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We address the problem of regulating and keeping at a desired balance the
relative numbers between cells exhibiting a different phenotype within a
monostrain microbial consortium. We propose a strategy based on the use
of external control inputs, assuming each cell in the community is endowed
with a reversible, bistablememorymechanism. Specifically, we provide a gen-
eral analytical framework to guide the design of external feedback control
strategies aimed at balancing the ratio between cells whose memory is stabil-
ized at either one of two equilibria associated with different cell phenotypes.
We demonstrate the stability and robustness properties of the control laws
proposed and validate them in silico, implementing the memory element
via a genetic toggle-switch. The proposed control framework may be used
to allow long-term coexistence of different populations, with both industrial
and biotechnological applications. As a representative example, we consider
the realistic agent-based implementation of our control strategy to enable
cooperative bioproduction of a dimer in a monostrain microbial consortium.
1. Introduction
Synthetic biology aims at engineering biological systems with new functionalities
[1], with applications ranging from health treatments to bioremediation [2] and
the production of biofuels and drugs in bioreactors [3]. This is made possible
by embedding artificial genetic circuits into living cells, such as bacteria, yeast
and fungi, modifying their natural behaviour [4]; that is, by synthetically modify-
ing when and how much genes are expressed to produce proteins or other
chemicals of interest. However, the level of complexity and the functions of
such engineered genetic circuits are limited by intrinsic factors in the host cells,
such as excessive metabolic burden, competition of limited resources and incom-
patible chemical reactions [5]. To overcome these limitations, a promising strategy
is to distribute the required functionalities amongmultiple cell populations, form-
ing a microbial consortium, so that each cell strain embeds a smaller subset of
engineered gene networks [6–9]. In this way, each cell population carries out a
specialized function and, by dividing labour with the others in the consortium,
contributes more efficiently to the achievement of the overall final goal.

Unfortunately, this solution introduces an additional challenge: cells
expressing different genes might also grow and divide at different rates. In
particular, cells in the consortium whose function is associated with a lower
metabolic burden will grow faster, eventually becoming dominant over the
other populations, thus compromising the overall function of the consortium
and giving rise to undesired spatio-temporal dynamics, such as oscillations or
even extinction [10,11]. Therefore, it is crucial to develop methods to guaran-
tee the stable coexistence between cell populations in a consortium by
regulating and maintaining their relative numbers to some desired level,
adjusting it to the requirements of the specific application of interest. This is
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Figure 1. Microbial consortia composed of reversible differentiable cells can be balanced in real time by means of external feedback controllers to guarantee efficient
labour division. (a) Reversible differentiable cells can carry out different roles by activating/deactivating specific sets of genes, depending on which state of the
internal bistable memory is currently active. Cells can change role in response to exogenous stimuli from the environment, e.g. injection of inducer molecules or
light. (b) Cells can, for example, either grow and duplicate or produce some desired molecule (red hexagons), or they can produce two different molecules that react
and produce the desired final bioproduct (green and red circular sectors). (c) Cells expressing different genes also grow at different rates, and thus their coexistence
can be compromised. Feedback control algorithms can be employed to regulate in real time the relative number of cells in the two groups, so that a balance in the
population numbers and in the expression of desired genes is always guaranteed.
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possible, as suggested in [12], by using feedback control algor-
ithms able to sense the relative size of all the populations
involved and respond by applying appropriate stimuli to
the cells in order to regulate their relative numbers. We pro-
posed giving this problem the term ratiometric control of
cell populations in [12] as its overall goal is to achieve
and maintain a certain desired ratio between the size of
the populations in the consortium, despite differences in
their growth rates, noise and perturbations (figure 1c).
Examples of external stimuli that can be applied to this
aim include changes in the concentration of some inducer
molecules in the growth medium or light stimuli applied
via optogenetics.

Different solutions to regulate the relative size of coexist-
ing cell populations have been proposed in the literature,
mostly based on embedding additional genetic circuitry in
the cells that make them able to sense and respond to each
other’s relative size [13–18]. Specifically, by sensing the
density of the other group, cells can either increase their
growth rate by producing some growth regulator protein
(e.g. as in the Ecolibrium project, iGEM 2016 [19]) or decrease
their number by means of toxin–antitoxin mechanisms (e.g.
as in [13]). Unfortunately, these embedded solutions cannot
avoid the possible extinction of one of the two species,
which causes either uncontrolled growth of the survivor
species or its death, and they are not flexible because the
desired steady-state ratio of the two cell populations is
hard-coded into the gene regulatory networks designed
ad hoc and cannot be changed online. Moreover, in industrial
applications where high efficiency is required, external
control strategies [20–22] could be preferred to more sophisti-
cated embedded solutions, because additional synthetic
genes in the cells can cause lower production rates of the
desired chemicals owing to the excessive metabolic load on
the cells. Indeed, embedded controllers require the entire
feedback loop to be engineered inside a single host; see, for
example, [23]. That is, in addition to sensing and actuation
mechanisms, they require the implementation of a signal-pro-
cessing pathway able to link, according to some designed
control policy, the outputs coming from the process to the
actuation inputs able to modify the state of the process and
also a comparator module to compare the process output
with the reference signal.

In this paper, to solve this problem, we consider a
microbial consortium composed of reversible differentiable
cells [24], that is, cells that belong to the same strain and
embed a genetic mechanism allowing them to keep
memory of past states and adapt their behaviour to external
stimuli from the environment, for example by activating/
deactivating a specific set of genes. Specifically, we consider
here the simplest case of cells that can switch between two
states, mimicking a flip-flop or binary memory element
(figure 1a). The state of this bistable memory encodes the
current role played by the cells in the consortium, and there-
fore the set of genes they are expressing at that moment. For
example, a cell can use its resources either to produce some
molecule or to grow and divide, sustaining the cell popu-
lation number [9] (figure 1b, top panel). Also, in the case
of a genetic pathway divided into two parts, a cell can
switch from one state to the other so as to activate either
depending on the overall production levels in the consor-
tium (figure 1b, bottom panel). We find that, by endowing
the cell population with a reversible bistable system, an
external control strategy can be used to solve the ratiometric
control problem. Specifically, by applying external stimuli to
all the cells in the consortium, it is possible to switch some
cells from one state to the other so as to maintain the desired
ratio. We show that this is possible in a number of different
ways (namely, by using relay and proportional–integral (PI)
controllers) and provide stability analysis of the resulting
closed-loop system and exhaustive in silico validation of its
performance and robustness. The validation is conducted
by means of agent-based simulations in BSim [25,26], a
powerful platform for realistic in silico experiments in bacte-
rial populations. As a representative example, we consider
the realistic agent-based implementation of the proposed
ratiometric control strategy to enable cooperative biopro-
duction in microbial consortia, showing its effectiveness
and flexibility when cell growth, cell-to-cell variability and
other effects are appropriately modelled.
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Figure 2. Reversible cells can be switched from state A to B, and vice versa, by means of a common external input. (a) The scalar dynamical system
_xi ¼ hi xi � x3i þ u, with ηi > 0, has two stable equilibrium points for u = 0, namely Ai and Bi, each one corresponding to one of the two possible roles
the cell can play in the consortium. A cell is controllable if, by varying the input u in its interval of definition U , it can be moved from one group to the
other and vice versa. That is, there exists an admissible value u0 [ U (u00 [ U) such that there is a unique positive (negative) stable solution to the equation
_xi ¼ 0 when u > u0 (u < u00). Full and empty dots represent stable and saddle equilibria, respectively. (b) Not all cells might respond as desired owing to their
heterogeneity, captured here by different values of the parameter ηi (assumed to be drawn from some probability distribution with density function fh, here
sketched as Gaussian, just for the sake of illustration). Only cells whose value of the parameter ηi is between 0 and ĥ are controllable (case 1), that is, they have
two stable equilibria for u = 0 and a unique stable equilibrium for u ¼ +�u. Other cells can either be memory-less or monostable, that is, they have only one
equilibrium point for all values of u (case 2) or they can be unswitchable, having two stable equilibria for every u [ U, and therefore cannot change role in the
consortium (case 3).
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Although different approaches have been used to address
the ratiometric control problem, their results hold under
different sets of assumptions from those we use here. For
example, in [21], the authors considered a microbial consor-
tium already comprising two different cell strains, adjusting
the dilution rate in a chemostat to regulate the relative num-
bers of the populations in the consortium, while the platform
developed in [27], although powerful, relies on delivering a
different control input to each cell and, in addition, all con-
trolled cells are cultured in spatially distinct environments.
Moreover, in [28], a non-reversible, efficient differentiation
control mechanism has been proposed for the creation and
maintenance of cellular sub-populations in single-strain
microbial consortia, while a computer-controlled optogenetic
platform for the regulation of the ratio of a two-strainEscherichia
coli community has been recently presented in [29].
2. Results
2.1. Reversible differentiable cells can be controlled to a

desired state via a common exogenous input
The cells we consider here are assumed to embed some
mechanism that can store the memory of past events. In par-
ticular, we suppose that cells can be switched between
two different states by appropriate external stimuli. The
simplest model having this memory-like property (see §3.1 for
further details) can be described by the following ordinary
differential equation:

_xi ¼ hixi � x3i þ u, ð2:1Þ

where u [ U , R is an input signal and is common to all cells.
In equation (2.1), xi [ X , R represents the macroscopic

state, or role, of cell i and the value of parameter hi [ R is
assumed to be different for all cells, accounting for their
heterogeneous responses to the common external input
signal u. For positive values of ηi, the equation _xi ¼ 0 with
u = 0 has two stable, non-trivial solutions, one negative and
another positive, that we denote as Ai and Bi, respectively
(figure 2a). These solutions are the stable equilibrium
points of the dynamical system described in (2.1) when
no input is applied. We define as RAi ¼ fxi : xi , 0g and
RBi ¼ fxi : xi . 0g the regions of attraction ([30], Sec. 8.2) of
Ai and Bi, respectively. Each cell will asymptotically converge
to either Ai or Bi depending on which region of attraction its
initial condition belongs to. Moreover, we denote by N t the
finite set of all cells in the consortium at time t and with
its cardinality, that is, the number of cells currently under
observation (e.g. via a fluorescence microscope). Note that
this number may vary in time as a consequence of cell
growth or death, or because of their removal (e.g. flush
away) from the culture chamber in which they are hosted.
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We define the sets At :¼ fi [ N t : xiðtÞ [ RAig and
Bt :¼ fi [ N t : xiðtÞ [ RBig, such that At < Bt ¼ N t and
At > Bt ¼ �, and denote with nA(t) and nB(t) their cardinal-
ity. These two sets represent the group of cells in the
consortium that, at time instant t, in the absence of any con-
trol input u are expected to asymptotically converge to Ai and
Bi, respectively. Note that, as At and Bt form a partition of , at
any time it holds that nA(t) + nB(t) =N(t).

We model cell-to-cell variability by assuming that the par-
ameter ηi in (2.1) is drawn randomly for each cell from the
real interval ½h, h� with some probability distribution
(figure 2b). Also, we assume that the magnitude of the control
input u is upper bounded by some maximum value
�u :¼ maxu[U juj. In the presence of such a bound on the con-
trol signal, only cells whose parameter value ηi is smaller
than the threshold value ĥ , defined as

ĥ ¼ 3

ffiffiffiffiffiffiffiffiffiffiffi
27 �u2

4

s
, ð2:2Þ

can be switched from one state to the other by an admissible
value of u, that is, u [ ½��u, �u�. We define cells fulfilling
the condition hi [ ð0, ĥÞ as controllable cells. For details
on the derivation of ĥ , see Section S1 in the electronic
supplementary material.

All cells not fulfilling this condition are instead uncontrol-
lable because they are either monostable—their parameters
differ so much from their nominal values that their bistable
nature is lost—or unswitchable because their parameters
exceed the threshold value (2.2). In the former case, ηi will
be taking non-positive values in our model, that is, ηi≤ 0,
while in the latter case hi � ĥ.

Therefore, all cells characterized by parameter values
hi [ ð0, ĥÞ can be switched from one state to the other by
means of a common bounded external input u applied into
the environment. It is therefore possible to design, for such
a subset of controllable cells, some feedback control law to
automatically regulate their state and keep the balance in
the consortium between the two groups At and Bt to some
desired level. As we are going to show next, uncontrollable
cells will contribute to a small residual error that can be pre-
cisely estimated as a function of the upper bound �u on the
control input and therefore appropriately taken into account
in applications.

Note that, even if model (2.1) is not a precise model of any
existing bistable memory element, it captures its essential bis-
table nature and can therefore provide valuable information
for the design of reliable and robust controllers able to
solve the ratiometric control problem, as we show in the
rest of this work.
2.2. Ratiometric control of cell populations can be
achieved by using external feedback strategies

The goal of ratiometric control is to regulate and maintain the
relative ratios between the number of cells in At and the
number of cells in Bt, defined as

rAðtÞ ¼ nAðtÞ
NðtÞ and rBðtÞ ¼ nBðtÞ

NðtÞ : ð2:3Þ

As, by definition, rA(t) + rB(t) = 1 for all time, it suffices to con-
trol either rA or rB to control the other. Without loss of
generality, we assume the ratio r(t) to be controlled is rB(t).
Note that accurate measurement of each cell state is not
needed. Indeed, if only noisy measurement of the state of
the cell is available, as long as it is possible to identify the
region of attraction the cell currently is in, the values of
both rA and rB can still be accurately quantified.

More formally, the objective of the ratiometric control pro-
blem can be stated as follows.
Objective.

Given a consortium of reversible differentiable cells
whose macroscopic dynamics can be described by (2.1) and
a desired ratio rd∈ [0, 1], design a feedback control law u =
u(t, x), where x ¼ ½x1, . . . , xNðtÞ�`, such that at steady state
the consortium is divided into two cell groups whose ratio
converges to some desired value, rd, that is,

rðtÞ ! rd as t ! 1: ð2:4Þ

The previous statement can also be reformulated in terms
of the control error signal e(t) := rd− r(t), by requiring that it
goes to zero at steady state, that is, e∞ = 0, where e∞ := lim

t→∞ e(t). The definition of the control error does not guarantee
per se that the cells express the desired phenotype, as the cells
whose state are near the unstable equilibrium will not be pro-
ducing the target compound at the desired rate. However,
cells belonging to the correct region of attraction will con-
verge, after some transient, to the correct equilibrium,
where the desired phenotype is expressed.

Note that it is possible to guarantee the solution of
the ratiometric control problem as defined in (2.4) for any
rd∈ [0, 1] only if all cells in the consortium are controllable,
as described in §2.1. Indeed, if part of the population is not
controllable, a residual steady-state error might still be pre-
sent (see §2.3 for details and an analytical estimate of such
a residual error).

We present here two different feedback control strategies
to solve the ratiometric control problem (figure 3), an on–off
relay controller and a PI controller. Both solutions are easy to
implement, are robust and are often used in other control
applications of cell populations in microfluidic devices
[31–34] (see §3.3).

Relay controllers (also known as bang-bang controllers) are
simple yet effective feedback control laws that, by comparing
the current output of the process of interest with its desired
value, generate a piece-wise constant input signal ur(t)
whose value belongs to a discrete set Ur. Here, we propose
the use of two alternative implementations of the relay con-
troller, the former where the control input can also be set to
zero, i.e. U 0

r ¼ f0, �u, ��ug, and the latter where ur is always
non-zero, i.e. U 0

r ¼ f�u, ��ug.
In the ideal case where all cells are controllable, the first

implementation of the relay controller guarantees finite
time convergence to zero of the error signal (figure 3a). The
second implementation instead can only guarantee bounded
convergence of the error to zero since the input signal cannot
be turned off once the error reaches zero. Hence, when such
an implementation is adopted, the control input will continue
to oscillate between its possible values (figure 3b). As is
common practice in applications where noise and uncertain-
ties are unavoidable, a dead-zone or a delay can be added in
the control loop to avoid high-frequency oscillations of the
control input that may cause excessive stress to cells and to
the actuation system [35]. The details of the proof of
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Figure 3. Feedback control strategies are effective to balance two groups of controllable reversible cells to a 1 : 1 ratio (rd = 0.5). (a–c) Evolution of the error signal
e(t) and of the control input u(t) for (a) the first implementation of the relay controller (3.5), (b) the second implementation of the relay controller (3.7), (c) the PI
controller (3.9)–(3.10). (d–f ) Distribution of the cells’ state at the beginning of the simulation (t = 0 a.u., grey histogram) and at steady state (t = 1 a.u., green and
red histograms), for (d ) the first implementation of the relay controller, (e) the second implementation of the relay controller, ( f ) the PI controller. The green and
red bars in (d–f ) correspond to cells being in the region of attraction of Ai and Bi, respectively. The maximum control input is set to �u ¼ 5 and the gains of the PI
controller are set to kP = 30 and kI = 50. All cells (N = 400) have initial conditions xi(0) drawn from the normal random distribution N ð0, 4Þ, and the parameters
ηi are drawn with uniform distribution from the interval [1, 5]; therefore, all cells are controllable, as no monostable (η > 0) and no unswitchable
(h , ĥ � 5:53) cells are present in the population. (See also electronic supplementary material, figure S1 for more simulations with different desired ratios rd.)
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convergence for the proposed relay controllers are reported in
Section S2 in the electronic supplementary material.

An alternative strategy is the use of a PI controller that
generates a control input uPI(t) computed as the sum of
one term that is proportional (P) to the error e(t) and
another that is proportional to its integral (I) in time. In gen-
eral, PI controllers guarantee zero regulation error at steady
state in the presence of constant output disturbances [36].
In our implementation, this controller is complemented
with a (anti-wind-up) reset condition that sets to zero
the internal state of the integrator whenever the error signal
e(t) is equal to 0 or changes its sign (see §3.3). When all
cells are controllable, this strategy was also proved to solve
the ratiometric control problem and guarantee convergence
of the error to zero (see Section S2 in the electronic
supplementary material).

The evolution of the error signal e(t) under the action
of the PI controller is reported in figure 3c. The error con-
verges to zero as expected and the control input uPI(t) also
settles to zero after a short transient, similarly to what
is observed in the first implementation of the relay controller
presented before.

Effective balancing of groups of reversible cells is also
achieved by feedback control when the goal is to achieve
groups of different sizes, that is, for rd different from 0.5,
e.g. equal to 0.75 or 0.25, corresponding to the ratios 1 : 3
and 3 : 1, respectively (electronic supplementary material,
figure S1). Note that the similarities of the plots for the
relay and PI control actions in electronic supplementary
material, figure S1 are mainly due to the different set points
chosen in these simulations. Indeed, since the initial control
error is bigger with respect to the case presented in the
main text, the time needed for the integral control action to
saturate the control input is relatively low. When this
happens, the control actions generated by the relay and the
PI controllers are identical.
The performance of the controller is also compared with
open-loop simulations where no control is applied (electronic
supplementary material, figure S7). While using a closed-
loop control algorithm, it is possible to regulate the relative
numbers at some desired value, independently of the initial
conditions; in the absence of any control action, the error
does not change over time and the final configuration of
the consortium will strongly depend on the initial conditions
chosen for the cellular population.
2.3. Robust bounded regulation of the ratio is still
possible in the presence of cell variability and
physical constraints

When uncontrollable cells are present in the consortium,
that is, cells that cannot be moved from one group to
the other in response to any admissible inputs, the ratio-
metric control problem cannot be solved asymptotically,
that is, we cannot guarantee that e∞→ 0 for an arbitrary
initial configuration of the consortium. However, we can
still guarantee that the absolute value of the steady-state
error |e∞| will be upper bounded by some positive
quantity er, that is, |e∞|≤ er. This effect is well illustrated in
figure 4, where it is shown that, regardless of the control
algorithm being used, the error e(t) approaches, but does
not converge exactly to, zero. The error bound at steady
state will depend upon the interplay between heterogeneity
of the cells’ dynamics and the constraints on the maximum
input value of �u that can be applied to the cells, as discussed
in §2.1.

The upper bound er can be estimated as being composed
of two terms, that is,

er ¼ e0r þ eur , ð2:5Þ
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each related to the probability of finding one of the two types
of uncontrollable cells (i.e. monostable and unswitchable,
respectively) in the consortium (figure 2). The first term,
denoted as e0r , is related to the fraction of monostable cells,
associated with a non-positive value of ηi, and so admitting
only one stable equilibrium point for all values of u. For
N→∞, where N is the number of cells in the population,
assuming that the probability distribution from where the
parameters ηi are drawn is known, we can estimate e0r as

e0r ¼ Pr½hi � 0�, ð2:6Þ
where Pr denotes the probability measure. The second term,
denoted as eur , is related to the fraction of unswitchable cells,
that is, cells that are bistable but cannot be switched by any
admissible value of the control input u [ U. For a given
upper bound input value �u, the fraction of unswitchable
cells can be estimated, for N→∞, as the probability that
the parameter ηi is greater than , that is, Pr½hi . ĥ�. Therefore,
the residual error at steady state owing to this second type of
uncontrollable cells can be quantified as

eur ¼ max
�
0, Pr½hi . ĥ� � rd, Pr½hi . ĥ� � ð1� rdÞ

�
: ð2:7Þ

Equation (2.7) is derived by assuming that all the unswitch-
able cells are in the wrong region of attraction at the
beginning of the simulation, which represents the worst-
case scenario. Specifically, if either Pr½hi . ĥ� � rd . 0 or
Pr½hi . ĥ� � ð1� rdÞ . 0, it means that the amount of cells
that need to be switched to achieve the control goal is greater
than the number of switchable cells in the consortium, mean-
ing that there may be some non-zero steady-state error. Note
that this value depends on the relationship between the
desired ratio for that group (either rd or 1− rd) and the
number of unswitchable cells therein, because they affect
the error only when this number exceeds the desired value
(see electronic supplementary material, S3 for details).

Similar results are observed also when the desired goal is
to split the cell population into groups of different sizes, e.g.
with 3 : 1 or 1 : 3 ratios (electronic supplementary material,
figure S2), confirming that this undesired effect is not due
to the particular control strategy adopted or to the chosen
desired ratio.
2.4. Ratiometric control enables cooperative
bioproduction in microbial consortia

So far the analysis has been conducted by considering the
scalar model (2.1) capturing the macroscopic bistable nature
of the cells considered in this paper. As we are going to
show by means of the representative application that follows,
the behaviour captured by the reduced model in (2.1) is
also qualitatively preserved in more complex and realistic
cell models exhibiting the required memory-like property.
Therefore, albeit simple, we demonstrate that the model in
(2.1) can be effectively used to design feedback control laws
to solve the ratiometric control problem in realistic
applications.

As a representative case of study, we consider the agent-
based in silico implementation of ratiometric control for the
bioproduction of protein dimers in microfluidic devices
(figure 5). In this scenario, according to its state (A or B),
each cell in the consortium produces either one of two mono-
mers. By acting on the available control inputs, we want to
regulate the relative number of cells producing the two
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Figure 5. Controlled cooperative bioproduction of a dimer in microfluidic devices. (a) Reversible differentiable cells are hosted in microfluidic chambers, where they
grow and produce a specific molecule related to the corresponding active state of their internal memory. The current ratio of the two cell groups in the chamber, and
hence the production level of the corresponding monomers, is evaluated by measuring with a fluorescence microscope the expression of reporter proteins in each
cell. This information is acquired by the feedback control algorithm that compares the current ratio r(t) with the desired ratio rd and computes online the corre-
sponding control inputs. Finally, these signals are sent to the cells by actuating a pair of syringes connected to the microfluidic chambers and containing mixtures of
growth medium and inducer molecules. (b) The required reversible bistable memory mechanism is implemented by using an inducible toggle-switch. Depending on
which of the two repressor proteins, either LacI or TetR, is currently expressed, the cell produces the corresponding monomer and the reporter protein (either M1 and
red fluorescent protein (RFP) or M2 and green fluorescent protein (GFP), respectively). The state of the toggle-switch can be flipped by changing the concentration of
the inducer molecules anhydrotetracycline (aTc) and isopropyl β-D-1-thiogalactopyranoside (IPTG) in the microfluidic chamber (denoted as uaTc and uIPTG), which
diffuse through the cell membrane and bind to TetR and LacI, respectively. GRN, gene regulatory network.
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monomers so as to balance the overall production of the
resulting dimer.

We assume that the mechanism required by the E. coli
cells to guarantee their correct coordinated behaviour is
implemented by means of an inducible genetic toggle-
switch [37]. Specifically, we consider the circuit design
presented in [33] and further analysed in [38–41]. This genetic
regulatory network consists of two repressor proteins,
LacI and TetR, both repressing each other’s promoter, so
that only one protein is fully expressed at any time. The
expression level of the two repressor proteins can be flipped
by changing the concentration of two inducer molecules, aTc
and IPTG. The former input, aTc, binds to TetR, increasing
the rate of production of LacI, and therefore causing the cell
to converge to the steady state corresponding to high
expression of LacI. Analogously, IPTG binds to LacI, causing
the commitment of the cell to a steady state corresponding to
high expression of TetR.

The sixth-order dynamical model of each cell is described
in detail in Section S5 in the electronic supplementary
material, in which the variables uaTc and uIPTG (as reported
in figure 5) denote the concentrations of the inducer mol-
ecules in the growth medium of the microfluidic chambers
and they represent the control inputs that can be applied to
all cells to change their production role in the consortium.

We further assume that the genes m1 and m2 encoding
the two monomers of interest are each transcribed together
with the repressor genes lacI and tetR of the toggle-switch
circuit. So that, at steady state, each cell fully produces
only one monomer at the time and at a rate assumed to be
proportional to the concentration of the corresponding
repressor protein. Reporter genes of red and green fluorescent
proteins (RFP and GFP) are also bound to the repressor genes
to monitor the current level of production of the monomers
by using fluorescence microscopy (figure 5). Finally, we
assume that the two monomers have equal transcription
and translation rates. Therefore, for the dimer to be produced
at high rate, the consortium must be split and maintained
into two symmetric groups with a 1 : 1 ratio, that is, we set
rd = 0.5. Note that this assumption does not hinder the gener-
ality of the framework presented, as different transcription
and translation rates would simply require the consortium
to operate around a different setpoint that we can reach
and stabilize by just modifying rd.

In the in silico experiments, we also take into account rea-
listic physical and technological constraints of a possible
implementation in the microfluidic experimental platform
described in [12,31]. The choice of such a platform derives
from its extensive use in the context of external control
[27,34,35]. Specifically, we consider constraints on (i) the poss-
ible classes of input signals that can be generated by the
actuators, (ii) an upper bound on the switching frequency
of the inputs to limit osmotic stress to the cells, (iii) a time
delay accounting for the time the chemical inducers take to
flow from the reservoirs to the cell chambers, and (iv) a
safety lower bound on the sampling time of the measure-
ments to avoid excessive photo-toxicity (see Section S6
in the electronic supplementary material).

In silico control experiments have been conducted by
using ad hoc implementations in BSim [25,26] of the two feed-
back control algorithms presented in §2.2 (see Section S7
in the electronic supplementary material). To test the relay
control strategy, we assumed that the actuation of the
inputs is realized using an ordinary T-junction [42], which
allows only one inducer species at a time to be injected into
the microfluidic chambers. For the PI controller, we assumed
that the actuation is realised by a dial-a-wave system, as
described in [43]. This actuation system is more advanced
than the previous one as it allows mixtures of the two indu-
cers to be injected in different proportions into the chambers.
Note that, although two inducers are needed to manoeuvre
the state of the toggle-switch, they are constrained by our
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Figure 6. Cooperative production of two monomers to a 1 : 1 population ratio can be achieved by means of feedback ratiometric controllers in microfluidics. (a,d) Evol-
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control strategy to be either mutually exclusive (for the relay
controller) or in a convex combination (for the PI controller),
and therefore they can be viewed as being a single input (see
Section S7 in the electronic supplementary material). Both
feedback control algorithms take into account the character-
istics of the experimental platform, and in particular of the
actuators. Full details about the control algorithms and
the technological constraints of the platform are reported in
Section S7 in the electronic supplementary material.

The agent-based simulations in BSim accurately capture
the cells’ reproduction, the spatial distribution and geometry
of the cells and of the microfluidic chambers, the diffusion of
chemicals into the environment and, more importantly, flush-
out of the cells from the chambers. Further details on the
stochastic simulation algorithm, geometry and other par-
ameters used for in silico experiments in BSim are reported
in Section S6 in the electronic supplementary material.

We observed that both controllers can successfully regu-
late, after relatively short transients, the populations’ ratio
to the desired value (figure 6; electronic supplementary
material), which otherwise would have converged to some
value that strongly depended on the initial conditions of the
cells (electronic supplementary material, figure S8). The relay
controller shows a faster responsewithmore severe oscillations
(figure 6a–c), while the PI controller presents a smoother but
slower response with higher accuracy at steady state (figure
6d–f ). This is expected as it is well known that the relay control
strategy is in general more robust to uncertainties and noise
affecting the controlled process but has poorer accuracy at
steady state; the PI control strategy shows better steady-state
performance owing to the presence of an integral action.

The difference in the performance of the two strategies is
also stressed by the different actuation systems employed in
our experiments. Indeed, the dial-a-wave system allows for a
finer regulation of the concentrations of the inducer molecules
than the simpler (and cheaper) T-junction, allowing better
accuracy of the control system at steady state. Similar perform-
ances are also obtained when the goal is changed to achieve
different population ratios, e.g. a 1 : 3 ratio or a 3 : 1 ratio (elec-
tronic supplementarymaterial, figure S3). These scenariosmay
correspond, for example, to situations in which the twomono-
mers have equal transcription rates but different translation
rates, requiring the consortium to be split into two asymmetric
groups, for efficient production of the dimer.

Besides biochemical noise, the fluctuations at steady state
(figure 6a,d ) are essentially due to cells being flushed out of
the microfluidic chamber as they grow and duplicate, and
they do not depend on the control parameters used, which
might only affect the transient response of the cell popu-
lations. These fluctuations are more relevant when cells are
hosted in a small chamber and become less significant as
the size of the growth chamber increases. Indeed, for the
sake of simplicity, assuming the chamber to be a square of
side ℓ, the magnitude ε of the fluctuations is proportional
to 1/ℓ (see Section S4 in the electronic supplementary
material); hence, the fluctuations increase as the chamber
size decreases (see electronic supplementary material, figure
S4 and video S2), and vice versa. In addition to this, we
assessed the robustness of the control algorithms to cell-to-
cell variability, modelled as variability between cell par-
ameters. In detail, the numerical simulations confirmed that
the ratiometric controllers presented here were also able to
regulate the relative numbers in this case, as shown in elec-
tronic supplementary material, figure S5. The coefficient of
variation (CV) was selected to be CV = 0.2, similarly to
what has been done previously in the literature [7].
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Another important factor determining the evolution of the
relative numbers between sub-populations in microbial com-
munities is their generally different growth rates (assumed so
far to be identical for both phenotypes) owing to different
metabolic loads. To test the robustness of the designed algor-
ithms to this issue, we assumed that over-expression of the
LacI pathway caused a reduction (of ð1� rdÞ . 050%) of
the growth rate. We found that, even when significant discre-
pancies in the growth rates are present, no divergence
phenomenawere observed, with the cells still splitting into two
sub-populations with a steady-state error that never exceeds
0.15 (see electronic supplementary material, figure S6).
 if
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3. Methods
3.1. Memory-like property
We assume that the macroscopic behaviour of any cell in the
consortium we wish to control can be modelled in the domain
of interest by a dynamical system of the form

_z ¼ gðz, wÞ, ð3:1Þ
with being a smooth vector field, z [ Z , Rd the state variables
and w [ W , Rm the exogenous input variables, representing,
for instance, the concentrations of chemical species inside the
cell and those of control inducer molecules into the environment,
respectively. We assume that stochastic effects, such as fluctu-
ations due to biochemical reactions, do not significantly alter
the behaviour of the system at steady state; that is, the region
of attraction of any stable equilibrium point of the dynamical
system _z ¼ gðz, wÞ is large enough so that stochastic noise does
not cause undesired switches from one equilibrium point to
the other.

As discussed in the Introduction and in §2.1, we are inter-
ested in robustly regulating the behaviour of reversible cells; in
particular, we focus our attention on a specific class of cells
whose dynamics satisfy the following fundamental property.

Definition. Consider a dynamical system of the form

_z ¼ f ðz, aÞ, ð3:2Þ
where z [ Z and the parameter a [ I , R depends on some
exogenous input signal w [ W, that is, α = α(w). We say that
system (3.2) has a memory-like property if

— there exists some �a such that the system _z ¼ f ðz, �aÞ has two
stable equilibria and an unstable equilibrium; furthermore,
the regions of attraction of the two stable equilibria form a
partition of Z.

— there exist two values â1 and â2 such that for the system
_z ¼ f ðz, �aÞ has a single equilibrium point whose region of
attraction is the whole Z.

3.2. Event-driven modelling of the control error
evolution

Here, we derive an event-driven model for the evolution of the
control error e(t) = rd− r(t), presented in §2.2. Recall that the
finite set of all cells in the consortium and its cardinality at
time t are denoted by ZN t and N(t), respectively. Now, we
denote with Ei

A!Bðt0Þ the event at time instant t = t0, correspond-
ing to when the state xi of cell i [ N t enters the region of
attraction of the equilibrium point Bi, that is, for t∈ [t0, t0 + ε]
and xiðtÞ � RBi for t∈ [t0 − ε, t0), where ε is a small positive
real number. Likewise, we denote by Ei

B!Aðt00Þ the event at
time instant t = t00, corresponding to when the state of cell
i [ N t enters the region of attraction of Ai. Specifically, for
solutions to dynamical system (2.1) with u = 0 and ηi > 0, an
event Ei

A!B occurs when the state of cell i, xi, crosses zero and
becomes positive, while an event Ei

B!A occurs when xi becomes
negative. In this case, the threshold at zero is defined by the
unstable equilibrium point at the origin dividing the regions of
attraction of Ai and Bi. Moreover, we denote by EA!B (EB!A)
the set of all events Ei

A!B (Ei
B!A) occurring for all i at any time

t, and we denote by E the set of all events occurring in the popu-
lation, that is, E :¼ EA!B < EB!A.

To derive the discrete (event-driven) dynamics of the control
error e(t), we make the following standing assumptions.

Assumption 3.1.
At any time t only one event in E can occur, that is, there

exists a unique i [ N t such that either Ei
A!B or Ei

B!A, but not
both, occurs at time t.

Assumption 3.2.
The number of cells in the host chamber is assumed to be

constant, that is, N(t) =N, for all t.

Assumption 3.1 implies that any two events in E cannot occur
simultaneously. Assumption 3.2 follows from the fact that, after a
short transient from the beginning of the experiment, cells grow,
occupying the entire host chamber. From this time on, cells exceed-
ing the maximum capacity of the chamber are flushed out.
Therefore, the number of cells in the chamber can be assumed
with a good approximation to be constant (except for a small, neg-
ligible oscillation due to flush-out, further discussed in Section S4
in the electronic supplementary material). Note that assumption
3.2 is true not only in the case of a finite-dimensional microfluidic
device. Indeed, in industrial applications where chemostats are
employed to maintain the density of the microbial culture to con-
stant levels, it is reasonable to assume that the number of cells is
also constant. However, in the case of large-scale cell co-cultures,
such aswhen the experiments are run in bioreactors, sincemeasur-
ing the fluorescence levels of each individual in the consortium can
become infeasible as the number of cells increases, the method we
propose will need to be adapted, for example by measuring the
average fluorescence in the whole population.

Under the assumptions above, there exists a sequence of dis-
crete-time instants ftkgk[N, each one corresponding to the
occurrence of an event in E and such that tk+1 = tk + Δtk, where
Δtk > 0 is the time interval between two consecutive events occur-
ring at time tk and tk+1, respectively. Moreover, from assumption
3.2, it follows that the functions nA(t) and nB(t), defining the
number of cells converging to either Ai or Bi, respectively, are
piece-wise constant functions, that is, nA(t) = nA(tk) and nB(t) = nB-
(tk), 8t [ ½tk, tkþ1Þ. Since nA(t) and nB(t) are constrained by the
relation nA(t) + nB(t) =N, for all t, for the sake of brevity, we
will refer to n(t) : = nB(t) only; nA(t) being given by N − nB(t).

That said, with n(t) being the number of cells in the region of
attraction of Bi at time t, we can write the following discrete-time
update law:

nðtkþ1Þ ¼ nðtkÞ þ 1, if an event in EA!B occurs
n(tk)� 1, if an event in EB!A occurs.

�
(3:3)

As a consequence, since eðtÞ ¼ rd � nðtÞ
N , we have that when an

event in EA!B occurs, then

eðtkþ1Þ ¼ rd � nðtkþ1Þ
N

¼ rd � nðtkÞ
N

� �
� 1
N

¼ eðtkÞ � 1
N
:

A similar reasoning holds when an event in EB!A occurs. There-
fore, the discrete-time dynamics of the control error can be
expressed as

eðtkþ1Þ ¼
eðtkÞ � 1

N , if an event in EA!B occurs

e(tk)þ 1
N , if an event in EB!A occurs.

(
(3:4)
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3.3. Design of the proposed feedback control
algorithms and error dynamics

Here, we discuss the design of the control strategies proposed to
solve the ratiometric control problem, namely the relay controller
and the PI controller.

Relay control algorithm. A relay controller is a feedback control
law that generates a piece-wise constant input ur(t) by comparing
an output measured from the plant with some desired reference
value rd. The input ur(t) takes its value from a finite set of real
values Ur, generally composed of only two values, one chosen
such that the control error e(t) = rd− r(t) decreases when e(t) > 0
and the other such that it increases when e(t) < 0.

We have considered two implementations of the relay con-
troller. Specifically, the first implementation includes a control
shutdown condition when e(t) = 0, and the second one does not.

Formally, the first implementation of the relay control input is
defined as

u0rðtÞ ¼
�u, eðtÞ . 0
0, eðtÞ ¼ 0
��u, eðtÞ , 0:

8<
: ð3:5Þ

The value �u . 0 is chosen such that (ideally) all cells are controlla-
ble, that is, for u0r ¼ �u (), the equation hixi � x3i þ u0r ¼ 0 has a
unique stable solution, namely �xi ¼ Bið�uÞ (�xi ¼ Aið�uÞ), for all i
such that ηi > 0. This guarantees that, when e(t) > 0 (i.e. rB(t) < rd),
the next event occurring must belong to EA!B, forcing the error
to decrease according to (3.4), that is, e(tk+1) = e(tk)− (1/N ). Like-
wise, when e(t) < 0 (i.e. rB(t) > rd), u0r ¼ ��u implies that the next
event occurring belongs to EB!A, and so eðtkþ1Þ ¼ eðtkÞ þ 1

N. More-
over, note that, when no control is applied (i.e. ur0 = 0), each cell will
converge to either Ai or Bi, depending on its current state, without
any other event in E having to occur. Therefore, the shutdown con-
dition ensures that if there exists a t* such that e(t*) = 0, then e(t) = 0
for all t≥ t*. Combining (3.5) and (3.4), the discrete-time update
law for the control error becomes

eðtkþ1Þ ¼
eðtkÞ � 1

N , if eðtkÞ . 0
eðtkÞ, if eðtkÞ ¼ 0
eðtkÞ þ 1

N , if eðtkÞ , 0:

8<
: ð3:6Þ

The previous discrete map can also be rewritten as e(tk+1) =
e(tk)− (1/N )sgn(e(tk)).

The second implementation of the relay control input, without
the shutdown condition, is defined as

u00r ðtÞ ¼
�u, eðtÞ � 0
��u, eðtÞ , 0:

�
ð3:7Þ

In this case, it is not possible to ensure that the error remains
equal to zero indefinitely. By using a similar reasoning as
before, (3.4) can be recast as

eðtkþ1Þ ¼
eðtkÞ � 1

N , if eðtkÞ . 0
� 1

N , if eðtkÞ ¼ 0
eðtkÞ þ 1

N , if eðtkÞ , 0:

8<
: ð3:8Þ

PI control algorithm. The control input of the PI controller is
defined as

uPIðtÞ ¼ kPeðtÞ þ kIzðtÞ ð3:9Þ
and

_zðtÞ ¼ eðtÞ, zð0Þ ¼ 0, ð3:10Þ
with kP and kI being positive constants. This control action is com-
plemented with a (anti-wind-up) reset condition that sets the
internal state z of the integrator to zerowhenever the error becomes
0 or changes its sign. Furthermore, to take into account constraints
on the actuation system of the experimental platform, the control
input signal uPI is assumed to be saturated at �u and ��u.
The control algorithm guarantees that when e(t) > 0 the control
input uPI(t) is positive and d

dt uPIðtÞ . 0. So, uPI(t) will increase and
reach some positive value û such that, for at least one cell, the
equation hixi � x3i þ u ¼ 0 with u ¼ û and ηi > 0 has a unique sol-
ution, namely BiðûÞ. The cell will be attracted by this stable
equilibrium point and, therefore, there will exist a time instant t0

such that, for all t≥ t0, and an event in uPIðtÞ � ûEA!B will
occur. A similar reasoning holds in the case e(t) < 0. Hence, it
directly follows that the discrete-time update law for the control
error e(t) under the PI control law is the same as in (3.6). The details
of the proof of convergence for the proposed controllers are
reported in Section S2 in the electronic supplementary material.
4. Discussion
We presented a general framework to guide the design of
external feedback controllers for phenotype regulation in
microbial consortia. We showed that, by exploiting the
memory-like property of reversible differentiable cells, a
single-strain cell population can be divided into two groups,
expressing different sets of genes, whose relative numbers,
i.e. the ratio, can be regulated bymeans of common exogenous
inputs. We showed by means of a representative example that
ratiometric feedback controllers can robustly stabilize a
cell population, endowed with a genetic toggle-switch func-
tioning as a bistable memory, and can guarantee the balance
between the two groups of cells even in the presence of realistic
physical and technological constraints of the experimental
microfluidic platform we considered. Note that, although
the proposed controllers can effectively regulate the ratio of
the two sub-populations, it is not possible to regulate the rate
of convergence at which cells express the desired level of the
phenotype of interest, as this is determined by the inherent
dynamics of the cells. Moreover, our in silico experiments high-
lighted that the control algorithmswe presented can also shape
the composition of the consortium in the presence of stochastic
effects, despite the fact that we proved the convergence of the
closed-loop system only in the deterministic scenario.

A fundamental open problem in multicellular control
applications is to guarantee the coexistence of different
microbial strains growing in the same environment.
Although some solutions were proposed in the literature
that rely on the use of additional genetic pathways embedded
into the cells and non-reversible differentiation systems
[28,44], the ratiometric control framework we presented
here provides an alternative approach that might be more
appropriate in other scenarios; for example, in industrial
applications, where efficient production is strongly required.
We wish to emphasize that the framework can be used as a
guideline to design control strategies that are able to work
at scales larger than microfluidics. For example, using a com-
bination of flow cytometry, chemostats and optogenetics,
such as the one developed in [44], it would be possible to cul-
ture such a cell population by embedding optogenetically
inducible memory mechanisms and control their relative
expression states at large scales.

Finally, we wish to highlight that ratiometric control of a
population of reversible cells by means of a common input
signal is only made possible by the heterogeneity of their
response to that input. Indeed, heterogeneous reversible cells
characterized by different parameter values switch at different
time instants when subject to the same input, and this is a cru-
cial property that allows their state to be controlled by an
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external feedback action. Stochastic effects, such as biochemi-
cal noise or delays, by amplifying the cell-to-cell variability
can indeed facilitate the stabilization of the reversible cells
into different groups, as was demonstrated in the in silico
experiments we provided. A more in-depth analytical
investigation of their effect is left for future work.
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plementary material, videos are available at https://github.com/
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