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Background. Prostate cancer (PCa) is the most common malignancy and the leading cause of cancer death in men. Recent studies
suggest the molecular signature was more effective than the clinical indicators for the prognostic prediction, but all of the known
studies focused on a single RNA type. The present study was to develop a new prognostic signature by integrating long noncoding
RNAs (lncRNAs) and messenger RNAs (mRNAs) and evaluate its prognostic performance.Methods. The RNA expression data of
PCa patients were downloaded from The Cancer Genome Atlas (TCGA) or Gene Expression Omnibus database (GSE17951,
GSE7076, and GSE16560). The PCa-driven modules were identified by constructing a weighted gene coexpression network, the
corresponding genes of which were overlapped with differentially expressed RNAs (DERs) screened by the MetaDE package.
The optimal prognostic signature was screened using the least absolute shrinkage and selection operator analysis. The
prognostic performance and functions of the combined prognostic signature was then assessed. Results. Twelve PCa-driven
modules were identified using TCGA dataset and validated in the GSE17951 and GSE7076 datasets, and six of them were
considered to be preserved. A total of 217 genes in these 6 modules were overlapped with 699 DERs, from which a nine-gene
prognostic signature was identified (including 3 lncRNAs and 6 mRNAs), and the risk score of each patient was calculated. The
overall survival was significantly shortened in patients having the risk score higher than the cut-off, which was demonstrated in
TCGA (p = 5:063E − 03) dataset and validated in the GSE16560 (p = 3:268E − 02) dataset. The prediction accuracy of this risk
score was higher than that of clinical indicators (the Gleason score and prostate-specific antigen) or the single RNA type, with
the area under the receiver operator characteristic curve of 0.945. Besides, some new therapeutic targets and mechanisms
(MAGI2-AS3-SPARC/GJA1/CYSLTR1, DLG5-AS1-DEFB1, and RHPN1-AS1-CDC45/ORC) were also revealed. Conclusion.
The risk score system established in this study may provide a novel reliable method to identify PCa patients at a high risk of death.

1. Introduction

Prostate cancer (PCa) is the most frequently diagnosed
malignancy in men, with an estimated 174,650 new cases
and 31,620 deaths in 2019 in the United States [1]. Although

diverse treatment strategies (including radical surgery, radio-
therapy, chemotherapy, and androgen deprivation therapy)
have been demonstrated to be effective, approximately 25%
of PCa patients will experience recurrence, metastasis, and
develop into castration-resistant PCa, leading to the poor
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overall survival (OS) [2]. Therefore, it is critical to early iden-
tify the patients who are at a high risk for death. Serum level
of prostate-specific antigen (PSA) [3], the Gleason score [4],
and tumor, node, and metastasis (TNM) staging [5] are the
routine clinical indicators for the prediction of OS in patients
with PCa. Nevertheless, in clinic, some scholars also observed
that patients with the same stage could progress to opposite
consequences [6], while similar prognostic outcomes were
present in patients with different PSA levels or Gleason
scores [7, 8]. Therefore, identification of more effective prog-
nostic biomarkers is highly desirable.

With the development of molecular biology, recent stud-
ies have attempted to develop the gene molecular signature
for the prognostic prediction. Some have been demonstrated
to possess a higher predictive power than the above clinical
indicators. For example, Li et al. developed a risk score con-
structed by 6 protein-coding genes. Univariate and multivar-
iate Cox regression analyses showed that this risk score was
independent of TNM stage for biochemical recurrence-
(BCR-) free survival prediction (hazard ratio ðHRÞ = 3:045,
95% confidence interval ðCIÞ = 1:655 − 5:602; p < 0:001). A
subgroup analysis revealed that there were also significant
survival differences when the patients with the same Gleason
score (≤7 or >7) were classified into the high-risk score group
and the low-risk score group [9]. Shi et al. established a
prognostic risk score based on 9 protein-coding genes.
Receiver operating characteristic (ROC) analysis indicated
that the prediction accuracy of this risk score for BCR-free
survival was higher than that of Gleason score (area under
curve ðAUCÞ = 0:836 vs:0:742) and pathological T stage
(AUC = 0:836 vs:0:780) [10]. Similar superiority of the
molecular risk score was also observed in the study of Huang
et al. who found the four-long noncoding RNA- (lncRNA-)
based risk score was independent of the American Joint
Committee on Cancer T stage and Gleason score for the pre-
diction of BCR-free survival and disease-free survival. The
prediction accuracy for both 2- (AUC = 0:823 vs:0:787) and
5-year BCR (AUC = 0:833 vs:0:797) can be improved by
3.6% if the four-lncRNA signature was added to the clinical
indicators [11]. Xu et al. identified an eight-lncRNA signa-
ture as an independent factor associated with BCR-free sur-
vival and demonstrated its prognostic ability was better
than that of the Gleason score (AUC = 0:79 vs:0:688) and
positive lymph node (AUC = 0:79 vs:0:622) [12]. However,
all of these studies were exploring the prognostic value of
a single RNA type. Previous studies on other cancers indi-
cated the lncRNA-mRNA combined signature seemed to
be more effective than the lncRNA or mRNA alone for
the prognostic prediction [13, 14]. Hence, it is essential
to further develop an lncRNA-mRNA integrated prognos-
tic signature for PCa. Furthermore, most of the studies
involving comparison with clinical indicators focused on
the prediction for BCR-free survival, not for OS, which
was also a novelty of our study.

The objectives of the current study were (1) to estab-
lish a signature for OS prediction based on the PCa-
driven lncRNAs and mRNAs which were screened by
weighted gene coexpression network analysis (WGCNA)
[15], a systematic biological method to cluster highly cor-

related genes; (2) to confirm the superiority of the inte-
grated molecular signature to clinical indicators or single
molecular type; and (3) to reveal the underlying functions
of the gene signature.

2. Materials and Methods

2.1. Data Collection and Preprocessing. The level-3 RNA-seq
dataset of PCa patients was downloaded from The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) on
October 18, 2019, including 494 tumor samples (which had
survival outcomes) and 54 control samples. This dataset
was selected as the training dataset for module and signature
identification. The normalized fragments per kilobase of
exon per million fragments mapped (FPKM) were used to
represent the expression of gene. Furthermore, three gene
microarray datasets were downloaded from Gene Expression
Omnibus (GEO, http://www. http://ncbi.nlm.nih.gov/geo/)
because they also analyzed the gene expression profiles in
tumor and control tissues of PCa patients (GSE17951: con-
trol, n = 14; tumor, n = 109 [16, 17] in which some samples
without clear type description were deleted; GSE70768: con-
trol, n = 73; tumor, n = 126 [18]; these two datasets were used
to estimate module preservation) or recorded the prognostic
outcomes in all PCa patients (GSE16560: tumor, n = 281
[19]; this dataset was used for signature validation). The
series matrix files were collected from GEO, and the probe
IDs were converted into gene symbols via corresponding
platforms (GSE17951: GPL570, [HG-U133_Plus_2] Affyme-
trix Human Genome U133 Plus 2.0 Array; GSE70768:
GPL10558, Illumina HumanHT-12 V4.0 expression Bead-
Chip; GSE16560: GPL5474, Human 6k Transcriptionally
Informative Gene Panel for DASL).

The known mRNAs and lncRNAs in the above sequenc-
ing or microarray datasets were reannotated by the HUGO
Gene Nomenclature Committee (HGNC; http://www
.genenames.org/) which contains the official nomenclature
for 4,495 lncRNAs and 19,219 protein-coding genes [20].
RNAs with a median expression value equal to 0 were
removed. Only the mRNAs and lncRNAs that were annotated
in all included datasets were used for the following analyses.

2.2. Screening of PCa-Driven Modules. TheWGCNA package
in R (version 1.61; https://cran.r-project.org/web/packages/
WGCNA/index.html) [15] was used to identify PCa-driven
modules. Briefly, the expression and connectivity correla-
tions of all RNAs between any two datasets (TCGA,
GSE17951, and GSE7076) were first calculated to confirm
their comparability. Then, the soft threshold power (β) was
selected using the pickSoftThreshold function according to
the scale-free topology criterion, with which the weighted
adjacency matrix was generated and the gene dendrogram
was constructed based on topological overlap matrix dissim-
ilarity. Next, modules with a cutHeight of 0.995 and
minSize ≥ 50 were identified using TCGA data via the dyna-
micTreeCut method [21]. The preservation of the identified
modules was validated in the GSE17951 and GSE7076 data-
sets using the modulePreservation statistics [22]. Preserva-
tion Z − score > 5 implied the corresponding module was
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preserved. Finally, the potential function of preserved mod-
ules was analyzed according to the userListEnchment func-
tion, while their clinical association was investigated by
moduleTraitCor and moduleTraitPvalue algorithms in the
WGCNA package.

2.3. Screening of Differentially Expressed lncRNAs and
mRNAs. The differentially expressed lncRNAs (DELs) and
mRNAs (DEGs) between PCa and normal controls were
screened using the MetaDE.ES function in the MetaDE pack-
age (version 1.0.5, https://cran.r-project.org/web/packages/
MetaDE/). Briefly, due to the presence of the platform differ-
ence in three datasets (TCGA, GSE17951, and GSE7076), the
heterogeneity of RNAs across them was first assessed by tau2

statistic and Chi-square-based Q-test. Only the RNAs with
homogeneity (tau2 and Q p value > 0.05) were included for
the differential analysis. The gene expression difference was

determined by the MetaDE.pvalue algorithm, with the false
discovery rate ðFDRÞ < 0:05 set as the significance threshold.
Furthermore, the log2FC (fold change) of RNAs in each data-
set was also calculated. Only the RNAs with the consistency
in significance and differential trend in three datasets were
considered as differentially expressed RNAs (DERs).

2.4. Construction of an lnRNA-mRNA Prognostic Model. A
Venn diagram (http://bioinformatics.psb.ugent.be/webtools/
Venn/) was developed to identify the overlap between PCa-
driven module RNAs and DERs, which were used as seeds
for the following survival analysis. The association between
the expression levels of DERs and OS was first evaluated by
the univariate Cox proportional hazards regression analysis
in the “survival” package of R (version, 2.41-1; http://
bioconductor.org/packages/survivalr/). Only DERs with
log-rank p < 0:05 were considered to have the prognostic
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Figure 1: Significant correlations between any two datasets (TCGA, GSE17951, and GSE7076). (a) The RNA expression levels. (b) The
connectivity.

3BioMed Research International

https://cran.r-project.org/web/packages/MetaDE/
https://cran.r-project.org/web/packages/MetaDE/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioconductor.org/packages/survivalr/
http://bioconductor.org/packages/survivalr/


potential, which then underwent the multivariate Cox regres-
sion analysis to assess their independence. In order to con-
firm whether the signature identified by multivariate
analysis was optimal, L1-penalized (least absolute shrinkage
and selection operator (LASSO)) Cox proportional hazard
model in the penalized package (version, 0.9-5; http://
bioconductor.org/packages/penalized/) [23, 24] was further
applied. The risk score formula was generated based on the
expression levels of prognostic RNAs (ExpDERs) and their
LASSO coefficients (βDERs):

Risk score = βlncRNA1 × ExplncRNA1 + βlncRNAn × ExplncRNAn
+ βmRNA1 × ExpmRNA1+⋯βmRNAn × ExpmRNAn:

ð1Þ

The risk score of each patient was calculated according to
the above formula, and then, the patients were divided into
the low-risk group and the high-risk group using the median
score as the cut-off point. The prognostic effect of the risk
score was examined by the Kaplan–Meier estimate (log-rank
p value < 0.05) and ROC analysis (AUC = 0:5 ~ 1; the AUC
towards 1 indicated a good performance). Furthermore, uni-
variate, multivariate Cox regression, and subsequent stratifi-
cation analyses were also conducted to estimate the
association between the risk score and clinical pathological
characteristics, with the criteria of statistical significance set
as p < 0:05.

2.5. Function Enrichment Analyses of the Prognostic RNAs.
Due to the prognostic RNAs selected from different modules,
their associations may not be reflected by the WGCNA.
Thus, we also used the cor.test function (https://stat.ethz
.ch/R-manual/R-devel/library/stats/html/cor.test.html) in R
to calculate the Pearson correlation coefficients (PCC)

between prognostic lncRNAs and all module DERs and
reconstructed the coexpression network using the Cytoscape
software (version 3.6.1; http://www.cytoscape.org/).

The biological processes and pathways of genes in the
coexpression network were predicted using the online Data-
base for Annotation, Visualization, and Integrated Discovery
(DAVID) (version 6.8; http://david.abcc.ncifcrf.gov) [25].
Significant Gene Ontology (GO) terms and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways were
selected based on the threshold value of p value < 0.05.

3. Results

3.1. WGCNA Analysis Identifies PCa-Driven Modules. After
data processing and annotation, 695 lncRNAs and 6,613
protein-encoding mRNAs were identified to be shared within
TCGA, GSE17951, and GSE7076 datasets. Thus, they were
used for the WGCNA analysis. Correlation analysis showed
that there were significantly positive correlations of RNAs
between any two datasets irrespective of the expression level
(Figure 1(a)) or the connectivity (Figure 1(b)), indicating
these datasets were comparable. The soft threshold power β
was selected as 8 according to the criterion of the scale-free
topology (R2 = 0:9) (Figure 2(a)), using which the mean con-
nectivity for the network was calculated (=1) (Figure 2(b)). A
total of 12 modules were identified using TCGA dataset after
the DynamicTreeCut analysis (Figures 3(a) and 3(b);
Table 1), which was also validated in the GSE17951 and
GSE7076 datasets (Figures 3(a) and 3(b)). The black module
contained 99 genes (60 mRNAs and 39 lncRNAs); the blue
module contained 964 genes (919 mRNAs and 45 lncRNAs);
the brown module contained 422 genes (408 mRNAs and 14
lncRNAs); the green module contained 138 genes (134
mRNAs and 4 lncRNAs); the green-yellow module contained
71 genes (69 mRNAs and 2 lncRNAs); the grey module
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Figure 2: Soft threshold power β. (a) Soft threshold power β selected when the R2 reached 0.9 for the first time. (b) The mean connectivity
corresponding to different β values.
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Figure 3: Continued.
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contained 1,705 genes (1,524 mRNAs and 181 lncRNAs); the
magenta module contained 78 genes (67 mRNAs and 11
lncRNAs); the pink module contained 78 genes (74 mRNAs
and 4 lncRNAs); the purple module contained 74 genes (50

mRNAs and 24 lncRNAs); the red module contained 129
genes (121 mRNAs and 8 lncRNAs); the turquoise module
contained 1,491 genes (1,446 mRNAs and 45 lncRNAs);
and the yellow module contained 412 genes (388 mRNAs
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Figure 3: Coexpression modules screened based on WGCNA analysis. (a) Clustering dendrogram of gene coexpression modules from
TCGA, GSE17951, and GSE7076 datasets. (b) A dendrogram of the module eigengenes from TCGA, GSE17951, and GSE7076 datasets.
(c) A multidimensional scaling (MDS) plot of the module eigengene from TCGA datasets.

Table 1: Preserved modules identified based on weighted gene coexpression network analysis.

ID Color Module size mRNA lncRNA Preservation Z-score Module annotation

Module 1 Black 99 60 39 0.2408 Peptidoglycan catabolic process

Module 2 Blue 964 919 45 8.9080 Translation

Module 3 Brown 422 408 14 19.2639 Immune response

Module 4 Green 138 134 4 11.3671 DNA replication

Module 5 Green-yellow 71 69 2 4.0398 Intracellular signaling cascade

Module 6 Grey 1705 1524 181 1.0886 Angiogenesis

Module 7 Magenta 78 67 11 4.6283 Positive regulation of cardiac muscle contraction

Module 8 Pink 78 74 4 9.9431 Vasculogenesis

Module 9 Purple 74 50 24 4.3446 Regulation of transcription, DNA-templated

Module 10 Red 129 121 8 8.9918 Chemotaxis

Module 11 Turquoise 1491 1446 45 1.9359 Transcription, DNA-templated

Module 12 Yellow 412 388 24 38.0674 Cell-cell signaling

Bold indicated preserved modules with preservation Z − score > 5.

6 BioMed Research International



and 24 lncRNAs) (Table 1). From Figure 3(c), we could see
that the RNAs belonged to the similar module tended to
group together (such as blue and turquoise). Among these
12 modules, blue, brown, green, pink, red, and yellow were
considered to be preserved and may be PCa-driven
(Table 1). This conclusion may be believable because there
were also significant associations between these modules
genes and clinical characteristics of PCa patients (Figure 4).
the Blue module was significantly associated with Age, recur-
rence, Gleason_score, and Pathologic_N; the brown module
was significantly associated with Age, Gleason_score, Patho-
logic_M, Pathologic_N, Pathologic_T, Radiation_therapy,
and Targeted_molecular_therapy; the red module was signif-
icantly associated with recurrence, Gleason_score, Patho-
logic_M, Pathologic_N, Pathologic_T, prostate-specific
antigen (PSA)_value, and Targeted_molecular_therapy; the
yellow module was significantly associated with recurrence,
Gleason_score, Pathologic_M, Pathologic_N, Pathologic_T,
PSA_value, Radiation_therapy, and Targeted_molecular_
therapy; and the green and pink modules were associated
with all parameters (Figure 4).

3.2. The Venn Analysis Identifies Differentially Expressed
PCa-Driven Module Genes. A total of 699 RNAs were identi-
fied as DERs in analysis of all three datasets (TCGA,
GSE17951, and GSE7076), including 461 upregulated (37
DELs; 424 DEGs) and 238 downregulated (21 DELs; 217
DEGs). Figure 5(a) shows the samples were distinctly sepa-
rated according to the expression (high, red; low, green) of
these DERs, and the differential pattern was similar among
different datasets, indicating these genes may be representa-
tive for PCa. These 699 genes were subsequently overlapped
with the 2,143 genes of 12 PCa-driven modules. The results
showed 217 (including 12 lncRNAs and 205 mRNAs) were
common, containing 99 of the blue module, 40 of the brown
module, 24 of the green module, 5 of the pink module, 15 of
the red module, and 34 of the yellow module (Figure 5(b)),
suggesting these 217 genes may be key PCa-driven module
genes and may represent alternative biomarkers.

3.3. The LASSO Analysis Identifies a 9-Gene Signature for the
Prognosis Prediction. The univariate Cox regression analysis
revealed that 33 module DERs (including 26 DEGs and 7
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Figure 4: Heatmap of the correlation between module eigengenes and clinical traits.
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DELs) were significantly related to OS (log-rank p < 0:05).
Then, these 33 DERs were entered into the multivariate
Cox regression model. As a result, 9 DERs (including 6 DEGs
and 3 DELs) were identified as the independent predictors of
OS. A subsequent LASSO analysis confirmed these 9 DERs

from blue, green, and yellow modules may constitute the
optimal prognostic signature (DEL: DLG5-AS1 (DLG5 anti-
sense RNA 1), MAGI2-AS3 (MAGI2 antisense RNA 3), and
RHPN1-AS1 (RHPN1 antisense RNA 1); DEG: GINS2
(GINS complex subunit 2), NLGN2 (neuroligin 2),

TCGA

(a)

(b) (c)

GSE70768

Tumor Normal Tumor Normal Tumor Normal

MetaDEWGCNA

1926 217 482

Blue

Brown

Green Pink Red

Yellow

99

40

24 5 15

34

Figure 5: Identification of differentially expressed module genes. (a) Heatmap of differentially expressed RNAs in three datasets. (b) The
Venn diagram to obtain the overlap between differentially expressed RNAs and module genes.
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EBNA1BP2 (EBNA1 binding protein 2), MELK (maternal
embryonic leucine zipper kinase, EIF5AL1 (eukaryotic trans-
lation initiation factor 5A like 1), and G6PC3 (glucose-6-
phosphatase catalytic subunit 3)) (Table 2). According to
the LASSO coefficients and the gene expression levels, the
risk score was calculated for each patient as follows: risk
score = ð−0:2216 × expression of DLG5 −AS1Þ + ð−0:7093
× expression of MAGI2 −AS3Þ + ð−1:5300 × expression of
RHPN1 −AS1Þ + ð1:4561 × expression of GINS2Þ + ð1:7956
× expression of NLGN2Þ + ð2:7422 × expression of EBNA1
BP2Þ + ð−0:0482 × expression of MELK�Þ+ð−1:5588 ×
expression of EIF5AL1Þ + ð−1:5551 × expression of G6PC3Þ.

The patients were divided into the two groups by their
corresponding risk scores (low-risk group, <median; high-
risk group, ≥median). The Kaplan–Meier plots showed that
patients having a higher risk score possessed a significantly
worse OS compared with those having a lower risk score
(TCGA: HR = 9:574, 95%CI = 1:212 − 17:56; p = 5:063E −
03; GSE16560: HR = 1:349, 95%CI = 1:025 − 1:776; p =
3:268E − 02) (Figure 6). ROC curves of the training dataset
TCGA showed that the AUC at 1, 3, and 5 years was 0.975,
0.958, and 0.948, respectively; while for the validation dataset
GSE16560, the AUC at 1, 3, and 5 years was 0.846, 0.824, and
0.825, respectively (Figure 6). These findings indicated this 9-
gene-based risk score model can effectively separate the prog-
nosis of patients with high accuracy. Moreover, univariate
and multivariate Cox regression analyses demonstrated the
prognostic value of the risk score was independent of the
Gleason score and PSA (Table 3). Also, the prognosis of
patients with the same Gleason score (8-10) (Figure 7(a))
and the level of PSA (above median) (Figure 7(b)) could be
further separated by the risk score, implying the prognostic
performance of molecular biomarker-based risk score was
higher than that of the clinical model, which was also proved
according to the time-dependent ROC curve analysis
(Figure 7(c)).

3.4. The DAVID Analysis Identifies the Function of Prognostic
Genes. After calculation of the PCC between three prognostic
DELs and module DEGs, a total of 259 relationship pairs
were considered to be correlated due to their absolute value
of PCC > 0:4. These relationship pairs were used to construct

the coexpression network (Figure 8(a)), from which we could
see that downregulated MAGI2-AS3 may coexpress with
SPARC (secreted protein acidic and cysteine rich) and
GJA1 (gap junction protein alpha 1) of the yellow module
and CYSLTR1 (cysteinyl leukotriene receptor 1) of the brown
module; downregulated DLG5-AS1 may coexpress with
VPS37D (VPS37D subunit of ESCRT-I), EIF5AL1, and
G6PC3 of the blue module or DEFB1 (defensin beta 1) of
the red module; RHPN1-AS1 may coexpress with MELK,
GINS2, ORC6 (origin recognition complex subunit 6), and
CDC45 (cell division cycle 45) of the green module and
EBNA1BP2 of the blue module. The DAVID enrichment
analysis identified 14 GO biological process terms, includ-
ing GO:0007204~positive regulation of cytosolic calcium
ion concentration (GJA1), GO:0016525~negative regula-
tion of angiogenesis (SPARC), GO:0032496~response to
lipopolysaccharide (SPARC), GO:0006935~chemotaxis
(DEFB1), GO:0039702~viral budding via host ESCRT com-
plex (VPS37D), GO:0001937~negative regulation of endo-
thelial cell proliferation (SPARC), GO:0019058~viral life
cycle (VPS37D), and GO:0000727~double-strand break
repair via break-induced replication (GINS2) (Table 4;
Figure 8(b)). In addition, 6 KEGG pathways were also
enriched, such as hsa04080:Neuroactive ligand-receptor
interaction (CYSLTR1), hsa04110:Cell cycle (CDC45,
ORC6), and hsa04020:Calcium signaling pathway
(CYSLTR1) (Table 4; Figure 8(b)).

4. Discussion

Using the training and validation datasets, we first identified
6 preserved PCa-driven modules and then screened 9
prognosis-related genes (including 3 lncRNAs: DLG5-
AS1, MAGI2-AS3, and RHPN1-AS1; and 6 mRNAs:
GINS2, NLGN2, EBNA1BP2, MELK, EIF5AL1, and
G6PC3) from these modules to construct the risk score.
The ROC curve analysis demonstrated the prediction
accuracy of this molecular risk score was higher than
that of clinical indicators (the Gleason score
[AUC = 0:945 vs:0:57], PSA [AUC = 0:945 vs:0:578], and
combined [AUC = 0:945 vs:0:673]), which was in line
with the studies of Li et al. [9], Shi et al. [10], Huang et al.

Table 2: The optimal prognostic signature.

Symbol Module Expression Type
Univariate Cox regression Multivariate Cox regression

LASSO coefficient
HR 95% CI p value HR 95% CI p value

GINS2 Green Upregulated mRNA 3.248 1.344-7.849 4.450E-03 1.399 1.261-2.036 3.33E-02 1.4561

NLGN2 Yellow Downregulated mRNA 6.514 1.237-14.31 1.350E-02 3.012 2.000-9.079 2.10E-02 1.7956

EBNA1BP2 Blue Upregulated mRNA 7.112 1.048-18.28 2.250E-02 4.470 2.904-12.115 2.79E-02 2.7422

DLG5-AS1 Blue Downregulated lncRNA 0.629 0.199-0.987 3.655E-02 0.589 0.290-0.931 4.59E-02 -0.2216

MAGI2-AS3 Yellow Downregulated lncRNA 0.354 0.0572-0.914 2.210E-02 0.512 0.220-0.913 4.51E-02 -0.7093

RHPN1-AS1 Green Upregulated lncRNA 0.272 0.0286-0.581 2.210E-02 0.513 0.236-0.711 3.89E-02 -1.5300

MELK Green Upregulated mRNA 0.557 0.047-0.625 1.950E-02 0.360 0.110-1.179 3.84E-02 -0.0482

EIF5AL1 Blue Upregulated mRNA 0.194 0.0311-0.414 4.000E-02 0.540 0.273-0.701 3.26E-02 -1.5588

G6PC3 Blue Upregulated mRNA 0.237 0.0617-0.912 1.800E-02 0.352 0.1117-0.509 2.66E-02 -1.5551

HR: hazard ratio; CI: confidence interval; LASSO: least absolute shrinkage and selection operator.
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[11], and Xu et al. [12]. More importantly, our integratedmodel
seemed to be more effective than the single mRNA model (Xu
et al.: 4-mRNA, AUC = 0:945 vs:0:904 [26]) for OS prediction,
which was also observed in our study (AUC = 0:945 vs:0:81)
(Figure 7). Although there was no study to investigate the prog-
nostic ability of the lncRNA signature for OS, their lower prog-
nostic performance for BCR-free survival (Huang et al.:
AUC = 0:823 [11]; Xu et al.: AUC = 0:79 [12]) may indirectly
confirm the prognostic significance of the combined signature
compared with the single lncRNA type, which was also reflected
by our study (AUC = 0:945 vs:0:659) (Figure 7).

Among these 9 genes, four of them had the consistency
between the expression level and the expected prognosis
results, that is, the high expression of oncogenes (GINS2
and EBNA1BP2: upregulated, HR > 1) predicted the worse
OS, while the high expression of tumor suppressor genes
(MAGI2-AS3 and DLG5-AS1: downregulated, HR < 1) pre-
dicted the better OS. These findings indicated these four
genes may be especially crucial therapeutic targets for PCa.
Although rare studies identified lncRNA MAGI2-AS3 as a
prognostic biomarker for PCa, the reports of other cancers
can indirectly explain their roles. For example, Liu et al.
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Figure 6: The prediction performance assessment of the prognostic signature. (a) The Kaplan–Meier survival curve analysis of TCGA dataset.
(b) The receiver operator characteristic (ROC) curve analysis of TCGA dataset. (c) The Kaplan–Meier survival curve analysis of the GSE16560
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Figure 7: The superiority of the molecular prognostic signature to clinical indicators. (a) Stratification analysis for the Gleason score. (b)
Stratification analysis for the level of prostate-specific antigen (PSA). (c) Time-dependent ROC curve analysis constructed according to
various models. HR: hazard ratio; AUC: area under the receiver operator characteristic curve.
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observed that MAGI2-AS3 was downregulated in breast can-
cer tissues compared to normal adjacent tissues [27]. Overex-
pression of MAGI2-AS3 suppressed the proliferative,

migratory, and invasive capability, while promoted the apo-
ptosis of lung squamous cell carcinoma [28], bladder cancer
[29], breast cancer [27, 30], and hepatocellular carcinoma
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Figure 8: Function analysis for the prognostic genes. (a) A coexpression network between three prognostic lncRNAs and module
differentially expressed mRNAs. Triangle, upregulated; inverted triangle, downregulated. The different colors corresponded to the module
color. The larger nodes were the signature RNAs. (b) The DAVID enrichment analysis. GO: Gene Ontology.
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cells [31]. Downregulated MAGI2-AS3 was significantly
associated with tumor size, lymph node metastasis, TNM
stage, and poor OS [29, 31, 32]. Most of the studies revealed
MAGI2-AS3 may function in cancers as a competing endog-
enous RNA for miRNAs (such as miR-374a/b-5p [28, 31],
miRNA-23a-3p [33], and miR-15b-5p [29]) to regulate their
target genes (such as CADM2 [28], SMG1 [31], PTEN [33],
and CCDC19 [29]), while few indicated MAGI2-AS3 may
directly interact with target gene KDM1A [34]. However,
the mechanism of MAGI2-AS3 remained unclear. In this
study, we predicted that downregulated MAGI2-AS3 may
be involved in PCa by leading to the low expression of

inflammation (SPARC) or calcium signaling pathway related
genes (GJA1 and CYSLTR1). This hypothesis may be believ-
able because these target genes have been implicated to be
associated with PCa or other cancers. SPARC expression
was found to be decreased in PCa cell lines, the mechanism
of which may be attributed to the hypermethylation of its
promoter. Also, hypermethylation level was shown to be cor-
related with a poor prognosis [35]. PCa cells treated with
exogenous SPARC exhibited significantly decreased prolifer-
ative and migratory abilities [36]. GJA1 (also known as con-
nexin 43) expression was measured to be significantly
reduced in tumor tissues compared to that of benign

Table 4: Function enrichment analysis.

Category Term Count
p

value
Genes

GO_BP
GO:0007204~positive regulation of cytosolic

calcium ion concentration
8

4.15E-
04

PTGER1, PTGER2, CYSLTR1, GALR2, GJA1,
CD52, FPR3, and CXCR3

GO_BP GO:0010818~T cell chemotaxis 3
2.71E-
03

GPR183, CXCR3, and CXCL10

GO_BP
GO:0016525~negative regulation of

angiogenesis
5

3.51E-
03

SERPINF1, FASLG, CXCR3, SPARC, and CXCL10

GO_BP GO:0032496~response to lipopolysaccharide 7
6.37E-
03

PTGER1, PTGER2, KCNJ8, ELANE, FASLG,
SPARC, and CXCL10

GO_BP GO:0006935~chemotaxis 6
7.84E-
03

RARRES2, CYSLTR1, CXCR3, CCL5, DEFB1, and CXCL10

GO_BP GO:0006954~inflammatory response 10
1.47E-
02

TUSC2, PTGER1, PTGER2, RARRES2, NMI, FPR3, CXCR3,
CCL5, CXCL10, and AOC3

GO_BP
GO:0039702~viral budding via host ESCRT

complex
3

2.04E-
02

CHMP2A, VPS37B, and VPS37D

GO_BP GO:0016197~endosomal transport 4
2.89E-
02

CHMP2A, VPS37B, VPS37D, and RAB13

GO_BP
GO:0001937~negative regulation of endothelial

cell proliferation
3

3.42E-
02

GJA1, CXCR3, and SPARC

GO_BP
GO:0060333~interferon-gamma-mediated

signaling pathway
4

3.48E-
02

NMI, HLA-DPB1, HLA-E, and GBP1

GO_BP GO:0019058~viral life cycle 3
3.87E-
02

CHMP2A, VPS37B, and VPS37D

GO_BP GO:0036258~multivesicular body assembly 3
3.87E-
02

CHMP2A, VPS37B, and VPS37D

GO_BP GO:0015031~protein transport 9
4.67E-
02

CHMP2A, COPZ2, DNAJC15, GOLT1A, EIF5AL1, KIF18A,
VPS37B, VPS37D, and NACA2

GO_BP
GO:0000727~double-strand break repair via

break-induced replication
2

4.93E-
02

GINS2, CDC45

KEGG
hsa04080:Neuroactive ligand-receptor

interaction
7

1.10E-
02

PTGER1, PTGER2, GLRB, CYSLTR1, ADORA2B, GALR2,
and FPR3

KEGG hsa04110:Cell cycle 4
2.16E-
02

E2F2, CDC45, TTK, and ORC6

KEGG hsa04623:Cytosolic DNA-sensing pathway 3
2.21E-
02

POLR2L, CCL5, and CXCL10

KEGG hsa00190:Oxidative phosphorylation 2.51
1.10E-
02

UQCRC1, COX7A1, NDUFB7, and NDUFB9

KEGG
hsa04060:Cytokine-cytokine receptor

interaction
5

3.86E-
02

OSM, FASLG, CXCR3, CCL5, and CXCL10

KEGG hsa04020:Calcium signaling pathway 4
4.43E-
02

PTGER1, CYSLTR1, ADORA2B, and CACNA1H

GO: Gene Ontology; BP: biological process; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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prostatic hyperplasia. Reduced GJA1 expression was associ-
ated with high levels of preoperative PSA, high Gleason score,
and advanced pT stage and was an independent predictor for
shortened postoperative BCR-free survival [37]. Forced expres-
sion of GJA1 induced apoptosis of PCa cells by downregulation
of Bcl-2 expression and upregulation of caspase-3 activity [38].
By immunohistochemistry (IHC) and quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) analyses,
Venerito et al. found CYSLTR1 expression was decreased by
0.26-fold in esophageal squamous cell cancer tissues compared
to control mucosa [39]. Also, the roles of GINS2 and
EBNA1BP2 in PCa could be reflected by their associations with
other cancers. GINS2 was shown to be upregulated in the cer-
vical cancer cell lines and tumor specimens compared to the
normal control. Patients with higher GINS2 expression had
shorter OS than those with lower GINS2 expression [40].
Downregulation of GINS2 markedly inhibited cell prolifera-
tion, migration, and invasion [40] and increased the apoptosis
rate [41]. Total saponins from Paris forrestii (Takht) H. Li.
exhibited an anticancer effect on PCa cells by downregulating
GINS2 [42]. Both protein and mRNA levels of EBNA1BP2
were reported to be upregulated in lung cancer samples.
EBNA1BP2 may promote cancer cell proliferation by blocking
the degradation of oncogene c-Myc [43]. lncRNA DLG5-AS1
may be a newly identified biomarker and therapeutic target
for cancer because there was no evidence to show its associa-
tion with cancer. In this study, we predicted downregulated
DLG5-AS1 may exert roles in PCa by decreasing the transcrip-
tion of DEFB1. This theory may be credible because DEFB1
had been found to be significantly downregulated in PCa tis-
sues and three cell lines [44, 45]. The low expression of DEFB1
in PCa may be mediated by the hypermethylation of the 14
CpG dinucleotide units in its 5′-end promoter region [44].
High expression of DEFB1was reported to correlate with better
prognosis in patients with renal cell carcinoma [46].

The inconsistency between the expression level and the
expected prognosis in the other five genes (RHPN1-AS1,
MELK, EIF5AL1, and G6PC3: upregulated, but HR < 1;
NLGN2: downregulated, but HR > 1) may be attributed to a
protective response mechanism in order to resist the develop-
ment of cancer. This speculation can be verified based on the
function studies of these genes. Knockdown of RHPN1-AS1
was shown to result in the development of gefitinib resistance
in non-small cell lung cancer cells, whereas the overexpression
of RHPN1-AS1 sensitized gefitinib resistant NSCLC cells to
gefitinib treatment. Decreased expression of RHPN1-AS1
was associated with poor prognosis of non-small cell lung can-
cer patients [47]. Furthermore, we also predicted RHPN1-AS1
can positively coexpress with CDC45 and ORC. Patients with
low expression of CDC45 and ORC6 were also demonstrated
to have significantly worse relapse-free survival and OS [48].
Mass spectrometry identified G6PC3 was a downstream target
of Coronin 3. High expressed Coronin 3 was reported to pro-
mote the progression of hepatocellular carcinoma cells by
inhibiting the expression of G6PC3 [50]. The roles of other
genes needed further investigation in the future.

Some limitations of our study should be acknowledged.
First, this is a study to validate the prognostic value of our
identified molecular signature using the retrospective data

from the public-available dataset. Prospective clinical trials
should be designed to further confirm its prediction ability.
Second, wet experiments (IHC, qRT-PCR, overexpression,
or knockdown) should be performed to elucidate the expres-
sion and roles of the signature genes in PCa because most of
them were not reported previously and some were even con-
tradictory. Third, the coexpression relationship between
lncRNAs and mRNAs should be explored by chromatin
immunoprecipitation, RNA immunoprecipitation, and
biotin-labeled RNA pull-down assays [49].

5. Conclusion

Using the WGCNA and LASSO methods, we developed a
nine-RNA (including 3 lncRNAs and 6 mRNAs) prognostic
signature for PCa patients. This risk score could indepen-
dently predict the OS and further discriminate the prognostic
outcomes for patients with the Gleason score (8-10) and the
high level of PSA (above median). Besides, our study may
provide new therapeutic targets for PCa patients and the
underlying mechanisms for them (MAGI2-AS3-SPARC/G-
JA1/CYSLTR1, DLG5-AS1-DEFB1, and RHPN1-AS1-
CDC45/ORC).
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