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Temporal sequences of brain activity at rest are
constrained by white matter structure and
modulated by cognitive demands
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A diverse set of white matter connections supports seamless transitions between cognitive
states. However, it remains unclear how these connections guide the temporal progression of
large-scale brain activity patterns in different cognitive states. Here, we analyze the brain’s
trajectories across a set of single time point activity patterns from functional magnetic
resonance imaging data acquired during the resting state and an n-back working memory
task. We find that specific temporal sequences of brain activity are modulated by cognitive
load, associated with age, and related to task performance. Using diffusion-weighted imaging
acquired from the same subjects, we apply tools from network control theory to show that
linear spread of activity along white matter connections constrains the probabilities of these
sequences at rest, while stimulus-driven visual inputs explain the sequences observed during
the n-back task. Overall, these results elucidate the structural underpinnings of cognitively
and developmentally relevant spatiotemporal brain dynamics.
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n elusive goal of computational neuroscience is to
describe the brain as a dynamical system with a pre-
dictable natural temporal evolution and response to input.

Such a model would be invaluable to clinicians as a generalizable
tool for identifying optimal brain stimulation approaches to
drive the brain from various states of disease to states of health!.
Yet, the endeavor of identifying a real non-linear dynamical
system that provides such insights is exceedingly difficult, in part
due to the high dimensionality of brain activity and the complex
nature of the brain’s intrinsic functional interactions. It is
known that the white matter architecture of the brain contributes
to the diverse patterns of activity and functional connectivity
that represent information processing underlying cognitive
function?=>. However, the exact manner in which white matter
connectivity constrains the temporal dynamics of brain activity
remains poorly understood. Improving our understanding
requires a rich characterization of time-varying brain activity, as
well as a robust model to link brain structure with brain activity.
Myriad approaches have been applied to resting functional
magnetic resonance imaging (fMRI) to understand intrinsic brain
dynamics. The most common approach (“functional con-
nectivity”) involves analyzing the correlations between the
activity time series of pairs of brain regions. While pairwise
correlation-based approaches summarize inter-regional syn-
chrony over a period of time, cutting-edge signal-processing
approaches to fMRI can provide a richer account of brain
dynamics by considering the whole-brain patterns of activity at
single time points®~13. One can conceive of the brain as pro-
gressing through a state space whose axes correspond to the
activity at each region®!# (Fig. 1a). Each point in this space
corresponds to an observed pattern of brain activity, and the
sequential trajectories through this space represent how brain
activity patterns change over time. This approach allows one to
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Fig. 1 Schematic of methods for functional image analysis. a Regional
BOLD time series from resting-state and n-back task scans are
concatenated across subjects. Each row in this concatenated data matrix
represents a point in a high-dimensional space whose axes correspond to
regional activity. A schematic of a low-dimensional version of this space is
shown as an example on the right. Our goal is to identify frequently visited
locations in this space and study the temporal progression between these
locations during rest and task. b We then apply a k-means clustering
algorithm to generate a series of cluster labels that can be mapped back to
individual subjects, producing subject-specific brain state time series.

utilize the maximum temporal resolution offered by BOLD fMR],
unlike many dynamic functional connectivity methods, which are
limited by a minimum window sizel®. Studies analyzing the
brain’s regional activation space have found that frequently vis-
ited activity patterns consist of different combinations of RSN
components®®>1617 Brain activity patterns are known to
represent information content!8, distinct modes of information
processing!®20, and attention to stimuli?®2l. Such activation
patterns occur both at rest and in the presence of tasks or
attentional demands, and are often considered to be neural
representations of cognitive state®1422,

However, a fundamental understanding of the brain’s trajec-
tories through regional activation space has been limited by the
use of thresholding that disrupts the continuity of the time ser-
ies®~8, a focus on between-scan rather than within-scan differ-
ences!'4, a narrow focus on only a few brain regions!’, and various
modeling assumptions impacting the nature of the temporal
dynamics detected®. Such limitations have also hampered pro-
gress in understanding how state-space trajectories might be
constrained by or indeed supported by underlying brain struc-
ture. One intriguing possibility is that the white matter archi-
tecture of the brain is designed to support coordinated activity
within RSNs and information transfer between RSNs, which
might be reflected in the temporal progression between distinct
states of RSN coactivation. For instance, one could imagine that
coactivation of visual regions with dorsal attention regions, fol-
lowed by activation of frontoparietal executive control regions
might reflect reception, integration, and higher order processing
of a visual stimulus. Critically, the normative neurodevelopment
of time-resolved brain state dynamics and their cognitive rele-
vance also remain unknown, limiting our ability to incorporate
such neurobiological features into our understanding of neu-
ropsychiatric disorders with developmental origins?3-2°. Specific
neuropsychiatric symptoms, such as hallucinations or negative
rumination, may be represented in coactivation patterns and their
temporal dynamics, which could be disrupted with brain stimu-
lation27-30,

To address these fundamental gaps in knowledge, we consider
a large, community-based sample (n=2879) of healthy youth
from the Philadelphia Neurodevelopmental Cohort (PNC)2>31,
all of whom underwent diffusion-weighted and T1-weighted
structural imaging, passive fixation resting state fMRI, and n-back
working memory task fMRI32-34, We begin by using k-means
clustering to extract a set of discrete brain states from the fMRI
data”-$11:35 and to assign each functional volume from both rest
and task scans to one of those states. We hypothesize that the
brain’s temporal progression between different states is influ-
enced by cognitive demands and stimuli, which we test by
quantifying the time that subjects dwell within states, and the
propensity to transition between states. Next, we hypothesize that
structural connectivity constrains the temporal progression of
brain states and explains why these particular brain states exist.
We test these hypotheses using emerging tools from network
control theory?”-30-3%  along with comparison to stringent null
models*®4! to ensure the specificity of our findings. Finally, we
hypothesize that brain state dynamics change throughout devel-
opment to optimize cognitive performance.

By rigorously testing these hypotheses, we find increased
temporal persistence of a state associated with high activity in
frontoparietal cortex during task. On the other hand, states
associated with coherent activity in default mode areas have
similar temporal persistence between rest and task with an
increased rate of appearance during rest. Interestingly, two
divergent trajectories towards frontoparietal and default mode
states following from a sensory-driven state are positively and
negatively related to task performance, respectively. Using tools
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from linear network control theory, we show that state transitions
with small energy requirements given the brain’s white matter
architecture occur more frequently in the observed data than state
transitions with large energy requirements. Additionally,
accounting for visual input explains the differences in state-space
trajectories between rest and task. Finally, we show that brain
state dynamics and predicted energies of state transitions are
associated with age and explain individual differences in working
memory performance. Overall, we demonstrate the utility of
state-space models in understanding the structural basis for
developmentally and cognitively relevant context-dependent
brain dynamics.

Results

Brain states capture instantaneous coactivation between rest-
ing state functional networks. The spatiotemporal dynamics of
brain activity are exceedingly complex and not fully understood.
Analyzing pairwise correlations between regions over time
("functional connectivity" or FC) is a common approach used to
quantify interactions between brain regions. However, static FC
does not necessarily account for spontaneous or stimulus-evoked
coactivation observed at single time frames (Supplementary
Fig. 1), which is the maximum temporal resolution offered by
BOLD fMRI for a given repetition time (TR)®42. Here, we used k-
means clustering®>®3> to assign each time point from resting and
n-back task fMRI scans into clusters of statistically similar and
temporally recurrent whole-brain spatial coactivation patterns,
hereafter referred to as “brain states” (Fig. 1a). We found that little
additional variance in BOLD signal was explained by increasing k
beyond 5, and the clustering solution at k=5 demonstrated
high reliability in split-half resampling (Supplementary Fig. 2).
Importantly, we found that these BOLD data exhibited clustering
in regional activation space beyond what would be expected from
signals with the same autocorrelation profiles (Supplementary
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Fig. 3a). Additionally, states were highly similar between rest and
n-back task scans (Supplementary Fig. 4b), in a second parcella-
tion (Supplementary Fig. 5a), in an independent sample with older
subjects (Supplementary Fig. 6a—c), and after removal of high-
motion frames (Supplementary Fig. 7a, b).

We found that “resting-state functional networks” (RSNs)43:44,
groups of regions with stronger static FC with each other than
with other regions, exhibited coherent high or low amplitude
activity within each cluster centroid. This finding is consistent
with strong within-network FC. Due to their similarity to RSN,
we named each of the five states that we observed after the
previous RSN whose isolated high or low amplitude activity best
explained each state. This choice did not influence any analyses
and is solely for convenient interpretation. We refer to them as
the DMN+, DMN—, FPN+, VIS+, and VIS—, representing
activity above (+) or below (—) regional means in default mode
(DMN), frontoparietal (FPN), and visual networks (VIS),
respectively (Fig. 2a). We also asked which additional RSNs
exhibited coherent activity in each state by quantifying the
alignment of the high and low amplitude components of each
brain state activity pattern separately with each RSN, indicating
the presence of coherent activity within somatomotor network
(SOM), dorsal attention network (DAT), and ventral attention
network (VAT) (Fig. 2b).

Interestingly, in addition to coherent activity within each RSN,
we found that centroids contained multiple RSNs simultaneously
exhibiting coherent high or low amplitude activity. For example,
the DMN exhibited high amplitude while the DAT simulta-
neously exhibited low amplitude in the DMN+ state. This spatial
organization likely reflects known patterns of between-network
FC between task-positive and task-negative systems*> (Supple-
mentary Fig. 8a, mean r = —0.10, one-sample ¢-test, df = 878, t =
—80.45, p < 10~1%). However, the DMN—, VIS+, and VIS— states
evidence unexpected, transient patterns of coactivation between
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Fig. 2 Brain states represent coactivation within and between resting state functional networks. a Brain states defined as the centroids of clusters
identified using an unsupervised machine-learning algorithm applied to rest and n-back task fMRI data. Brain states are labeled based on cosine similarity
with a priori resting state functional networks (RSNs)#3. The top label corresponds to the RSN with the most overall similarity, and the bottom two labels
separated by a forward slash reflect the RSNs with the most similarity to the positive and negative components of each state, respectively. b Cosine
similarity between positive (black) and negative (red) components of each state with binary state vectors corresponding to a priori definitions of RSNs#3.
Larger radial values correspond to higher cosine similarity. DAT dorsal attention network, DMN default mode network, FPN frontoparietal network, LIM
limbic network, SOM somatomotor network, VAT ventral attention network, and VIS visual network.
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VIS and SOM systems. Specifically, in the DMN— state, SOM and
VIS regions were both at high amplitude (Fig. 2b). In the VIS+
state, SOM regions were at low amplitude and VIS regions were at
high amplitude (Fig. 2b). In the VIS— state, SOM regions were at
high amplitude and VIS regions were at low amplitude (Fig. 2b).
Despite the presence of three unique coactivation patterns
between these two RSNs, the mean FC between regions in VIS
and SOM did not significantly differ from 0 (Supplementary
Fig. 8a, mean r= —0.0012, one-sample t-test, df =878, t=
—0.085, p = 0.40). These patterns of simultaneous activation and
deactivation provide a snapshot of instantaneous interactions
between RSNs that could not be obtained through the
analysis of FC.

Temporal patterns of brain state occurrence and occupancy.
After identifying large-scale brain states representing instanta-
neous coactivation between RSNs, we were interested in com-
paring the dynamics of brain state occupancy and dwelling
between rest and n-back scans (Fig. 3a). To provide a rich
characterization of the dynamics of brain state occupancy, we
defined and studied three related metrics for each state: (1)
fractional occupancy, the percentage of frames assigned to a state
for a given scan or condition, (2) dwell time, the mean duration in
seconds of temporally continuous runs of state occupancy, and
(3) appearance rate, the number of times a run of any length
appeared per minute. Using paired f-tests, we assessed whether
the population means of subject-specific differences between n-
back and rest (#npack—rest) for each of these metrics were different
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from 0. Here, we focus on the FPN and DMN, whose activation
and suppression, respectively, are classically seen during cogni-
tively demanding tasks#>-47.

During the n-back task, we observed lower fractional
occupancies in the two default mode states (paired t-tests, df =
878, t=—31.38, DMN+: pupack rest = —7-10, Peorr < 10715,
DMN—: Unback—rest = —6.15, df =878, t=30.57, peorr < 10719).
However, higher fractional occupancy in DMN states at rest was
best explained by increased appearance probability of DMN states
at rest (paired t-tests, DMN+: pnpack—rest = —0.77, df =878, t =
—40.03, peorr < 10715, DMN—: pypack_rest = —0.68, df =878, t=
—40.74, peorr < 1071°), while dwell time in DMN states did not
differ between rest and task (paired t-tests, DMN+: ppback—rest =
—0.01, df =878, t =—0.17, peorr = 1, DMN—: pppack—rest = 0.06,
df =878, t=1.45, peorr =0.73). Lower DMN+ state fractional
occupancies during the n-back task is consistent with DMN
suppression observed during attention-demanding tasks*®. How-
ever, the high DMN-— fractional occupancy suggests that
coherent DMN suppression is not specific to task conditions,
and may occur in the context of a unique, transient interaction
with primary sensory areas (Fig. 3a). Interestingly, FPN+ state
fractional occupancy was similar between rest and task, despite
higher dwell time with a lower appearance rate in the n-back task
(paired t-tests, FPN+ dwell time: ppack—rest = 0.95, df =878, t =
23.69, Peorr < 10712, FPN+ appearance rate: dppackrest = —0.26,
df =878, t = —14.74, peore < 1071%). These findings suggest that
the FPN is activated more frequently, albeit transiently, at rest,
while sustained activation of the FPN is found during the n-back
working memory task.
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Fig. 3 Brain state occupancy and temporal persistence are modulated by task demands. a-c Distributions of subject-level fractional occupancy (panel a),
dwell time (panel b), and appearance rate (panel ¢), for each brain state in rest and task. DMN states exhibit higher fractional occupancies and appearance
rates during rest and VIS states exhibit higher fractional occupancies and dwell times during task. **peor <1015, *peorr <104, paired t-tests Bonferroni-
corrected across k =5 states separately for fractional occupancy, dwell time, and run rate. d Within task scans, the state fractional occupancies change
with increasing cognitive load. The dashed lines indicate the mean across subjects. Boxplot rectangles show the median, 25th, and 75th percentiles of
fractional occupancy for each block, and whiskers show 1.5 times the interquartile range. e Standardized linear regression § weights for state-specific
fractional occupancy (FO) on working memory (WM) performance for each task block requiring an increasing WM load (0-back, 1-back, and 2-back). We
found opposing trends for DMN+ and FPN+ states from O-back to 2-back. WM working memory, FO fractional occupancy.
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Next, we decided to examine the dynamics of DMN
suppression and FPN activation as a function of cognitive load
within the n-back task and as a predictor of task performance. We
hypothesized that as cognitive load increased, DMN+ fractional
occupancy would decrease and FPN+ fractional occupancy
would increase. As expected, the FPN state fractional occupancy
increased from the 0-back to the 2-back block (Fig. 3d).
Interestingly, spatially anticorrelated DMN states both decreased
with increasing cognitive load (Fig. 3d). This finding suggests that
working memory involves reduced representation of brain states
with coherent activity in the DMN, whether high or low
amplitude, and increased representation of the high amplitude
FPN state, clarifying the roles of task-positive and task-negative
networks*>~47. Next, when we examined associations between
fractional occupancy and block-specific working memory perfor-
mance (Fig. 2c and d), we found that increasing FPN+ fractional
occupancy (Fig. 3e; multiple linear regression, standardized
Bro =0.12, df = 872, t = 3.85, peorr = 1.9 x 1073) and decreasing
DMN+ fractional occupancy (Fig. 3e; multiple linear regression,
standardized fro=—0.15, df =872, t=—4.71, peorr=44X
10—) were associated with working memory performance during
the 2-back block. However, for 0-back blocks, these trends
were reversed (Fig. 3e, multiple linear regression; 0-back
FPN+, standardized fro= —0.11, df =872, t=—3.49, peorr =
7.7 x 1073; 0-back DMN+, standardized Bro=0.10, df =872,
t=2.96, pcorr = 0.047). This pattern of results might reflect the
engagement of alternative systems for low difficulty tasks by
strong performers, thus introducing a layer of complexity to the
notion of DMN and FPN as primary task-negative and task-
positive systems*°.

Transitions between brain states. After demonstrating that
cognitive demands influence dwell times in large-scale brain
states, we were interested in how cognitive demands would affect
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transitions between large-scale brain states. We conceptualized
brain state transitions as directional trajectories between different
locations in a high-dimensional space whose axes correspond to
the level of activity in each brain region. Neuroimaging studies
suggest that the brain progresses along a low-dimensional
manifold in regional activation space®!4, but it remains
unknown the extent to which specific trajectories in this space are
influenced by cognitive demands and may represent cognitive
processes.

Here, in order to study the relationship between cognition and
progression through regional activation space, we computed
transition matrices for each subject’s resting state scan, n-back
task scan, and each condition of the n-back task scan. Because we
were interested in state changes, we constructed transition
matrices that ignore the potentially independent effects of state
persistence, or autocorrelation, and only capture the probabilities
of moving to new states; that is, the 7jth element of the transition
matrix represents the transition probability between state i and
state j given that a transition out of state i is occurring (Fig. 4a, see
“Methods” section). As an initial step, we used two null models to
confirm previous findings*® that brain state transitions are non-
random, in that the observed transition probabilities would be
unlikely in uniformly random sequences of states and state
transitions (Supplementary Fig. 9).

Next, we explored how cognitive load impacts brain state
transitions using a non-parametric permutation test to assay for
differences between transition matrices computed from resting
state scans and from the 2-back condition of the n-back task. We
hypothesized that we would see more transitions from states
driven by sensory cortex activation into states driven by
activation in executive control and attention areas, reflecting
reception, integration, and task-relevant processing of stimuli.
Indeed, we found that transitions from VIS+ and VIS— states
into the FPN+ state were increased during the 2-back condition
compared to rest scans (Fig. 4b). Transitions from DMN+,

e. Rest f. 2-back
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Fig. 4 Brain state transitions are influenced by task demands and related to behavior. a and b Group average state transition probability matrices for
resting state scans and the 2-back condition. Matrix elements reflect the probability of a state transition after removing the effects of state autocorrelation.
¢ Non-parametric permutation testing demonstrating differences between the rest and n-back group average transition probability matrices. *peorr < 0.05,
after Bonferroni correction over 20 transition probabilities. d Standardized linear regression  weights for the transition probability during the 2-back
condition of the n-back task as a predictor of task performance during the 2-back condition. Transitions from the VIS— state into the DMN+ and FPN+
states are negatively and positively associated with better performance, respectively. *p.o,r < 0.05, after Bonferroni correction over 20 transition
probabilities. TP transition probability. e and f Graphical representation of resting state (panel ) and 2-back (panel f) transition probability matrices as
networks whose nodes are states, and whose edges are transition probabilities thresholded at 0.25. g Graphical representation of results shown in panel d.
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a. Structural Constraints on Brain State Transitions b_
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Fig. 5 Linear dynamics along white matter explain brain state transition probabilities. a Schematic demonstrating calculation of minimum control energy
needed to move a linear dynamical system defined by white matter connectivity from some initial state xo to some final state X;, Over a time horizon T.
b Schematic of network null models (left) preserving different spatial and topologic features of networks defined by white matter connectivity. The energies
(Enmin) required to maintain or transition between each state are lower in real brain networks compared to these null models (right). ¢ and d Spearman
correlation between structure-based transition energy prediction (x-axis) and empirically derived transition probability (y-axis) for resting state (left) and
the 2-back condition of the n-back task (right), using inputs weighted evenly throughout the whole brain ¢ or weighted positively towards the visual system
d. Linear fit of rank values are shown due to the monotonic, non-linear relationships in the data.

DMN—, and FPN+ states into VIS4 states were also increased in
the 2-back condition, likely reflecting the interruption of ongoing
transmodal processing by sensory input. Finally, we tested for
associations between 2-back transition probabilities and perfor-
mance during the 2-back condition. In support of our hypothesis,
we found that transitions from the VIS— state to the DMN+- state
were negatively associated with performance (Fig. 4d, multiple
linear regression, standardized frp = —0.14, df =873, t = — 4.42,
Peorr = 2.24 x 10~4), while transitions from the VIS— state to the
FPN+ state were positively associated with performance (Fig. 4d,
multiple linear regression, standardized frp =0.14, df =873, t =
4.37, Peorr = 2.84 x 10™4). These results are consistent with prior
work positing roles for the FPN and DMN as task-positive and
task-negative systems*’, but suggest that interactions with motor,
visual, and salience networks found in the VIS— state may also
contribute to working memory. Overall, these findings suggest
that specific trajectories in brain activation space are favored
during increased cognitive load and may represent task-relevant
processing.

Control properties of white matter networks explain brain
state transitions. In the previous section, we described how the
presence of cognitive demands and sensory inputs leads the brain
towards certain trajectories in state space. However, it is not well
understood how the static white matter connectome contributes
to these divergent dynamics. Here, we modeled the influence of
structure on brain activity as the time-evolving state of a linear
dynamical system defined by white matter connectivity.
By applying tools from network control theory (Fig. 5a; see

“Methods” section, subsection “Network control theory” and
Supplementary Information, subsection “Calculating transition
energy using control theory”), we calculated the transition energy
as the minimum input energy needed to transition between every
pair of the empirically observed brain states. In all calculations,
we allowed the inputs to come from all brain regions, weighted
either uniformly or towards a particular cognitive system*3. Using
this framework, we tested a series of hypotheses unified under the
notion that the brain prefers trajectories through state space
requiring minimal input energy given structural constraints.
First, we hypothesized that the brain is optimized to support
the observed brain states and state transitions with relatively little
energy. We measured brain state stability as persistence energy, or
the energy needed to maintain each state. In a single
representative human structural brain network?°0 (see “Meth-
ods” section for details), we compared the transition and
persistence energies for real structural connectivity (Fig. 5b)
and for two null models based on the group average human
structural brain network: (1) a null model that preserves only
degree sequence in the networks®! (Deg. Pres., DP), and (2) a null
model that preserves degree sequence, edge length distribution,
edge weight distribution, and edge weight-length relationship*!
(strength-length preserving, SLP). Compared to the DP null
model, transition and persistence energy were always lower in the
group average SC (Fig. 5b, all p o, < 0.001). Compared to the SLP
null model, every single persistence energy value and all but two
transition energy values were lower in the group average SC
(Fig. 5b, peorr < 0.001). Finally, we found that the energy required
to maintain the DMN+ state was lower than a set of null states
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with similar spatial covariance*® (Supplementary Fig. 10).
Collectively, these findings suggest that unique geometric and
topological features of white matter networks allow for low-
energy transitions and maintenance of the empirically observed
functional states.

Next, we hypothesized that the brain prefers trajectories
through state space that require little input energy to achieve in
a dynamical system defined by white matter connectivity. To test
this hypothesis, we computed the Spearman correlation between
transition energy values and transition probabilities observed
during resting state scans and during the 2-back condition of n-
back task scans (Fig. 5c and d). When inputs are evenly weighted
throughout the whole brain (Fig. 5¢), transition energy values are
strongly anticorrelated with resting state transition probabilities
and weakly correlated with 2-back transition probabilities.
Importantly, the energy estimates from real structural connectiv-
ity were more strongly anticorrelated with resting state transition
probabilities than energy estimates from null models or transition
distance in state space alone (Spearman’s r = —0.86, ps;p < 0.001,
ppop <0.001, Supplementary Fig. 11b). When inputs are biased
towards the visual system*? (Fig. 5d), transition energy values are
strongly anticorrelated with 2-back transition probabilities
(Spearman’s r = —0.81) and weakly correlated with resting state
transition probabilities (Spearman’s r= —0.03). However, this
result was primarily explained by transition distance in state
space, rather than the effects of structure (psip=1, ppp=1).
Overall, these findings suggest that linear diffusion of brain
activity along white matter tracts constrains brain state transitions
at rest, and that the distribution of inputs to the brain is an
important factor in the brain’s progression through state space.

Brain state dynamics and control energies are associated with
age. Developmental changes in white matter, gray matter, func-
tional networks, and task-related activations accompany changes
in behavior and cognition®>2=>>. However, it is unclear how state

space trajectories and their supporting structural features con-
tribute to these cognitive and behavioral changes. Given that the
spatiotemporal brain dynamics identified by our approach have
clear structural underpinnings, we hypothesized that these
dynamics change throughout normative neurodevelopment in
support of emerging cognitive abilities®®>7.

We used multiple linear regression to ask whether age was
associated with state dwell times and fractional occupancies while
controlling for brain volume, handedness, head motion, and sex
as potential confounders. Interestingly, we found that fractional
occupancies in FPN+4 and DMN+ states exhibited context-
dependent associations with age (Fig. 6a). FPN+ fractional
occupancy increased with age for all blocks of the n-back task
(Fig. 6a; multiple linear regression, 2-back standardized B.g =
0.12, df = 873, t = 3.40, peorr = 0.014) and not rest, while DMN+
fractional occupancy increased with age for rest only (Fig. 6a;
multiple linear regression, standardized f,qc = 0.12, df = 873, t =
3.59, peorr = 0.015). The relationships between dwell time and age
followed similar but weaker trends to those observed with
fractional occupancy, with the exception of resting state DMN-
state dwell time which increased with age. We also found that the
minimum control energy required to undergo all transitions that
terminated in the DMN+ state decreased with age (Fig. 6¢; all
Peorr < 0.05). This finding suggests that age-associated structural
changes allow individuals to coherently activate the default mode
network with greater ease, and is consistent with the observation
that DMN+ dwell time and fractional occupancy increase with
age at rest.

We also assessed whether transition probabilities were
associated with age. Using multiple linear regression, we tested
for relationships between transition probabilities or transition
energy values and age, while controlling for brain volume,
handedness, head motion, and sex. Similar to the context-
dependent associations with age that we observed with fractional
occupancy, we found that transition probabilities were differen-
tially associated with age across the conditions of the n-back task
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Fig. 6 Brain state dynamics and control energies are associated with age. a and b Standardized linear regression g weights for age as a predictor of
fractional occupancy a or dwell time b in each state during rest and during each condition of the n-back task. *p., < 0.05 after Bonferroni correction over
20 state transitions. ¢ Standardized linear regression f weights for age as a predictor of minimum control energy required to transition between each pair of
states. *peorr < 0.05 after Bonferroni correction over 20 state transitions. d-h Standardized linear regression 8 weights for age as a predictor of transition
probabilities during resting state scans d, O-back e, 1-back f, and 2-back g conditions of the n-back task, and the entire n-back task scan h. *pc,r < 0.05 after

Bonferroni correction over 100 state transitions shown in panels d-h.
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(Fig. 6e-h). The probability of transitions from both DMN-—
(Fig. 6f; multiple linear regression, standardized f,g. = 0.15, df =
873, t=4.33, peorr = 1.7 x 1073) and DMN+ (Fig. 6f; standar-
dized B =0.13, df =873, t=3.68, pcorr = 0.025) into FPN+
during the n-back task increased with age. This observation is
particularly interesting in light of previous work implicating the
DMN and FPN in increasing working memory performance
across development®. Specifically, this result provides evidence
for the importance of direct switching between DMN and FPN
states, as opposed to deactivation and activation without any
temporal constraints. Overall, these findings suggest that task-
oriented and spontaneous brain dynamics involving the DMN
and FPN may mature through independent processes.

Discussion

In the present study, we examined the temporal sequence of
whole-brain activity patterns in individuals during rest and task,
and demonstrate a structural basis for large-scale brain
activity patterns and their dynamic temporal evolution. Using a
diverse array of techniques from network neuroscience, dyna-
mical systems, and network control theory, we generated new
insights into the complex relationship between brain structure,
spatiotemporal patterns of brain activity, neurodevelopment, and
behavior.

Cognitive functions are often represented as brain activity
patterns!?, but substantially less is known about how sequences of
activity patterns may represent links between cognitive functions.
In this paper, we considered each fMRI image acquisition to be a
point in a high-dimensional state space whose axes correspond to
regional activity. Next, we identified brain states as frequently
visited locations in this space comprised of combinations of active
and inactive brain networks*3. Finally, we described the direc-
tional trajectories between these states in time as state transitions.
Our work adds to a body of literature suggesting that coactivation
of brain networks at relatively short temporal scales evidences
rich functional interactions supporting behavior®%1l. For
instance, we found that the brain state transition probabilities
observed at rest were strongly modulated by cognitive demand.
During resting state scans, in which external stimuli are constant
over time, transitions likely occur spontaneously, while during n-
back task scans, transitions are likely caused by a combination of
spontaneous fluctuations, stimulus-evoked activity in primary
sensory areas, and task-related activity changes in higher order
association areas. In the n-back task, we found more frequent
transitions into states driven by coactivation of sensory systems
from states involving coactivation of higher order association
areas when compared to the resting state. This finding was pre-
sent in two independent samples (PNC and HCP) with different
task structure and is consistent with increased top-down mod-
ulation?? of sensory input during task performance.

We also found that certain trajectories in state space were
related to task performance. The VIS— state occurred more fre-
quently during the n-back task and is composed of visual cortex
suppression alongside mixed dorsal and ventral attention network
activation, consistent with top-down suppression of sensory
cortex?0. While its occupancy alone was not related to task per-
formance, transitions from VIS— to FPN+ or DMN+ were
positively and negatively associated with performance, respec-
tively. These findings suggest that early stimulus processing fol-
lowed by manipulation®® of task-relevant information facilitates
accurate performance, while stimulus processing followed by
internally directed cognition4® is detrimental to performance.
More broadly, this result suggests that the paths through which
activation patterns are reached are important, in addition to the
activation patterns themselves.

Our major contribution to cognitive neuroscience and applied
network science lies in describing how linear diffusion of activity
along a static white matter architecture constrains trajectories
through brain activation space at rest. We hypothesized that the
state space of brain activity could be explained by two compo-
nents: linear diffusion of activity along white matter tracts®® and
some nonlinear inputs, which include but are not limited to
neuronal membrane dynamics, metabolic factors, and external
stimuli. Under this model, we solved for the magnitude of these
nonlinear inputs required to maintain and transition between
brain states, given the constant constraint of linear diffusion of
activity along white matter tracts.

Using this approach, we found that the brain empirically
prefers trajectories in state space requiring the least energy nee-
ded to overcome structural constraints for a given set of inputs.
Specifically, when we modeled uniformly weighted inputs or
input weighted towards the DMN, the resulting transition energy
values best explained resting state transition probabilities, possi-
bly reflecting a regime with heterogeneous drivers centered
around the DMN#, As expected, these transition energies did not
explain transition probabilities during the 2-back condition, likely
due to task-derived inputs which were not explicitly modeled.
Indeed, when we weighted system input towards the visual system
to account for the frequent delivery of visual stimuli, we were
better able to explain 2-back transition probabilities. While this
finding represents constraints of distance alone and not white
matter topology, it quantitatively explains how that stimulus-
derived input alters the state-space trajectories of the brain.
Future investigations may resolve the effects of structure on task
dynamics using data-driven approaches that attempt to recover
the full set of task-related inputs®0:61,

Unlike previous time point level fMRI analyses®®!l, our
method unambiguously labels every time point in every subject
for rest and n-back as belonging to a discrete, common state. We
intentionally designed our method in this way to make com-
parisons across contexts and across subjects throughout different
developmental stages®293. Indeed, these comparisons revealed
context-specific associations between age and brain state
dynamics, suggesting that as brain structure develops, multiple
trajectories through state space are supported. Our study offered
insights into previously unexplored time-resolved brain dynamics
in normative neurodevelopment. Neuropsychiatric illnesses such
as schizophrenia, autism, epilepsy, and ADHD are increasingly
considered developmental disorders, and therefore it is critical to
understand the maturation of brain dynamics in healthy youth.
Previous studies have shown that structural and functional
changes in the DMN and FPN accompany normal cognitive
development®4-60. Here we contribute to our understanding of
these networks by demonstrating context-dependent associations
between age and DMN and FPN state dynamics (Fig. 6a, d and e).
Interestingly, both fractional occupancies and state transition
probabilities exhibit context-dependent associations with age,
with DMN+ fractional occupancies increasing with age at rest
only (Fig. 6a), FPN+ fractional occupancies increasing with age
in n-back only (Fig. 6a), and DMN to FPN+ transitions
increasing with age during task only (Fig. 6e). However, like other
cross-sectional studies of the relationship between brain function
and age>467:68, we found relatively small effects of age on indi-
vidual measures. Consistent with the finding of DMN+ fractional
occupancy increasing with age, we also found that the predicted
energy of transitioning into the DMN+ state from all other states
decreased with age. However, we did not find a significant rela-
tionship between DMN+ transition energy values and DMN+
fractional occupancy across subjects. Future work should explore
how the relative architecture of control energies within subjects
may explain a bias towards certain trajectories over others.

8 COMMUNICATIONS BIOLOGY | (2020)3:261 | https://doi.org/10.1038/s42003-020-0961-x | www.nature.com/commsbio


www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0961-x

ARTICLE

Methodological limitations. We acknowledge that a limitation of
this study was a focus on discrete brain states with common
spatial activity patterns across subjects rather than a combination
of continuously fluctuating spatial modes of brain activity*®.
While BOLD fMRI fluctuations are generally thought to be
continuous in nature, several studies have found evidence for
temporally “bursty” whole-brain activity patterns!7-0%79, con-
sistent with discrete, event-like dynamics. Additionally, a discrete
model is consistent with the notion of that specific patterns of
neural activity and connectivity represent information”!72, k-
means clustering and principal component analysis (PCA) are
two related techniques’3 providing discrete and continuous
solutions, respectively. We observed that our cluster centroids
separately corresponded to the positive and negative versions of
the spatial principal components (PCs) of our data, suggesting
that these two approaches would likely reveal convergent find-
ings. However, our discrete approach constituted a major
strength of the study, because it allowed us to study sequences of
brain activity using approaches from stochastic process theory’4,
including calculating transition probabilities. The discrete model
also allowed us to use network control theory to relate structural
connectivity to brain activity patterns at each image acquisition,
while PCA models each image acquisition as a mixture of lower
dimensional components. Assuming that our clusters are com-
parable to positive and negative loadings on PCs, then the clus-
tering approach employed here essentially provides a data-driven
thresholding to identify time points when the brain moves from a
loading on one spatial mode to another, while providing infor-
mation about the direction (positive or negative) of loading on
those components involved in those transitions. An arbitrary
threshold would be required to identify these time points relative
to PC time courses. Discretization also allows us to easily identify,
for example, that a negative loading on PC i tends to be followed
in time by a negative loading on PC j, whereas the analagous
continuous approach of computing a lagged correlation value
between PC time courses would not by itself discern between
positive following positive and negative following negative.
Importantly, our approach also inherently accounts for the
temporal autocorrelation within the BOLD signal”> by measuring
state transitions while excluding state persistence.

We also demonstrated that k = 5 yields stable cluster partitions
robust to outliers (Supplementary Fig. 2), and our results were
consistent for multiple values of k (Supplementary Fig. 12). These
findings suggest that k=5 is not a “magic number” of states
visited by the brain, but rather one scale at which the brain can be
studied. One can always identify k clusters from a dataset;
however, in our case, we showed that the observed cluster
centroids depended on the covariance structure of the BOLD data
that was not explained by autocorrelation (Supplementary Fig. 3),
suggesting that the studied states reflect non-trivial coactivations
between brain regions. Nevertheless, discretizing a system that
exhibits continuous behavior will remove information, some of
which may be important for understanding brain-behavior
relationships.

The relatively low sampling rate (TR =3s) likely limited our
ability to resolve fast changes in brain activity. Nevertheless, we
were able to resolve the effects of specific brain state transitions
on behavior (Fig. 4d, g). Additionally, there likely exist mean-
ingful differences in individual brain state topographies’®77 that
certainly warrant further investigation, but could not be studied
convincingly here due to the relatively small number of time
frames acquired for each subject. To partially address these
limitations, we reproduced key findings in a second parcellation
(Supplementary Fig. 5) and an independent sample with a higher
sampling rate and no global signal regression (Supplementary
Fig. 6).

Future directions. The novel approaches in this study pave the
way for many future studies to continue to elucidate how a static
structural connectome can give rise to complex, time-evolving
activity patterns important for cognition. An intuitive and
important application of our approach lies in the field of neu-
rostimulation, where clinicians aim to implement targeted
changes in the temporal evolution of brain activity patterns/-30-78
to alleviate symptoms of neuropsychiatric illness. In particular,
network control theory and data-driven estimation of brain states
are a powerful combination for this purpose. However, before this
application can be realized, the robustness of these models at the
level of individual subjects must be confirmed. One could simi-
larly ask whether individual differences in structural connectivity
explain variance in brain state dynamics, and thus response to
neural stimulation. Application of these methods to electro-
physiologic data could help to validate our findings and elucidate
more complex neural dynamics that are not reflected in the slow
fluctuations of hemoglobin oxygenation captured by BOLD
fMRI79:80,

Targeted, model-informed brain stimulation’:2778 will likely
need to account for interactions between exogenous input and
endogenous dynamics®®0!, Recent evidence? implicates ascending
neuromodulatory inputs in the brain’s progression through state
space. Release of neuromodulators can be driven by external stimuli
or spontaneous neural activity®!, and therefore may serve as both an
important mediator of external inputs and a critical aspect of
endogenous dynamics. Ultimately, a model that integrates the
dynamic and static interactions between brain structure, neuromo-
dulators, fast ionotropic neurotransmission, and exogenous inputs
might allow clinicians to solve for inputs that effect beneficial
changes in brain activity and connectivity. Nonlinear neural mass
models of brain activity hold substantial promise for this
purpose’$82 and in the future could be used to more deeply probe
the structural constraints on brain dynamics identified here.

Methods

Participants. Resting state fMRI, n-back task fMRI, and diffusion tensor imaging
(DTI) data were obtained from n = 1601 youth who participated in a large
community-based study of brain development, known as the PNC3!. The insti-
tutional review boards of the University of Pennsylvania and the Children’s
Hospital of Philadelphia approved all study procedures. Participants had been
previously enrolled in a study at the Center for Applied Genomics, and participants
and/or their parents provided informed consent (assent) to be re-contacted for
participation in additional studies, including the PNC. Here we study a sample of
= 879 participants between the ages of 8 and 22 years (mean = 15.9, s.d. = 3.3, 386
males, 493 females) with high quality diffusion imaging, rest BOLD fMRI, and n-
back task BOLD fMRI data. Our sample only contained subjects with low estimated
head motion and without any radiological abnormalities or medical problems that
might impact brain function (see Supplementary Information for detailed exclu-
sion criteria). Details about imaging parameters, task design, and image pre-
processing can be found in the Supplementary Information.

Unsupervised clustering of BOLD volumes. BOLD fMRI activity patterns are
known to represent information content!8, information processing!®2’, and
attention to stimuli2?. Here, we use a discrete model as a simplification of brain
dynamics*$, in which we view repeatedly visited locations in regional activation
space to be neural representations of cognitive states, or “brain states” for sim-
plicity. In order to ultimately characterize the progression of these brain states from
one time point to the next, and by extension the progression of the brain through
regional activation space, we began by concatenating all functional volumes into
one large data matrix*. Specifically, we took all brain-wide patterns of BOLD
activity from the resting-state scan and from the n-back task scan from all subjects,
and we placed them into a matrix X with N observations (rows) and P features
(columns). Here, P is the number of brain regions in the parcellation (462), and N
is the number of subjects (879) x (120 resting state volumes + 225 n-back task
volumes), summing up to N = 303,255.

To determine the brain states present in these data, we performed 20 repetitions
of k-means clustering for k=2 to k =11 using Pearson correlation as the
algorithm’s measure of distance”-$3°. Because we aimed to study the temporal
progression between coactivation patterns using a k x k transition probability
matrix, and our resting state scans contained 120 frames, k* must be <120 in order
to theoretically observe each transition at least once. Therefore, we chose k=11
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(k% = 121) as our maximum possible value of k. After selecting k = 5, we chose to
consider the partition with the lowest error out of all 20 repetitions for subsequent
analyses. To identify the optimal number of clusters k, we assessed the variance
explained by the lowest error solution of the clustering algorithm at each value of k
from 2 to 11, and the gain in variance explained for a unit increase in k. The
variance explained by the clustering algorithm is defined by the ratio of between-
cluster variance to total variance in the data (within-cluster variance plus between-
cluster variance)3>83. We also intended to make cross-subject comparisons of state
dynamics as continuous measures, so it was important to use partitions that
identified brain states that were common across all subjects, rather than identifying
many different states that were each only represented in a few subjects.

We observed that the variance explained by the clustering algorithm began to
taper off after k =5 (Supplementary Fig. 2a), and the additional variance explained
for each unit increase in k after 5 was <1% (Supplementary Fig. 2b). Additionally, k
values >5 produced states that were not all represented in every subject
(Supplementary Fig. 2c). To avoid using an unnecessarily large number of states
while maintaining inter-subject correspondence in state presence, we chose k =5.
To further validate the choice of k=5, we evaluated the split reliability of the
partition at this resolution (Supplementary Fig. 2d-f). This analysis showed that
cluster centroids and transition probability matrices were highly similar between
independently clustered subject samples (see Supplementary Methods for details).
Another recent paper3® found a similar drop off in additional variance explained at
k =6 instead of k = 5. Key findings are reproduced at k = 6 in the supplement and
at k=5 for a second parcellation.

Analysis of spatiotemporal brain dynamics. After using k-means clustering to
define discrete brain states, we generated names for each state using the maximum
cosine similarity to binary vectors reflecting activation of communities in an a
priori defined 7-network partition?3; names were generated separately for max-
imum cosine similarity of positive and negative state entries. These names only
serve as a convenient way of referring to clusters instead of their index (i.e., 1—k),
and have no impact on any analyses. Next, we computed subject-level state frac-
tional occupancy as the percentage of volumes in each scan that were classified as a
particular state. Additionally, we computed subject-level state dwell time as the
mean length of consecutive runs of each state. We defined the transition probability
between state i and state j to be the probability that j is the next new state occupied
after state i. This can also be equivalently framed as the probability of a specific
state transition occurring given that some state transition is occurring. We chose
this metric in order to understand state transitions without bias from potentially
independent effects of state dwell time or autocorrelation. Operationally, this
computation was performed by reducing the empirically obtained state sequences
to a new sequence (e.g. [11 12232 2] becomes [1 2 3 2]) in which the dwell time
of every state is equal, and then computing the probability of state j following
state i. In the supplement, we also compute the transition probability between two
states as the probability of transitioning from state i at time f to state j at time point
t+ t, given that the current state is i, where t, is the TR of the BOLD scanning
sequence (3 s for PNC and 0.72 s for HCP) for the purposes of demonstrating the
non-random nature of brain state dynamics.

Finally, in order to assess the context-dependent nature of brain state dynamics,
we performed a non-parametric permutation test to compare group-average
transition probabilities between the n-back task and the resting state. First, we
randomly selected two halves of the full sample. Next, we generated two group-
average transition matrices by averaging together resting state transition matrices
from one half and n-back transition matrices from the other half, and vice versa.
This procedure was repeated 100,000 times, and we retained the difference between
the two halves at every element of the transition matrix. We generated a p-value for
each element of the transition matrix by dividing the number of times the observed
difference between n-back and rest at that element exceeded the null distribution of
differences.

Network control theory. To better understand the structural basis for the observed
brain states themselves, as well as their persistence dynamics, we employed tools
from network control theory3%84, We represent the fractional anisotropy-weighted
structural network estimated from diffusion tractography as an N x N matrix A,
where N is the number of brain regions in the parcellation and the elements A
contain the estimated strength of structural connectivity between regions i and j,
where i and j can range from 1 to N. Because diffusion tractography cannot
estimate within-region structural connectivity, A;; =0 whenever i = j.

We allow each node to carry a real value, contained in the map x : R, , — RY,
to describe the activity at each region in continuous time. Next, we employ a linear,
time-invariant model of network dynamics:

X(t) = Ax(t) + Bu(t), )

where x describes the activity (i.e. BOLD signal) in each brain region over time, and
the value of the ith element of x describes the activity level of region i.

After stipulating this dynamical model, we computed the k x k transition energy
matrix T as the minimum energy required to transition between all possible pairs
of the k clustered brain states, given the white matter connections represented in A.
See Supplementary Methods for details on computation of minimum control
energy and selection of a control horizon. For the purposes of control theoretic

simulations, we were interested in exploring the fundamental role of white matter
architecture in supporting brain state transitions. Thus, we constructed a single
group-representative A generated through distance-dependent consistency
thresholding®” of all subjects’ structural connectivity matrices, a process which has
been described in detail elsewhere™.

Developmental and cognitive trends of brain dynamics. After identifying
context-dependent brain dynamics at the level of individual frames, we hypothe-
sized that features of these dynamics would change throughout normative neu-
rodevelopment, and moreover that they would map to cognitive performance. To
assess potential developmental trends of spatiotemporal brain dynamics, we fit the
following model using linear regression:

D=py+pat+pyv+PByh+p, my+Bs+e @)

where a is age, v is total intracranial volume, mgy is the mean framewise dis-
placement during rest or n-back scans, & is handedness, s is sex, € is an error term,
and D is a measure of brain dynamics, such as fractional occupancy, transition
probability, or asymmetry. To assess potential relations between cognitive per-
formance and spatiotemporal brain dynamics, we fit the following model using
linear regression:

C=po+BpD+pat+pv+PByh+p, my+Bs+e ®3)

where C is the overall or n-back block-specific d’ score, which we use as our
measure of working memory performance, and all other variables are the same as
described above. For all analyses, we applied a Bonferroni correction for multiple
comparisons, accounting for tests performed over all states or state transitions
within each scan. We chose the Bonferroni-level correction, because it is a con-
servative approach given that each state’s fractional occupancies and transitions are
not fully independent of one another.

Statistics and reproducibility. In general, we computed statistics comparing
metrics of brain dynamics between resting state and n-back task conditions, based
on clustering fMRI data obtained during these conditions. These comparisons were
Bonferroni-corrected over the number of metrics tested. In order to test the extent
to which the clustering solution was reproducible, we repeated the clustering
procedure in 500 split-half subsamples of our data and found strong agreement
between the two independent split halves. Additionally, custom code for all data
analysis is available publicly (see section “Code availability”) to facilitate repro-
ducibility. This code uses MATLAB, R, and python.

Diversity statement. Recent work in neuroscience8®> and other fields®6-89 has
identified a bias in citation practices such that papers from women and other
minorities are under-cited relative to the number of such papers in the field. Here
we sought to proactively consider choosing references that reflect the diversity of
the field in thought, form of contribution, gender, and other factors. We used
automatic classification of gender based on the first names of the first and last
authors®>%, with possible combinations including male/male, male/female, female/
male, and female/female. Excluding self-citations to the first and last authors of our
current paper, the references contain 56.94% male/male, 11.11% male/female,
19.44% female/male, and 8.33% female/female. Relative to the expected propor-
tions in the field of neuroscience, we over-cited or under-cited these categories by
the following ratios: —2.49% male/male, 18.20% male/female, —23.75% female/
male, and 24.38% female/female. We look forward to future work that could help
us to better understand how to support equitable practices in science.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All structural and functional neuroimaging data are available at https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2. Source data for main
text figures can be found at https:/doi.org/10.6084/m9.figshare.11911101.v1°.

Code availability

All analysis code is available at https://github.com/ejcorn/brain_states.
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