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Abstract: In vivo alpha particle generators have great potential for the treatment of neuroendocrine
tumors in alpha-emitter-based peptide receptor radionuclide therapy (α-PRRT). Quantitative phar-
macokinetic analyses of the in vivo alpha particle generator and its radioactive decay products
are required to address concerns about the efficacy and safety of α-PRRT. A murine whole-body
physiologically based pharmacokinetic (PBPK) model was developed for 212Pb-labeled somatostatin
analogs (212Pb-SSTA). The model describes pharmacokinetics of 212Pb-SSTA and its decay products,
including specific and non-specific glomerular and tubular uptake. Absorbed dose coefficients (ADC)
were calculated for bound and unbound radiolabeled SSTA and its decay products. Kidneys received
the highest ADC (134 Gy/MBq) among non-target tissues. The alpha-emitting 212Po contributes more
than 50% to absorbed doses in most tissues. Using this model, it is demonstrated that α-PRRT based
on 212Pb-SSTA results in lower absorbed doses in non-target tissue than α-PRRT based on 212Bi-SSTA
for a given kidneys absorbed dose. In both approaches, the energies released in the glomeruli and
proximal tubules account for 54% and 46%, respectively, of the total energy absorbed in kidneys.
The 212Pb-SSTA-PBPK model accelerates the translation from bench to bedside by enabling better
experimental design and by improving the understanding of the underlying mechanisms.

Keywords: murine PBPK model; neuroendocrine tumors; α-PRRT; in vivo alpha particle generators;
[212Pb]Pb-DOTAMTATE

1. Introduction

Alpha-emitter-based peptide receptor radionuclide therapy (α-PRRT) using alpha-
emitter-labeled somatostatin analogs (α-SSTA) is an efficacious treatment for metastatic
inoperable neuroendocrine tumors (NET) [1]. Due to the high linear energy transfer
(80–100 keV/µm), alpha particles have the potential to eradicate somatostatin receptor
subtype 2 (SSTR2) expressing tumor cells by producing irreparable DNA double-strand
breaks while sparing normal tissue [2]. As a consequence, α-PRRT has demonstrated its
potential to reduce nephrotoxicity and bypass the radioresistance of NET to beta emitters
in beta-emitter-based PRRT [3].

Several SSTA coupled to short-(213Bi) or long-lived alpha emitters (225Ac and 212Pb)
are explored in preclinical and clinical settings to evaluate the efficacy and safety of α-SSTA
for NET [1]. Studying the pharmacokinetics (PK) of in vivo alpha particle generators is
challenging, especially with regard to the fate of the released radioactive products that
are not easily accessible to direct measurements. A number of pharmacokinetic studies
were based on blood samples [4], urine excretion, portable detectors and planar images to
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measure the effect of redistributed free radioactive decay products in the body [5–7]. As
the injected therapeutic activity is much lower than the one used in diagnosis, quantitative
imaging of short-lived alpha emitting daughters is limited by low spatial resolution and
poor signal-to-noise ratio [8]. The use of theranostic pairs consisting of two chemically simi-
lar radionuclides (La+3 ions for Ac+3) or chemically identical radioisotopes (203Pb for 212Pb)
represents a great advance, albeit more data are required to validate that concept [9,10].
For example, the biodistribution of the theranostic pairs may vary due to their different
ionic radii [11,12], injected amounts [13] and half-lives [14].

Mathematical modeling may be the method of choice to describe the PK of each of the
decay products of the in vivo alpha particle generators separately and simultaneously [15,16].
For this purpose, we developed a whole-body physiologically based pharmacokinetic
(PBPK) model for mice to describe the PK of the in vivo alpha particle generator 212Pb-
SSTA and its radioactive decay products in α-PRRT. The 212Pb-SSTA-PBPK model was
evaluated using published biokinetic data of [212Pb]Pb-DOTAMTATE in mice bearing
AR42J xenografts [4]. The absorbed doses due to bound and unbound radiolabeled SSTA in
target and non-target tissues were calculated for different injected amounts and activities. In
addition, the optimal tumor-to-kidneys ratio of long-lived conjugated 212Pb were calculated
and compared to that of short-lived conjugated 212Bi.

2. Materials and Methods

2.1. 212Pb-SSTA-PBPK Model Structure

A whole-body PBPK model of 212Pb-SSTA in mice was developed and implemented
using software tools SAAM II version 2.3 [17] (The Epsilon Group, TEG, Charlottesville,
VA, USA) and Simbiology/MATLAB (MATLAB R2020a, The MathWorks, Inc., Natick,
MA, USA). The structure of the 212Pb-SSTA-PBPK model describing the distribution of
212Pb-SSTA in mouse tissues via blood flow is illustrated in Figure 1. Relevant differential
equations of the developed mathematical model maintain mass and blood flow conserva-
tion and are provided in supplement A. The transfer rates are described and their values
are given in detail in Supplementary Material Table S1.

The compartmental model comprises (1) SSTR2-expressing tissues such as tumor, pan-
creas, kidneys, spleen, liver, adrenal gland (Ad), lung and gastrointestinal (GI) tract [18–21],
(2) non-SSTR2-expressing tissues, namely muscle, heart, skin, brain, fat and remainder of
body (RB).

The parameters of the 212Pb-SSTA-PBPK model are classified into mice-specific and
212Pb-SSTA-specific parameters with values taken from literature (Supplementary Mate-
rial Table S1) [4,16,22–37]. Briefly, the main mice-specific parameters considered in the
model are blood flow, tissue volumes, relevant volumes of tissue compartments (vascu-
lar, interstitial, early endosomes and sorting (late endosomes) compartments) and SSTR2
expression on cell membranes. Relevant biological mechanisms of 212Pb-SSTA (diffusion,
SSTR2-specific and non-specific binding, internalization, recycling, sorting and excretion)
are included in the model. In addition, the model takes into account the physicochemical
properties of 212Pb-SSTA, such as physical decay rates and the chemical stability of the
212Bi-chelator complexes after beta decay of conjugated 212Pb [23]. The distribution of
212Pb-SSTA and unlabeled SSTA is described using two similar systems sharing the same
physiological parameter values [16]. The two systems are linked by the competition of
212Pb-SSTA and unlabeled SSTA for free binding sites and the physical decay rates as
shown in Figure 2.
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Figure 1. Scheme of the 212Pb-SSTA-PBPK model for mice. The model describes the PK of [212Pb]Pb-SSTA and the fate of 
its decay products in tissues. [212Pb]Pb-SSTA are distributed in the circulation to the vascular compartments of SSTR2-
expressing and non-SSTR2-expressing tissues. After the diffusion of [212Pb]Pb-SSTA to the interstitial compartments, 
[212Pb]Pb-SSTA undergo specific binding followed by internalization to early endosomes where [212Pb]Pb-SSTA are either 
recycled back to the interstitial compartments or directed to the sorting compartments for degradation. Non-SSTR2-ex-
pressing tissues include only vascular and interstitial compartments. Each compartment in the 212Pb-SSTA-PBPK model 
represents the in vivo alpha particle generator model. 
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Figure 1. Scheme of the 212Pb-SSTA-PBPK model for mice. The model describes the PK of [212Pb]Pb-SSTA and the fate of
its decay products in tissues. [212Pb]Pb-SSTA are distributed in the circulation to the vascular compartments of SSTR2-
expressing and non-SSTR2-expressing tissues. After the diffusion of [212Pb]Pb-SSTA to the interstitial compartments,
[212Pb]Pb-SSTA undergo specific binding followed by internalization to early endosomes where [212Pb]Pb-SSTA are either
recycled back to the interstitial compartments or directed to the sorting compartments for degradation. Non-SSTR2-
expressing tissues include only vascular and interstitial compartments. Each compartment in the 212Pb-SSTA-PBPK model
represents the in vivo alpha particle generator model.
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Figure 2. Scheme of the distribution of unlabeled SSTA in SSTR2-expressing tissue in the 212Pb-SSTA-PBPK model. The
injected SSTA with radiolabeled SSTA, the SSTA produced after the dissociation of a fraction of 212Bi-chelator complexes
after beta decay of 212Pb and the SSTA produced after alpha decay of 212Bi and 212Po are distributed in tissues via blood
flow. The distributed SSTA were assumed to follow the same PK of radiolabeled SSTA and both compete on free binding
sites. The structure of non-SSTR2-expressing tissues for unlabeled SSTA is the same as the one for radiolabeled SSTA.



Pharmaceutics 2021, 13, 2132 4 of 13

Each compartment in the 212Pb-SSTA-PBPK model represents the in vivo alpha particle
generator model described before [23]. The biodistribution of free 212Bi is described by
integrating a PBPK model for free 212Bi into the 212Pb-SSTA-PBPK model [29]. In short, the
212Bi-PBPK model describes the interaction of free 212Bi with red blood cells (RBC), high
molecular weight plasma proteins (HWPP) and intracellular biological thiols. The detailed
compartmental structure of SSTR2-expressing tissues is presented in Figure 3.
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Figure 3. Detailed scheme of the structure of SSTR2-expressing tissue incorporating the in vivo alpha particle generator
model and relevant pharmacokinetic parameters of free 212Bi. [212Pb]Pb-SSTA and [212Bi]Bi-SSTA are assumed to follow the
same PK throughout the tissue. Free 212Bi in the vasculature binds linearly with RBC and HWPP followed by free 212Bi
diffusion and uptake by tissue cells. The free daughter 208Tl is assumed to have the same permeability surface area product
as that for free 212Bi so that it diffuses between interstitial and vascular compartments and redistributes in the circulation.
The alpha-emitting 212Po decays at the site of its production.

The bound 212Pb-SSTA-SSTR2 complexes on cells surfaces are internalized to early
endosomes (Figure 1) with a rate of 0.17 min−1 [35]. After internalization, a fraction of
212Pb-SSTA-SSTR2 complexes in early endosomes are dissociated followed by the recycling
of SSTR2 to cell surfaces and the release of intact 212Pb-SSTA to the interstitial compartment
with a transfer rate 0.05 min−1 [36]. The remaining 212Pb-SSTA-SSTR2 complexes in
early endosomes are directed to the sorting compartment for degradation. The release
rates of residualizing radiolabels or radiolabeled catabolites from cells were estimated (as
described below).

A kidney model was developed to adequately describe the kinetics of 212Pb-SSTA in
kidneys as the main excretion organ (upper right corner of Figure 1) [28]. As SSTR2 expres-
sion sites in mice kidneys were found in epithelial cells (podocytes) of the glomeruli and
collecting ducts [18,38–40], the specific uptake of 212Pb-SSTA is modeled by connecting the
compartment of bound 212Pb-SSTA-SSTR2 complexes directly to the vascular compartment
of kidneys. The localization of SSTR2 in the collecting ducts was not considered in the
kidney model because the reabsorption of the radiolabeled peptides beyond the convoluted
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proximal tubules is either small or absent [41]. Post-glomerular peritubular elimination
was also not considered because proteins are not appreciably extracted through this elim-
ination route as compared to the filtration pathway. Additionally, the post-glomerular
elimination route is specific for small proteins, which have hormone-specific receptors
located in the basolateral tubular cells [28,41]. As the non-specific uptake of radiolabeled
peptides in the proximal tubule is mainly due to charge-related binding to megalin and/or
cubilin receptors [42], fluid- and receptor-based endocytosis were integrated in the kidney
model as a single compartment connected to the proximal tubules with a transfer rate
0.03 min−1 [43]. Although Behr et al. reported that some of the degradation products in
renal tubules are transferred back into the bloodstream [44,45], this is not included in the
model because of the limited number of data points and the relative short half-lives of
212Pb and all its daughters.

2.2. Model Evaluation, Parameters Estimation and Sensitivity Analyses

The performance of the developed 212Pb-SSTA-PBPK model was compared in SAAM
II and Simbiology by running different simulations using the same parameterization and
model inputs. The values of the 212Pb-SSTA-PBPK model parameters were estimated in
both software tools by fitting the time–activity curves to [212Pb]Pb-DOTAMTATE bioki-
netics in AR42J-tumor bearing mice after injecting 0.0013 nmol (185 kBq) of [212Pb]Pb-
DOTAMTATE to match the experimental condition (Supplementary Material Table S2) [4].
The computational settings in SAAM II were the Rosenbrock least-squares algorithm and a
convergence criterion of 10−4. Model-based relative weighting was assigned for all data.
The goodness-of-fit criteria were evaluated based on standard criteria reported, such as
visual inspection of the fitted curves, coefficient of variation (CV < 50%) and off-diagonal
values of the correlation matrix (−0.8 < CM < 0.8 for most elements) [46]. In Simbiology’s
fitting settings, proportional error was used with the fminsearch function. The Function-
Tolerance was 10−14, that is, the lower limit for the change in the value of the objective
function during the fitting. Sensitivity analyses and a first evaluation of the predictive
performance of the model were performed as described in detail in supplement D and
supplement E, respectively.

2.3. Dosimetry and Simulations

The absorbed doses were calculated using the developed 212Pb-SSTA-PBPK model
in Simbiology, because the number of compartments required for the absorbed dose
calculations exceeds what could be practically provided by SAAM II. Absorbed dose
coefficients (ADC) were calculated for the mouse tissues based on the MIRD formalism as
follows [47]:

ADCi(TD) =
∑x Di(TD)

A0
= ãi(TD)·

∑x ∆x
i ·ϕi

(
Ex

i
)

Mi
, (1)

where Di(TD) is the absorbed dose to tissue i of mass Mi from emission type x; ãi(TD) is the
total number of nuclear transitions in tissue i over the integration period
TD (10 · t1/2(212Pb) = 6384 min) divided by the administered activity A0 (185 kBq of
[212Pb]Pb-DOTAMTATE to match the experimental condition [4]), ∆x

i is the mean en-
ergy absorbed in tissue i per nuclear transition of type x, ϕi

(
Ex

i
)

is the fraction of emitted
energy per nuclear transition absorbed in tissue i. ϕi

(
Ex

i
)

is assumed to be equal to 1
as the target tissue is considered as the source tissue so that the emitted radiation is lo-
cally deposited [47]. Subsequently, the contributions of each radioactive decay product of
[212Pb]Pb-DOTAMTATE to the total ADC were also determined for each tissue.

In addition, the absorbed doses were simulated for injected amounts of
0.017 × 10−3–0.079 nmol in steps of 101/6 of [212Pb]Pb-DOTAMTATE, with injected ac-
tivities chosen to lead to 23 Gy in kidneys. By injecting [212Bi]Bi-DOTAMTATE into the cor-
responding venous compartment in the 212Pb-SSTA-PBPK model with the same amounts,
the doses absorbed by the tissues were calculated based on the non-generator equivalent
[212Bi]Bi-DOTAMTATE. Additionally, total energies released in the glomeruli (the sum of
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energies released in renal vascular, bound SSTA-SSTR2 complexes, early endosomes, and
sorting compartments) and proximal tubules (the sum of energies released in renal proximal
tubules and tubular endosomal compartments) to deposit 23 Gy in kidneys were calculated
following the administration of [212Pb]Pb-DOTAMTATE and [212Bi]Bi-DOTAMTATE.

3. Results

The fitted time-activity curves generated by SAAM II and Simbiology for tumor,
kidneys, pancreas, lung, spleen and liver show good fits. The results of the two software
tools are in agreement and are equivalent for each tissue as shown in Figure 4. The values of
the pharmacokinetic parameters estimated by fitting to the experimental data are given in
Table 1. The CVs of the fitted parameters were less than 50% for all tissues. All elements of
the correlation matrix of the fitted parameters were less than 0.8 except for tumor (perfusion
rate and receptor density) and kidneys (release rate). Kidneys had the highest ADC among
other non-target tissues (134 Gy/MBq) followed by pancreas (116 Gy/MBq) (Table 2). The
contribution of 212Po to the total ADC was the highest in all tissues (more than 50% except
in fat).
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Figure 4. Fitted time–activity curves. Simbiology and SAAM II gave identical results.

Table 1. Pharmacokinetic parameter values obtained from the 212Pb-SSTA-PBPK model fit to experimental data [4].

Parameter (Unit) Tissue
SAAM II Simbiology

Estimated Value

SSTR2 density (nmol·L−1)

Kidneys 3.52 ± 0.07 3.52

Liver 0.17 ± 0.04 0.16

Spleen 0.73 ± 0.07 0.73

Lung 1.77 ± 0.14 1.77

Pancreas 6.18 ± 0.94 6.18

Tumor 11.73 ± 2.97 11.73

Perfusion (mL·min−1·g−1) Tumor 0.09 ± 0.03 0.09

Sorting rate (min−1) SSTR2-expressing tissues 0.0076 ± 0.0003 0.0076

Release rate (min−1)
Pancreas 0.0011 ± 0.0002 0.0011

Kidneys 0.000380 ± 0.000001 0.000380

For a given value of 23 Gy in kidneys, the maximum absorbed dose in the tumor
(49.8 Gy) was reached with the administration of 0.03 nmol of [212Pb]Pb-DOTAMTATE as
shown in Figure 5. For the non-generator equivalent [212Bi]Bi-DOTAMTATE, only 36.6 Gy
can be reached in the tumor at the optimal amount of 0.05 nmol of [212Bi]Bi-DOTAMTATE.
Figure 6 shows that the energies released in the glomeruli and proximal tubules account
for 54% and 46%, respectively, of the total energy absorbed in kidneys at the simulated
optimal amounts of both [212Pb]Pb-DOTAMTATE and [212Bi]Bi-DOTAMTATE.
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DOTAMTATE and its radioactive decay products to the total absorbed doses in SSTR2-expressing and non-SSTR2-
expressing tissues.

Tissue ADC
(Gy/MBq)

Contribution to the Total Absorbed Dose per Tissue (%)

Conjugated Radionuclides Free Radionuclides
212Pb 212Bi 212Bi 212Po 212Bi 208Tl 212Bi 212Po

Beta Alpha Beta Alpha

SSTR2-expressing
tissues

Tumor 248 5 11 18 45 2 6 3 8
Kidneys 134 6 11 18 45 2 6 3 8
Pancreas 116 6 11 17 44 2 6 4 9

Liver 9 5 9 14 35 5 6 7 19
Lung 65 6 11 18 45 2 6 3 8
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Table 2. Cont.

Tissue ADC
(Gy/MBq)

Contribution to the Total Absorbed Dose per Tissue (%)

Conjugated Radionuclides Free Radionuclides
212Pb 212Bi 212Bi 212Po 212Bi 208Tl 212Bi 212Po

Beta Alpha Beta Alpha

Spleen 28 6 11 17 44 2 6 4 10
Ad 89 6 11 18 45 2 6 3 9
GI 85 5 11 18 45 2 6 3 9

Non-SSTR2-
expressing

tissues

Skin 1.8 9 11 16 42 2 6 4 9
Bone 2.7 3 3 5 14 10 7 16 41

Muscle 0.6 11 11 18 46 1 7 2 4
Heart 3.6 2 14 23 58 0 1 0 1
Brain 0.1 12 11 17 43 2 6 3 7
Fat 1.0 9 9 14 36 1 28 1 3
RB 1.0 11 11 18 45 1 6 2 5
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4. Discussion

In this study, a 212Pb-SSTA-PBPK model was developed to investigate the PK and the
dosimetry of 212Pb-SSTA and its cytotoxic radioactive products targeting SSTR2-expressing
tissues. The main aim of this work was to describe a first developed complex whole-body
PBPK model for 212Pb-based in vivo alpha particle generators and its radioactive decay
products. The complexity of the model arises from combining different mathematical
models, that is, a 212Pb-PBPK model for conjugated 212Pb, a PBPK model for free 212Bi,
and the in vivo alpha particle generator model. The acceptable initial evaluations of the
model (sensitivity analysis and predictive performance) in supplements D and E place
the model in context of generating hypotheses that support next/future studies. The
developed 212Pb-SSTA-PBPK model underpins the higher potential of the in vivo alpha
particle generator [212Pb]Pb-DOTAMTATE in α-PRRT in comparison to its non-generator
equivalent [212Bi]Bi-DOTAMTATE as demonstrated in Figures 5 and 6. For a given value
of 23 Gy in kidneys, [212Pb]Pb-DOTAMTATE delivers a higher dose using a lower optimal
amount (49.8 Gy within 0.03 nmol) than [212Bi]Bi-DOTAMTATE (36.6 Gy within 0.05 nmol).
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In addition, for [212Pb]Pb-DOTAMTATE, all absorbed doses in non-target tissues are less
than kidneys absorbed dose.

The distinction between absorbed doses to glomeruli (the radiation-sensitive func-
tional unit for late damage [48]) and proximal tubules is important for renal toxicity [49,50].
Figure 6 shows that the specific uptake in the kidneys results in more energy being released
in the glomeruli than in the proximal tubules, except for larger amounts when SSTR2 is
saturated. Due to the shorter half-life, [212Bi]Bi-DOTAMTATE injection results in higher
energies released in the glomeruli than by [212Pb]Pb-DOTAMTATE injection.

For mice, pancreas can be the second organ at risk after kidneys in α-PRRT because
of its high ADC (116 Gy/MBq, Table 2), which is in line with the findings of Norenberg
et al. and Kimura et al. [38,51]. Additionally, Table 2 demonstrates the ability of the
212Pb-SSTA-PBPK model to address the concerns regarding the fate of the redistributed
radioactive product of [212Pb]Pb-DOTAMTATE (conjugated and free radionuclides). The
largest contribution to the total tissue absorbed dose is related to conjugated alpha emitters,
mainly conjugated 212Po. The absorbed doses in non-SSTR2 expressing tissues are due to
the distribution of [212Pb]Pb-DOTAMTATE and its progeny mainly in the vascular and
interstitial compartments. Of note, the reported high uptake rate of free 212Bi in bone
explains the high contribution of free radionuclides to total absorbed dose in Table 2 [29].

Sites and levels of SSTR2 expression differ between species [38]. Intriguingly, the
estimated SSTR2 densities in kidneys (3.52 ± 0.07 nmol/L) and tumor (11.7 ± 3.0 nmol/L)
in AR42J-tumor bearing mice were in the reported ranges of renal (2.3–7.1 nmol/L) and
tumor (7–16 nmol/L) SSTR2 densities in humans [16]. The relatively high SSTR2 density
in pancreas, which is not observed in humans, can be related to the additional expression
of SSTR2A in murine pancreatic acinar cells [38]. In addition, the difference in the mi-
croanatomical structure of spleen in mice and humans may contribute to the difference
in the estimated SSTR2 densities in mice (0.73 ± 0.07 nmol/L) and the reported range
in humans (3.9–8.7 nmol/L) [16]. In contrast to mice, the red pulp in human spleen has
sheathed capillaries, composed of macrophages and B lymphocytes which are reported to
express SSTR2 mRNA [52,53]. These differences in the levels of SSTR2 expression should
be considered in the translation from mice to human PBPK models.

Incorporating internalization, recycling, and sorting mechanisms is important to ad-
equately reflect the SSTR2 densities and to describe the concentrations of radiolabeled
peptides both inside and outside of cells [36]. It is important to highlight that the fraction of
intact [212Pb]Pb-SSTA-SSTR2 complexes in early endosomes is sorted for degradation with
a rate that solely depends on the type of receptors and targeting vectors. Preliminary fits
revealed that the release rates of the degradation products of [212Pb]Pb-DOTAMTATE were
zero except for kidneys and pancreas. Therefore, [212Pb]Pb-DOTAMTATE as a radiometal-
chelated SSTA was assumed to be retained inside the cells after being routed to lysosomes
in the investigated time interval. Vegt et al. and others showed that some residualizing radi-
olabels or radiolabeled catabolites cannot cross the lysosomal membrane, thus stay trapped
in lysosomes delivering high radiation doses in the renal tubules and glomeruli [36,54–56].
On the other hand, because of the relatively short half-life of 212Pb (t1/2 = 10 h) in compari-
son to beta emitters used in PRRT, such as 177Lu (t1/2 = 6.6 d), the experimental data do not
provide enough information to fit the release rate. However, as the time scale of the release
rate is very small compared to the half-life of 212Pb, setting the release rate to zero does not
affect the results of the simulations. The fitted release rate of pancreas was high and that
may be because secretory acinar pancreatic cells have distinct functions that may require a
specific and polarized SSTR2 distribution and trafficking as reported by Waser et al. [57].

The developed 212Pb-SSTA-PBPK model for mice can be employed for broad future
investigations. Simulating concentration–time profiles can help in the selection of optimal
sampling schedules and optimize dose regimens in different study populations, including
humans [16]. The separation between radiopharmaceutical-specific and physiological
parameters in the 212Pb-SSTA-PBPK model allows optimal activities to be administered
for individualized dosimetry, thereby minimizing risks [15]. Additionally, the 212Pb-
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SSTA-PBPK model enables to calculate the absorbed doses in tissue compartments, that
is, sub-organ doses. Therefore, using virtual preclinical studies based on mathematical
modeling can be a first step for optimizing treatment planning in α-PRRT.

In addition, optimal values for global pharmacokinetic parameters, such as ligand
affinities, internalization and sorting rates, can be simulated using the 212Pb-SSTA-PBPK
model for newly developed in vivo alpha particle generators in α-PRRT. The model can be
used to study the effect of using different chelators with different dissociation fractions of
212Bi-chelator complexes after beta decay of conjugated 212Pb [23].

Notably, the kidney model provides a full description of the relevant mechanisms
underlying SSTA uptake in kidneys. The specific and non-specific renal uptake imple-
mented in the model may explain the partial blocking of renal uptake achieved by the
co-administration of amino acids lysine and arginine or unlabeled SSTA [37]. The kidney
model structure can be integrated in a human PBPK model and contribute to future work
aiming to reduce the probability of long-term renal toxicity in PRRT for NET.

Although strong background information was integrated during model development,
and the initial evaluation of the model was acceptable, clearly, more well-characterized
data will be required in the future for further improvements and testing of the predictive
performance in order to achieve regulatory impact.

5. Conclusions

The developed 212Pb-SSTA-PBPK model quantitatively determines the non-measurable
PK of 212Pb-SSTA and its radioactive decay products in mice and describes the specific
and non-specific renal uptakes by the kidney model. The model allows absorbed doses
to be calculated from unbound, bound, and internalized 212Pb-SSTA and the radioactive
decay products in the whole body. Additionally, optimal injected amounts and activities
can be determined using simulations to better design preclinical experiments in α-PRRT.
Furthermore, the 212Pb-SSTA-PBPK model shows that 212Pb-SSTA-based α-PRRT results
in a higher tumor-to-kidneys ratio than 212Bi-SSTA-based α-PRRT for a given kidneys
absorbed dose.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13122132/s1, Figure S1: Comparison of the therapeutic potency of the in vivo
alpha generator [212Pb]Pb-SSTA (upper panel) and [212Bi]Bi-SSTA (lower panel), Figure S2: Kidneys
sensitivity plots, Figure S3: Tumor sensitivity plots, Figure S4: Pancreas sensitivity plots, Table S1:
[212Pb]Pb-SSTA-PBPK model parameters, Table S2: Non-decay corrected %ID/g for [212Pb]Pb-
DOTAMTATE in different tissues of unanesthetized AR42J-bearing mice at different time points,
Table S3: The predicted values of %ID/g for relevant tissues after injecting 5 µCi of 212Pb-DOTAMTATE
with a specific activity of 2.4 µCi/ng.
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