas palustris growth [61]. S-(hydroxymethyl)
glutathione dehydrogenase is involved in NO metabolism
that plays crucial roles in defense responses during host-
pathogen interactions. S-(hydroxymethyl) glutathione
dehydrogenase is required for conidiation and contributes
to virulence inMagnaporthe oryzae [62]. Fatty acid synthase
(FASN) is a key enzyme in the fatty acid biosynthesis
pathway that catalyzes the synthesis of palmitate from acetyl
coenzyme A (acetyl-CoA) and malonyl-CoA [63]. The
expression of FASN has been reported to be upregulated by
the hepatitis C virus core protein, NS2, NS4B, NS5B, and the
hepatitis B virus large surface protein by activation of the
FASN promoter and plays a role in viral replication [64–66].
FASN inhibitors can also inhibit human cytomegalovirus and
IAV replication by modulating the membrane composition
for virus budding or protein modifications [67]. Moreover,
dengue virus infection promotes lipid biogenesis to benefit
virus replication [68].Therefore, fatty acid synthesis has been
identified as a requirement formany virus replications. In the
present study, FASN was downregulated following DTMUV
infection, which was inconsistent with the reportsmentioned
above. Since we hypothesize that FASN may play other roles
in DTMUV infection, AHCY plays a key role in the control of
methylations via regulation of the intracellular concentration
of adenosylhomocysteine, which is a competitive inhibitor
of S-adenosyl-L-methionine-dependent methyl transferase
reactions. AHCY also regulates blood levels of homocysteine,
which appear to be risk factors for some diseases [69, 70].
Moreover, AHCY is a target for antiviral drugs, such as
6'-fluoro-3-deazaneplanocin, 6'-isoneplanocin, and 3, 7-
dideazaneplanocin [71–73]. GPI as a glycolytic enzyme in
glycolysis catalyzes the reversible isomerization of glucose-
6-phosphate to fructose-6-hosphate [74]. Besides its role
in the glycolytic pathway, mammalian GPI also functions
as a tumor-secreted cytokine and an angiogenic factor that
stimulates endothelial cell motility. Moreover, GPI is also
a neurotrophic factor for spinal and sensory neurons [75].
Furthermore, GPI is the key enzyme which catalyzes the
key steps in the glycolysis during white spot syndrome virus
(WSSV) infection. Nevertheless, the exploration of exact
function of these metabolism-associated proteins during
DTMUV infection is an important future study.

4.3. Extracellular Matrix (ECM)-Receptor Interaction-
Associated Proteins. Collagens are a large family that are
primary components of the ECM of metazoa and play
an important role in tissue repair, cell migration, cancer,
angiogenesis, tissue morphogenesis, and tissue scaffolding.
Collagens are also associated with some diseases, such
as Alport syndrome, certain arterial aneurysms, Bethlem
myopathy and Ullrich muscular dystrophy, Ehlers-Danlos
syndrome, and Kniest dysplasia [76]. Ross River virus
infection can be inhibited by collagen IV [77]. On the other
hand, breakdown of collagen IV and collagen I may facilitate
dissemination of Histophilus somni infection [78]. Moreover,
HIV and hepatitis B virus can promote the expression of
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type I and IV collagen, respectively, and could be involved in
the pathogenesis of virus-associated diseases [79, 80]. In the
present study, the upregulated expressions of collagen VI and
the downregulation of collagen I, collagen III, and collagen
V were induced by DTMUV infection in DEFs. Whether
the different types of collagens have different functions in
DTMUV infection is not clear.

4.4. Neuropathogenicity-Associated Proteins. DTMUV be-
longs to the genus Flavivirus, which also includes West Nile
virus, Japanese encephalitis virus (JEV), Yellow fever virus
(YFV), and Dengue virus (DENV). Flaviviruses, such as JEV,
YFV, and DENV, can cause a pathogenicity of the nervous
system [81–83]. Ducks infected by DTMUV have also shown
neural symptoms, such as paralysis. Besides flaviviruses,
highly-pathogenic avian influenza (HPAI) H5N1 and New-
castle disease (ND) viruses can also cause classic central
nervous system dysfunction in poultry and migratory birds.
Balasubramaniam et al. 2012 [84] have identified twenty-
three genes, such as heat shock 70 kDa protein 2 (HSPA2),
septin, heat shock 60 kDa protein 1 (HSPD1), and beta-
2 microglobulin differentially expressed in chicken brain
tissues during infections with HPAI H5N1 and NDV. On the
other hand, Gupta et al. 2011 [85] have indicated that plectin,
lectin, and phosphatidylethanolamine binding protein were
differentially expressed during infection with JEV in mice
brain. In this study, the differentially expressed proteins
heat shock 70 kDa protein 2 (HSPA2), septin, heat shock
60 kDa protein 1 (HSPD1), beta-2 microglobulin, plectin,
lectin, and phosphatidylethanolamine binding protein were
also identified. Thus, whether these differentially altered
proteins are relevant to duck paralysis seen when infected
with DTMUV needs to be further studied.

5. Conclusions

In summary, the differentially expressed proteins were iden-
tified in DTMUV-infected DEFs through iTRAQ analy-
sis. Moreover, DTMUV infection-associated pathways and
proteins are described and discussed on the basis of the
bioinformatics analysis. Although the roles of the proteins
that were identified in this study were not studied, it is
likely that all or some of them are involved in host-virus
interactions. Therefore, our analysis of the DEFs responses to
DTMUV infection provides useful information for a better
understanding of the pathogenesis of DTMUV as well as
other flaviviruses.
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