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Abstract10

Ribosomes are information-processing macromolecular machines that integrate complex se-11

quence patterns in messenger RNA (mRNA) transcripts to synthesize proteins. Studies of the se-12

quence features that distinguish mRNAs from long noncoding RNAs (lncRNAs) may yield insight13

into the information that directs and regulates translation. Computational methods for calculating14

protein-coding potential are important for distinguishing mRNAs from lncRNAs during genome an-15

notation, but most machine learning methods for this task rely on previously known rules to define16

features. Sequence-to-sequence (seq2seq) models, particularly ones using transformer networks,17

have proven capable of learning complex grammatical relationships between words to perform nat-18

ural language translation. Seeking to leverage these advancements in the biological domain, we19

present a seq2seq formulation for predicting protein-coding potential with deep neural networks20

and demonstrate that simultaneously learning translation from RNA to protein improves classifi-21

cation performance relative to a classification-only training objective. Inspired by classical signal22

processing methods for gene discovery and Fourier-based image-processing neural networks, we23
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introduce LocalFilterNet (LFNet). LFNet is a network architecture with an inductive bias for model-24

ing the three-nucleotide periodicity apparent in coding sequences. We incorporate LFNet within an25

encoder-decoder framework to test whether the translation task improves the classification of tran-26

scripts and the interpretation of their sequence features. We use the resulting model to compute27

nucleotide-resolution importance scores, revealing sequence patterns that could assist the cellular28

machinery in distinguishing mRNAs and lncRNAs. Finally, we develop a novel approach for es-29

timating mutation effects from Integrated Gradients, a backpropagation-based feature attribution,30

and characterize the difficulty of efficient approximations in this setting.31

Keywords: Protein-Coding Potential, Long Noncoding RNAs, Post-Transcriptional regulation, Inter-32

pretable Deep Learning, Token Mixing Neural Networks, Fourier Transform33

1 Introduction34

The flow of genetic information from DNA to RNA to protein is a fundamental life process in which mes-35

senger RNAs (mRNAs) act as the information-carrying intermediaries. High-throughput sequencing36

has revealed the abundance of another class of RNA called long noncoding RNAs (lncRNAs), which37

share important biochemical features such as 5’ capping and polyadenylation with protein-coding mR-38

NAs (Iyer et al. 2015). Long noncoding RNAs are differentiated from smaller noncoding RNAs like39

tRNAs and microRNAs based on their greater length of at least 200 nucleotide (nt), and from mRNAs40

based on limited evidence of lncRNA protein expression and sequence conservation (Derrien et al.41

2012). LncRNAs make up more than 68% of the human transcriptome and play important regula-42

tory roles, particularly during development (Statello et al. 2021; Ransohoff et al. 2018). They are43

implicated in numerous diseases including cancer and cardiovascular disease (Sallam et al. 2018).44

The protein-coding potential of many transcripts is unresolved, and many transcripts previously45

or currently annotated as lncRNAs are mislabeled and in fact possess small open reading frames46

(sORFs) that encode micropeptides (Choi et al. 2019). Ribosome profiling (Ribo-Seq) shows that ri-47

bosomes bind readily to lncRNAs (Ingolia, Lareau, et al. 2011), though the ribosome does not interact48

with lncRNA ORFs in the same way as mRNAs, lacking a distinctive drop-off of Ribo-Seq coverage49

at ORF end (Guttman et al. 2013). Ribo-Seq protocols accounting for the 3-nt periodicity of ribosome50
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footprint density (Guo et al. 2010) have identified some genuine sORF translation (Ingolia, Brar, et al.51

2014; Ji et al. 2015). Only a small fraction of the possible set of micropeptides encoded by transcripts52

currently annotated as lncRNAs have been directly detected via mass spectrometry, leaving the vast53

majority as presumptively nonfunctional or rapidly degraded (Housman and Ulitsky 2016; Bánfai et al.54

2012; Verheggen et al. 2017). Still, hundreds of lncRNAs have been confirmed to be misannotated,55

and these transcripts do encode micropeptides, for example, myoregulin, a 46-aa. regulator of Ca2+
56

activity that contributes to muscle cell performance (Anderson et al. 2015). Micropeptides are also57

involved in metabolism, red blood cell development, cardiomyocyte hypertrophy (Yan et al. 2021), in-58

flammation, tumorigenesis and tumor suppression (Othoum et al. 2020; Wu et al. 2020), and more59

(Hartford and Lal 2020).60

Such uncertainty as to the intrinsic protein-coding potential of ORFs raises the question of how61

cells distinguish true coding regions, with the translational machinery likely to play a critical role.62

Recent results suggest that general sequence features governing the kinetics of protein synthesis63

also separate mRNA and untranslated lncRNA ORFs more broadly (Patraquim et al. 2022). The64

Kozak consensus sequence is well-characterized as the optimal context for translation initiation, and65

ribosomes can skip unfavorable AUGs through leaky scanning (Kozak 1987; Kozak 2002). Initiation66

can be affected by cis-regulatory features such as 5’ UTR secondary structure (JJ Li et al. 2019) and67

upstream ORFs (Johnstone et al. 2016), and by trans-acting factors such as microRNAs (Guo et al.68

2010) and RNA-binding proteins (Szostak and Gebauer 2013). Codon usage biases in the 5’-most69

region of the CDS are particularly known to affect the elongation rate during protein synthesis (Tuller70

et al. 2010; Verma et al. 2019; Subramanian et al. 2021).71

Distinguishing between mRNAs and lncRNAs is an important step in annotating newly sequenced72

genomes, and a variety of statistical and computational methods have been developed for this task.73

Codon Adaptive Index (CAI) (Sharp and WH Li 1987) discriminates coding nucleic acids according to74

biases in the synonymous codons that code for each amino acid and Fickett scores (Fickett 1982) by75

the nucleotides present in the three codon positions. Early computational approaches used Fourier or76

wavelet analysis to identify coding sequences (CDS) from their characteristic periodicity of nucleotide77

identity induced by codon usage bias (Tiwari et al. 1997; Anastassiou 2000; Deng et al. 2010; Has-78

sani Saadi et al. 2017). Machine learning methods have been designed around features such as the79
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absolute length of ORFs, ORF length relative to the transcript, codon and hexamer frequencies in-80

cluding Coding Potential Assessment Tool (CPAT) (Wang et al. 2013) and coding potential calculator81

(Kong et al. 2007), and others (A Li et al. 2014; Wucher et al. 2017).82

Although many prior machine learning methods achieve high classification performance, they typ-83

ically rely on transcript-level summary features. Deep learning approaches can operate directly on84

sequences without such intermediate features and have proven effective in predicting properties of85

biological sequences, including a wide variety of functional genomics assays (Avsec, Agarwal, et al.86

2021; Tareen et al. 2022), RNA splicing (Zeng and YI Li 2022) and degradation (Agarwal and Kelley87

2022), and protein structure (Jumper et al. 2021). A recent method called RNAsamba uses a con-88

volutional neural network variant to achieve high performance from both nucleotide and amino acid89

sequence, but also relies on pre-defined features such as the longest ORF (Camargo et al. 2020). A90

critical limitation in the development of intelligent systems for classifying transcripts as protein-coding91

vs noncoding is the bias of using the translation and length of the longest ORF in machine learning92

approaches. Our group previously developed mRNN, the first recurrent neural network classifier of93

coding RNA from primary sequences alone (Hill et al. 2018). There is a need for more flexible neural94

networks capable of learning sequence-specific rules that promote translation to better understand95

what drives translational efficiency. The advantage of these approaches is that they do not require96

feature engineering, and are capable of learning new biological rules that are encapsulated in the97

weights of the neural network. Interpretation of these deep neural networks can lead to the identifi-98

cation of new sequence features that are informative for the evaluation of biological sequences and99

understanding the regulation of translation. Interpreting deep models is challenging, but a significant100

literature in explainable artificial intelligence (xAI) has arisen in regulatory genomics, with notable101

successes in uncovering transcription factor binding logic (Avsec, Weilert, et al. 2021; Novakovsky102

et al. 2022). Interpretation of similar deep models of protein coding potential could help identify new103

sequence features regulating translation.104

In this paper, we describe bioseq2seq, a novel neural network model of biological translation105

based on the sequence-to-sequence (seq2seq) paradigm commonly used for machine translation of106

human languages. Although the genetic code follows a well-understood mapping between nucleic107

acid codons and amino acids, we demonstrate that learning to predict the protein sequence from108
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the sequence of its message improves neural network performance in distinguishing mRNAs from109

lncRNAs. Adapting recent advances in token mixing neural architectures, we introduce Local Filter110

Network (LFNet), a computationally efficient network layer based on the short-time Fourier transform.111

We leverage perturbation-based feature importance values to extract sequence patterns which impact112

the model prediction and generate hypotheses about the regulatory elements that could differentiate113

coding RNA in vivo. Lastly, we offer evidence that while our LFNet-based bioseq2seq model robustly114

uncovers biological rules to learn protein-coding potential, it presents challenges for approximate inter-115

pretation techniques in deep learning. We address these challenges by introducing mutation-directed116

integrated gradients (MDIG), which we show has a strong correlation with synonymous sequence117

perturbations, and can be used to identify regions in transcripts that are important for defining protein-118

coding potential.119

2 Results120

2.1 Translation training objective improves classification performance121

We downloaded lncRNA primary sequences and mRNAs matched with their encoded proteins from122

the NCBI RefSeq annotations of eight mammalian species. Following the encoder-decoder frame-123

work widely used in sequence-to-sequence learning, we trained two major types of deep learning124

models on this dataset. The primary is bioseq2seq, which outputs a class prediction of 〈NC〉 for125

lncRNAs or 〈PC〉 followed by a predicted protein sequence for coding mRNAs. To test the benefits of126

a translation-based learning objective, we trained a secondary encoder-decoder model type to predict127

only the RNA class and not its translation, which we called Encoder Decoder Classifier (EDC). The128

common architectural framework enables a fair comparison between these two training settings. We129

designed a novel neural network layer, LFNet, to efficiently apply a short-time (local) Fourier transform130

to the high-dimensional vectors representing each input nucleotide and perform sequential updates131

via frequency-domain filtering. Several LFNet layers were composed into an encoder stack to pro-132

cess the RNA. A stack of transformer decoders operates on the encoder hidden representations to133

produce an output, autoregressively consuming its own predictions to produce the next character, as134

necessary (Vaswani et al. 2017). Within this general framework, summarized in Fig 1, we optimized135
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Figure 1. Overview of problem setting and computational method. (A) Summary of messenger RNA functional regions
and known elements regulating translation. See (Gebauer and Hentze 2004) for a review of known regulatory elements.
(B) Neural network sequence-to-sequence architecture. We designed LFNet (left) to apply a learned filter matrix W to a
1D short-time Fourier transform (spectrogram) of the hidden representations, enabling frequency-domain filtering of the
3-base periodicity present in coding sequences. We trained this architecture for two problem settings: in Encoder-Decoder
Classifier (EDC), the expected output is a classification token, for bioseq2seq, the protein translation is also predicted.

several hyperparameters, including hidden dimension and number of encoder and decoder layers, for136

bioseq2seq and EDC separately (Supplementary Table 1). Bioseq2seq performance was optimized137

with 12 LFNet encoder and 2 transformer decoder layers, while EDC selected 16 of each for a sub-138

stantially larger model. After optimizing the hyperparameters for bioseq2seq and EDC, we trained four139

model replicates of each from different random initializations. We also trained replicates for the EDC140

task using the optimal hyperparameters for bioseq2seq, referring to this as EDC-small, in contrast141

to the optimized EDC, which we refer to as EDC-large. We report the classification accuracy on a142

withheld test set for our two model types in Table 1. In the case of bioseq2seq, which produces a143
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Model Accuracy F1 Recall Precision MCC

EDC (small) 0.885 ± 0.017 0.896 ± 0.014 0.913 ± 0.011 0.880 ± 0.024 0.769 ± 0.034
EDC (large) 0.922 ± 0.004 0.927 ± 0.003 0.910 ± 0.011 0.945 ± 0.014 0.845 ± 0.009
bioseq2seq 0.950 ± 0.006 0.954 ± 0.005 0.953 ± 0.012 0.955 ± 0.017 0.900 ± 0.011
RNAsamba 0.957 ± 0.002 0.960 ± 0.002 0.949 ± 0.004 0.970 ± 0.002 0.913 ± 0.004

CPAT 0.939 0.944 0.947 0.940 0.876
CPC2 0.911 0.912 0.856 0.976 0.830

Table 1. Classification Performance. Bioseq2seq was compared with an EDC model whose hyperparameters were tuned
independently (large) and an EDC model with identical hyperparameters to bioseq2seq (small). Several top-performing
machine learning models were evaluated on our dataset for comparison. For our models, predictions were made using the
leading ’classification’ token 〈PC〉 or 〈NC〉 of the first beam, terminating inference before the peptide prediction. For our
models and RNAsamba, multiple replicates were trained with different random seeds. Evaluation metrics were calculated
with 〈PC〉 as the positive class and listed as mean ± std. dev. where multiple replicates are available.

variable-length peptide decoding at inference time, decoding was halted after the leading classifica-144

tion token was predicted. The bioseq2seq replicate with the best performance on F1 score achieved a145

score of 0.958, while the worst-performing on this metric scored 0.947. We compared our models with146

five replicates of RNAsamba trained on our dataset, as well as CPC2 and CPAT, two machine-learning147

methods based on engineered features. The best model for bioseq2seq exceeds the performance of148

CPC2 and CPAT and is competitive with RNAsamba (0.956-0.961 F1) without explicit inclusion of149

any auxiliary features such as ORF k-mers, although RNAsamba appears slightly better according to150

all evaluation metrics except recall. EDC-large ranged in performance between 0.924-0.932 in F1.151

EDC-small was clearly the worst of all models and so from this point we will only consider EDC-large152

and refer to it simply as EDC. The markedly better performance of bioseq2seq in comparison to its153

classification-only analogues makes it clear that the translation task improves the performance of an154

LFNet model on the binary classification task.155

As bioseq2seq is capable of performing translation on top of classification, we also report the156

percentage identity between the ground truth protein and the translation produced by bioseq2seq157

using the Needleman-Wunsch global alignment. A large majority, 82.4 %, are exact matches with the158

ground truth. Notably, when bioseq2seq was allowed to predict a full-length protein rather than halted159

after the classification token as in the results from the previous section, the classification performance160

of the best model deteriorated slightly to 0.940 F1. This suggests a slight trade-off at inference time161

between an accurate peptide decoding and the classification task, though the bioseq2seq training162

strategy as a whole clearly improves classification performance relative to EDC.163
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A

B

Figure 2. Analysis of translation products predicted by best bioseq2seq replicate. (A) Global alignment identity between
the top-beam protein decoding predicted by bioseq2seq for true positive mRNAs and the ground truth protein (left), and
length distribution of perfect translations (right). Black dashed line indicates the complete distribution of protein lengths. (B)
Highest global identity found from all-by-all alignment of the three-frame translation of a lncRNA with its lower-beam 〈PC〉+
peptide predictions from bioseq2seq (left) and length distribution of perfectly translated sORFs (right). Black dashed line
indicates the length distribution of hypothetical translations of the longest ORF found in each lncRNA and orange dashed
line denotes the same for the most 5’ ORF.

2.2 Alternate decodings of lncRNAs harbor plausible micropeptides164

The bioseq2seq formulation can produce and rank multiple candidate decodings for a given RNA us-165

ing beam search. For sequences annotated as lncRNAs and correctly classified by bioseq2seq, the166

lower beams (second highest scoring and on) will with high probability begin with 〈PC〉. We investi-167

gated the predicted peptides for insights into the potential translation of lncRNAs. First we confirmed168

that the peptides matched a true ORF within the lncRNA by using the EMBOSS package to find the169

top Needleman-Wunsch alignment score between the three-frame translation and all generated pep-170

tides from a beam size of four (Rice et al. 2000). In 59.7 % of cases, the best match was a perfect171

alignment, meaning that most peptide decodings were translations of ORFs actually present in the172

lncRNA.173

We applied bioseq2seq to a set of transcripts previously or currently annotated as lncRNAs but174

considered by the database lncPEP to have been validated by supporting literature to express a mi-175

cropeptide (Liu et al. 2022). Starting from the lncPEP "validated" set, we implemented a number of176
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quality control measures, removing redundant transcripts, linking the transcript names listed on the177

lncPEP website with RefSeq accession numbers via the underlying primary literature and the NCBI178

search function. This yielded twenty-two putative micropeptide-encoding transcripts (provided as Sup-179

plementary Table 3), of which nine were found in our training set. The best model for RNAsamba pre-180

dicted 3 of the remaining 13 to be protein coding. Using bioseq2seq, 3 were also predicted as coding181

when terminating inference after the classification token, and 4 when running peptide decoding to182

completion.183

We aligned all beams from bioseq2seq with the lncPEP micropeptides and found that in most184

cases the model also successfully identified the correct ORF to translate, with 3 of 4 predicted coding185

transcripts having alignment identity ≥ 90%. If lower beams are considered, 8 have identity ≥ 90%,186

including a very short 17-aa peptide. The examples found in our training set are of potential interest187

as well because in several cases the class label that we trained on contradicts the prediction that188

bioseq2seq makes. For example, LINC00266-1 with NCBI accession NR_040415.1 is currently an-189

notated as a lncRNA but was found in (Zhu et al. 2020) to express a 71-amino acid oncopeptide.190

Bioseq2seq perfectly predicts the peptide in its highest beam – a false positive according to the class191

label in the training data. Examples like this and NR_033874.1 highlight the generalizability of the192

rules learned by bioseq2seq and RNAsamba, even when presented with false annotations. One ex-193

ample, NM_001384235.1 in the training set underscores a crucial distinction between bioseq2seq and194

prior methods like RNAsamba. In these transcripts, the micropeptide is not coded for by the longest195

ORF. RNAsamba only explicitly considers the longest ORF in each transcript and may fail to identify196

alternate sources of coding potential, as it does here. The translation product for AW112010.1 in the197

test set comes from an instance of non-AUG initiation (Jackson et al. 2018), and while our method198

cannot perfectly predict the protein product in such cases we successfully identify it as a coding tran-199

script and predict a partial match from the canonical portion of the CDS.200

2.3 Local Filter Networks emphasize 3-nt periodicity201

The core feature of each LFNet layer is its learned frequency-domain filters. We visualized the filter202

weight matrices to investigate the frequency response of the model to signals in the intermediate203

vector representations, including separate plots for their magnitude |z| and phase θ for the complex204
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Accession RNA Pep. longest RNAsamba bioseq2seq Beam
len len ORF? correct? correct? match

NR_033874.1 810 130 3 3 3 1
NM_001315494.2 828 84 3 3 3 1
NR_040415.1 723 71 3 3 3 1
NM_001384134.1 427 56 3 3 3 1
NM_001384235.1 608 47 7 7 3 1
NM_001352129.2 783 35 7 7 7 2
NR_033201.2 611 53 3 7 7 3
NM_001304732.2 857 46 7 7 7 3
NR_046502.1 537 21 7 7 7 7

NR_003634.2 941 262 3 3 3 1
AW112010.1 536 82 7 7 3 1
BC030870.1 1216 71 3 7 3 1
KY559104.2 2536 144 3 3 7 2
NM_001348129.2 2344 68 3 7 7 2
NM_001348107.3 1605 90 7 7 7 3
NR_015417.1 2273 60 7 7 7 3
NR_001458.3 1500 17 7 7 7 3
NR_033243.1 2843 117 7 3 3 7

BK010446.1 1084 87 3 7 7 7

NM_001352687.2 1099 59 7 7 7 7

NR_038278.1 1749 52 7 7 7 7

NR_024394.1 4082 50 7 7 7 7

Table 2. Results on twenty-two validated micropeptides. Samples above the horizontal bar were in our training set and
those below were not. A bioseq2seq prediction was counted as correct if it began with 〈PC〉, regardless of the official class
label. The matching beam indicates the first beam peptide decoding from bioseq2seq achieving ≥ 90% alignment with the
annotated micropeptide, if one exists.

weights z = |z|eiθ. The resulting images for all layers in both bioseq2seq and EDC are given in Figure205

3. Visually, the most prominent signal in both model types is a band at a frequency bin equivalent206

to a period of 3 nt. This illustrates that most layers and hidden dimension across the LFNet stack207

learned to emphasize the 3-base periodicity of coding regions. Notably, every layer of EDC (panel208

B) shows a more clear dependence on the 3-nt property than bioseq2seq (panel A), with every layer209

having a clean visual band of low magnitudes along this frequency range. In contrast, lower layers of210

bioseq2seq do not appear to emphasize this feature. However, bioseq2seq has phase values close211

to zero along the 3nt band (panel C), while the phase activity of EDC is somewhat more random212

(panel D). We observed in Supplementary Fig S1 that for bioseq2seq, the periods other than 3-nt213

are associated with phases peaked around −π and π, which correspond to phase components of the214
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weights being eiθ = −1, such that the output of the LFNet layer would negate the residual when they215

are added. While the bioseq2seq LFNet weights shift toward the positive real-axis in the higher layers216

for three-nucleotide signals, they shift toward the negative real axis for other periods. This trend is217

found clearly in bioseq2seq, and less so EDC, where the weights are smaller and more centered at218

zero (Supplementary Fig S2). Furthermore, while weights corresponding to three-nucleotide signals219

are mostly zero for EDC, creating a band in Fig 3, the weaker band for bioseq2seq is explained by220

many positive weights in bioseq2seq at this band, which would amplify three nucleotide signals. We221

hypothesize that the inductive bias of LFNet facilitates a reliance on the 3-base property, and the222

translation task leads to the amplification of specific 3-base signals.223

Three-base periodicity is also apparent in our models’ encoder-decoder attention (EDA) distribu-224

tions, which are probability weightings for encoder hidden embeddings in the context of each decoder225

layer. We aligned each encoder-decoder attention distribution for every transcript relative to its start226

codon and averaged to create nucleotide-resolution consensus attention metagenes. For lncRNAs,227

we investigated the longest ORF to define metagenes and to compare and contrast mRNAs and lncR-228

NAs in the rest of this manuscript. We considered the two classes separately and discarded relative229

positions not present in at least 70% of the data, leaving relative position indices of (-25,+715) for mR-230

NAs and (-131,+274) for lncRNAs. Depicted in Fig 3 are metagenes for a particular EDA head in the231

lower decoder layer of bioseq2seq that responds very differently to mRNAs (panel E) and lncRNAs232

(panel F), attending highly to the AUG/longest ORF in both classes but losing periodicity in lncRNAs.233

Sharp differences in attention such as this likely implement aspects of the model’s classification logic.234

We present more detailed analysis of EDA metagenes in Supplementary Fig S3.235

2.4 Translation task improves reproducibility and biological plausibility of variant ef-236

fect predictions237

We evaluated all of our model replicates on every possible single-nucleotide variant of transcripts from238

a subset of our test data, consisting of 220 verified mRNAs and 220 verified lncRNAS. This technique,239

known as saturated in silico mutagenesis (ISM), is commonly used to computationally predict variant240

effects and can provide insight into input features that machine learning models recognize as impor-241

tant to their predictive task (Zhou and Troyanskaya 2015; Koo et al. 2021; Tareen et al. 2022). We242
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EDCbioseq2seq

C

A

E

B

D

F

Figure 3. Frequency-domain content in model representations. LFNet filters from selected layers, with complex filter weights
visualized in terms of magnitude ( bioseq2seq in panel A, EDC in B ) and phase (bioseq2seq in C, EDC in D). For each
layer heatmap, the x-axis represents the hidden embedding dimension, and the y-axis refers to a discrete frequency bin,
with annotations for the equivalent nucleotide periodicity. Both model types learned weights with a pronounced structure
around 3-nt periodicity, visible mostly clearly in the phase for bioseq2seq and in the magnitude for EDC. (E) A nucleotide-
resolution metagene consisting of average encoder-decoder attention scores from mRNAs aligned relative to their start
codons. Attention distributions for this plot were taken from head 6 of the lower bioseq2seq decoder layer, which primarily
attends to the start codon and places attention downstream of the start in a periodic fashion. (F) The equivalent plot for
the same attention head applied to lncRNAs aligned relative to the start of the longest ORF, illustrating the loss of attention
rhythmicity downstream of the leading spike.
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calculated ISM using the function ∆S(x, x′) = log( P (x′=〈PC〉)
P (x′=〈NC〉))− log( P (x=〈PC〉)

P (x=〈NC〉)), where x and x′ are243

RNAs, with x′ being a single-nucleotide variant of x. We calculated the Pearson correlation between244

the ISM scores predicted by two different replicates for a given transcript, making pairwise compar-245

isons between all replicates. We also computed the cosine similarity between the character-level246

(A,G,C,U) vectors of mutation scores at each transcript position, using the median of this quantity as247

an transcript-level summary metric that does not consider the scaling of mutation scores at different248

positions. Both metrics were averaged across comparisons to produce a single value for each tran-249

script, with the resulting distributions depicted in Fig 4-B. The inter-replicate agreement of bioseq2seq250

is much higher than that of EDC in terms of Pearson correlation (median of r= 0.813 vs. median of251

r= 0.560). The relaxed metric of median position-specific cosine similarity shows a minimal difference252

between bioseq2seq and EDC, which suggests that the gap in reproducibility between the model253

types is largely due to bioseq2seq’s more stable ranking of positional importance.254

We next probed the ISM scores for changes disrupting essential mRNA features. We investigated255

the changes in score due to substantial sequence perturbations of each test mRNA by shuffling var-256

ious functional regions. Specifically, we shuffled every 5’ UTR longer than 25 nt in the verified test257

set, using both an unrestricted shuffle and one preserving dinucleotide frequencies, and likewise for258

3’ UTRs separately. We produced another set of variants by shuffling all codons besides the start259

and stop codon within CDS regions. This has the effect of preserving the original CDS length while260

likely disrupting 3-nt periodicity and leading to atypical orderings of nucleotides and amino acids. We261

calculated ∆S for each shuffled variant relative to its wild-type and found that UTR shuffling had min-262

imal impact on on the predictions of either bioseq2seq or EDC (Fig 4-C). However, EDC is somewhat263

more reliant on the endogenous trinucleotide patterns of wildtype CDS regions than bioseq2seq, as264

indicated by the stronger negative ∆S after shuffling internal codons of CDS sequences. In contrast,265

mutations to the annotated start codon tended to produce large negative ∆S scores in bioseq2seq266

but not in EDC (Fig 4-D). Similarly, bioseq2seq responded negatively to mutations that introduced a267

stop within the first 50 codons. These observations suggest that while both models detect periodic268

sequence features, bioseq2seq has learned contextual sequence features, including start and stop269

codons, that more comprehensively align with our understanding of translation.270
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B

C D

A

Figure 4. Predicted mutation effects by model type on a subset of testing data. (A) Metagene plots of saturated in silico
mutagenesis (ISM) ∆S scores, i.e. the difference in log(P (〈PC〉)/P (〈NC〉)) between single-nucleotide variants and their
wild-type sequence. The absolute value of ∆S was averaged within each of 25 positional bins and across all three possible
mutations in each position, with mRNAs and lncRNAs depicted separately for both bioseq2seq (left) and EDC (right).
Vertical dashed lines denote the first and last bin of the CDS for mRNAs and the longest ORF for lncRNAs. Metagenes
from all four replicates are shown, with the best-performing model colored using the darkest hue. (B) Per-transcript average
of Pearson correlation (left) and median position-specific cosine similarity (right) of ISM scores from pairwise comparison
of model replicates. (C) Changes in score relative to wildtype for mRNAs shuffled within each functional region. UTRs
were shuffled to preserve mononucleotide or dinucleotide frequencies. Codon shuffling excluded the start and stop codons
to preserve CDS length. (D) Changes in score for mRNAs from nucleotide substitutions that knock out a start codon or
introduce a stop codon within the first 50 codons of the CDS. Note: panels C and D follow the legend from panel B.
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2.5 In silico mutagenesis reveals features predictive of coding potential271

In light of the gap in biological robustness between our two model types, we investigated the response272

of bioseq2seq to sequence perturbations, using its best replicate to obtain ISM predictions for the273

remainder of the test set. We aggregated ISM scores for all synonymous point mutations inside274

of mRNA CDS regions into fine-grained metagenes for each amino acid, computing the mean ∆S275

along each of 25 positional bins. Selected amino acids are highlighted in Fig 5-A and all twenty276

are depicted in Supplementary Fig S4. As expected for a highly contextual model, there are large277

deviations away from the mean. On average however, the amino acids with only two codons all learn a278

preference for a single codon across the length of the whole transcript, with correspondingly negative279

scores for the opposite mutation. The amino acids with more than two-fold degeneracy are more280

complex to interpret but the sign for the mean mutation effect tends not to change with position. When281

considering all synonymous mutations, the model appears to have learned a preference for particular282

nucleotides in the codon positions. For example, most codons ending in C having a positive effect283

on ∆S on average, and most ending in T having a negative effect (Fig 5-B). Bioseq2seq’s estimates284

of synonymous mutation effects also captured some of the variation from an external measure of285

translation efficiency called tRNA Adaptation Index (tAI) (Reis et al. 2003). The mean ∆S for point286

mutations leading to synonymous changes show a moderate correlation (r = 0.394, ρ = 0.418) with287

the differences in tAI between the two codons, using codon values calculated from (Tuller et al. 2010).288

We used ISM scores as a feature explanation method by assigning each nucleotide within a tran-289

script an importance score based on the magnitude of ∆S from the mutation in that position that most290

disrupts bioseq2seq classification towards the opposite class. For example, an endogenous xi within291

an mRNA was defined as contributing towards a true positive classification of the 〈PC〉 class to the292

extent that substituting any of the three alternate bases in position i produced a highly negative ∆S.293

One representative example mRNA and lncRNA are visualized in Fig 5-C and D, respectively, with294

raw ISM scores from positions of interest shown in a heatmap. The transcript sequences are overlaid295

above with their heights drawn proportionally to the importance setting for their true class – ↑ PC296

for the mRNA and ↑ NC for the lncRNA. The samples were chosen from among the five lncRNAs297

and mRNAs closest to the median value for inter-replicate agreement (see Fig 4-B). In the example298

mRNA, the start codon is a highly salient region, while the stop codon receives little importance. The299
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C NM_001015628.1, Bos taurus eukaryotic translation initiation factor 3 subunit I 	

D NR_126388.1, Homo sapiens LINC00428, transcript variant 1	

A

E mRNAs

3'5'
CDS

↑PC* 

↑NC‡ 

↑PC‡ 

Control group	
 	
 ‡ Opposite RNA type, same importance strategy	

 * Same sequence, random location	

	

	

Importance strategy	

 	

↑PC Most negative ΔS	

↑NC Most positive ΔS	

	

	

	

↑PC* ↑PC* 
↑NC* 

↑NC‡ 

lncRNAsF

3'5'
longest ORF

↑NC* 

↑NC* ↑NC‡ 
↑PC‡ ↑NC‡ 

B mean synonymous ISM

Figure 5. Detailed analysis of in silico mutagenesis (ISM) on the full test set. (A) Plots of ISM metagenes for selected amino
acids lysine (left) and glycine (right). Mean ∆S is shown for 25 positional bins across mRNA CDS regions with mutations
listed based on the resulting codon. The red line represents the average across all missense/nonsynonymous mutations.
For amino acids with more than two codons, the blue dashed line depicts the average synonymous mutation for comparison.
(B) Mean ISM for synonymous point mutations by codon position and nucleotide. X’s denote substitutions which do not exist
as synonymous changes. (C) An example protein-coding transcript with NCBI accession NM_001015628.1. Signed ISM
scores for the transcript are depicted as a heatmap and the RNA sequence is portrayed with characters scaled according
to the ↑ PC importance strategy, i.e. regions with highly negative ISM weights depicted in dark blue. The subregions
shown are windows around the start codon, the position of maximum importance, and the stop codon, respectively. (D)
Same as panel B with an example long noncoding RNA with NCBI accession NR_126388.1. The endogenous sequence is
scaled according to ↑ NC, or highly positive ISM values drawn in dark red. (E) mRNA motifs discovered in our test set with
STREME using ISM importance values from bioseq2seq to determine sequence regions in which to search for enriched
signals. Annotations denote the importance and control strategy for each trial, with boldfaced annotations signifying that
importance values were not masked and ordinary typeface indicating that feature importance at start and stop codons and
nonsense mutations were excluded. Motifs are positioned near the regions in which they were enriched. (F) Same as panel
D showing discovered lncRNA motifs.
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ISM scores for the nucleotides surrounding the start codon imply a preference for G in position +1300

relative to the start and A or C in position −2, consistent with the Kozak consensus sequence. The301

most important feature occurs in a region where many possible point mutations would introduce a stop302

codon, and we observed widespread avoidance of nonsense mutations early in the coding sequence.303

For the lncRNA, the TGA ending the longest ORF receives high importance according to ↑ NC, but a304

different TGA upstream of the longest ORF is the highest overall.305

To systematically extract general patterns that bioseq2seq recognizes as predictive of coding po-306

tential, we performed de novo discovery of motifs frequently found in transcript subsequences with307

high ISM importance. First, we identified the most important nucleotide with respect to both ↑ PC308

and ↑ NC from each functional region (5’ UTR, CDS, 3’ UTR) of each test-set mRNA and likewise309

for the regions demarcated by the longest ORF of a lncRNA. We extracted 21-nt windows centered310

around each such important site to form a primary sequence database for the differential motif discov-311

ery tool STREME (Bailey 2021). A control set for STREME was constructed either using (1) random312

positions from the same transcript and region as the primary sequences but not overlapping them313

(2) the most important positions using the same importance setting as in the primary sequence but314

from the opposite RNA class. These controls necessitate different interpretations of the discovered315

motifs, with strategy 1 intended to establish whether bioseq2seq places importance on consistent fea-316

tures of a transcript, and strategy 2 intended to uncover differences in how bioseq2seq treats roughly317

comparable regions of coding and noncoding transcripts. We also ran motif discovery using a purely318

random strategy – e.g. with randomly chosen subsequences of a 5’ UTR as primary and random319

upstream regions of a lncRNA as control. We present only strategy 2 motifs that do no match a motif320

from the purely random trials according to TOMTOM (Gupta et al. 2007), as these experiments were321

specifically guided by ISM importance.322

We ran every combination of primary sequence region, control method, and importance setting as323

its own STREME experiment and discovered four significant motifs between mRNAs and lncRNAs. Fi-324

nally, we ran a second set of experiments in the same manner except with importance for endogenous325

start and stop codons and counterfactual missense mutations masked out in order to reveal important326

signals beyond the most prominent set found in the first run. This yielded an additional seven motifs,327

and both sets are shown in Fig 5-E for mRNAs and F for lncRNAs, with boldface annotations for the328
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unmasked motifs. The experiments with random controls largely confirm the observations we made in329

our example transcripts, with a start codon/partial Kozak motif found in the beginning of mRNA CDS330

regions and several stop codon motifs prominent throughout lncRNAs. Beyond this, repeated GA331

patterns appear enriched in regions that push mRNAs towards a true positive classification and both332

control strategies uncover motifs that push mRNAs towards a false negative. Similarly, As and Us333

downstream of AUGs influence bioseq2seq towards a false positive prediction on lncRNAs, but such334

a motif receives comparatively little weight in the model’s assessment of bona fide coding transcripts.335

Additional details including positional and frame biases and enrichment, can be found in Supplemen-336

tary Tables S4 and S5. We note a potential match with the binding site motif for an RNA-binding337

protein ACO1 from (Ray et al. 2013), listed as motif #1 in Supplementary Table S5.338

2.6 Approximation quality of gradient-based mutagenesis depends on model com-339

plexity340

Saturated ISM is costly to apply to a large amount of sequences because it requires 3L model eval-341

uations, where L is the transcript length. We explored the feasibility of approximating ISM using342

neural network input gradients, which are efficiently computable in parallel via automatic differentia-343

tion. Building from the Integrated Gradients (IG) method, we developed a novel proxy for ISM called344

Mutation-Directed Integrated Gradients (MDIG). MDIG involves numerically integrating input-output345

gradients along the linear interpolation path between a sequence of interest and a sequence of the346

same length consisting of all the same type of nucleotide, e.g. all guanines. A parameter β ∈ (0, 1]347

limits how far to travel towards the poly(b) baseline embedding during integration. (See Methods). As348

a favorable value for β is not obvious from first principles, we tuned this parameter on a subset of our349

validation set consisting of 206 verified mRNAs and 206 lncRNAs, applying the same criteria from350

the previous section. To benchmark attribution stability across stochastic training, we measured the351

inter-replicate agreement of each mutation approximation method using Pearson correlation as in the352

previous section. We then computed the per-transcript Pearson correlation of scores from different353

settings of MDIG-β with the ISM scores from the same replicate. This metric indicates MDIG’s capac-354

ity to approximate the input-output behavior of a given deep learning model, which ISM accomplishes355

directly but at substantially greater computational cost. For reference with other gradient-based per-356
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Figure 6. Gradient-based approximation performance. (A) Summary results from tuning of β hyperparameter for MDIG
alongside baseline methods. Inter-replicate agreement is shown on the x-axis and correlation with ISM on the y-axis, using
the median across transcripts as a point estimate for both metrics. (B) Scatter plot of ∆S for all possible synonymous point
mutations, i.e. every wildtype>variant pair differing at one position, from MDIG on the training set (x-axis) versus the same
for ISM on the test set. (C) mRNA motifs discovered in our training set with STREME using MDIG importance values from
bioseq2seq to determine sequence regions in which to search for enriched signals. Results from unmasked importance are
shown above the transcript diagram and those from the masked trials are shown below. (D) lncRNA motifs discovered in
the training set using MDIG importance values from bioseq2seq, depicted in the same manner as panel C.
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turbations, we perform the same analyses using a first-order Taylor approximation of ISM scores and357

IG with a uniform [0.25, 0.25, 0.25, 0.25] baseline. Results on the validation set according to these358

evaluation metrics are summarized with their median value in (Fig 6-A), and full violin plots in Sup-359

plementary Fig S5. On the basis of these results, MDIG-0.5 was selected as the best approximation360

method for bioseq2seq and MDIG-0.1 for EDC. This illustrates that the MDIG method can predict the361

effect of input perturbations better than the basic Taylor approximation.362

On the whole, we observed a large gap in approximation quality between the model types, with363

the best method for bioseq2seq lagging substantially behind the worst for EDC. To investigate the364

implications of MDIG’s reduced performance on bioseq2seq, we used the test data and method from365

the previous section to compute bin-based metagenes from the best MDIG versions and observed366

that this averaged representation closely captures the same general trends as expected from ISM367

(Supplementary Fig S6). Across the bioseq2seq replicates, MDIG metagenes have an average cor-368

relation of r = 0.897 for mRNAs and r = 0.944 for lncRNAs with their ISM equivalent, in comparison369

to r = 0.999 and r = 0.997, respectively for EDC. For a more detailed evaluation on bioseq2seq we370

approximated ∆S for every synonymous point mutation using MDIG on the test set and compared it371

with the true ∆S scores from ISM in the form of a scatterplot in Fig 6-B. The high correlation between372

metagenes and codon scores for ISM and MDIG indicates that despite its reduced transcript-level ac-373

curacy in predicting bioseq2seq mutation effects, MDIG largely captures the same class-level features374

as ISM when averaged across examples.375

To take advantage of MDIG’s improved efficiency relative to ISM for improving the statistical power376

of motif discovery on our most biologically robust model, we applied MDIG-0.5 on bioseq2seq for the377

full training set. This consists of ∼52k examples, balanced between the two RNA classes, and took378

about two days of GPU-time, much faster than our extrapolated estimate of more than a month for379

ISM (See Supplementary Table 2). We used the resulting MDIG mutation effect estimates as drop-in380

replacement for ISM importance values in our motif discovery pipeline, with the results presented in381

Fig 6-C for mRNAs and D for lncRNAs. Motifs from masked trials are placed below the transcript382

diagrams and those from unmasked trials are above. In comparison to the ISM motifs discussed383

previously, the MDIG motifs better underscore that bioseq2seq places importance on start and stop384

codons in regions besides the CDS. Start codons are predicted by MDIG to increase bioseq2seq385
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coding probability in both mRNA 5’ UTRs and lncRNA upstream regions, while stop codons push386

the classification towards noncoding in the 5’ regions. Notably, the UTR motifs typically lack a bias387

towards a particular frame of the transcript, while most ORF features have a consistent frame bias.388

This is supportive of the idea that such elements outside the ORF are flagged in part to determine389

the frame. A number of interesting mRNA motifs emerge from masking, including multiple strong390

UGG motifs in a variety of sequence contexts and positions. The masked lncRNA motifs closely391

resemble those from the unmasked strategy, implying that the masked maximums are nucleotides392

adjacent to the start and stop codons. This comparative lack of diversity could mean that bioseq2seq393

largely defines lncRNAs as a class in terms of a lower quality or incorrect context of protein-coding394

features rather than distinctly ‘noncoding’ features. It also likely implies that MDIG is most adept at395

estimating the strongest mutation effects for bioseq2seq, with diminished reliability for less influential396

signals. One the whole, aggregating over instance-level MDIG scores to drive motif discovery appears397

to emphasize broad global features on which both MDIG and ISM both place high importance, while398

revealing additional signals beyond those identifiable with smaller-scale ISM experiments alone. As399

for ISM, the MDIG motifs are shown in greater detail in Supplementary Tables S6 and S7. We note400

a potential motif match to a binding site for an RNA-binding protein SAMD4A from (Ray et al. 2013)401

discovered in mRNA 3’ UTRs as ‘motif 1’ in Supplementary Table S7 and alongside possible ISM402

matches in Supplementary Fig S7.403

3 Discussion404

The genetic code makes it straightforward to predict protein sequences given an mRNA sequence,405

but our results suggest that requiring a neural network to learn the translation task improves its abil-406

ity to identify protein-coding RNAs. We hypothesize that translation acts a regularization strategy by407

requiring the model to preserve precise positional information in a way that improves its contextual408

representations. Our findings are consistent with a related observation from RNAsamba, which per-409

formed worse when a network branch processing the longest ORF sequence was ablated (Camargo410

et al. 2020). Bioseq2seq differs from RNAsamba in that the translated protein sequence is an output411

rather than an input to the network. To our knowledge, bioseq2seq is the first attempt to use machine412
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learning to output the encoded protein for an input RNA by explicitly learning the sequence mapping413

underlying biological translation. It accomplishes this from sequence alone, without introducing prior414

knowledge about the genetic code. Our models remain competitive with the best prior approaches415

without engineered sequence features, with bioseq2seq achieving on-par accuracy (less than 1%416

difference) and a higher recall.417

The translation task also appears to significantly improve the quality of the nucleotide-level fea-418

tures identified by our models as predictive of protein-coding potential. The correlation of ISM mutation419

effects across multiple replicates is considerably higher for bioseq2seq than for EDC. Inter-replicate420

agreement quantifies the low epistemic uncertainty of mutation effect predictions made by an en-421

semble of bioseq2seq models. In the absence of experimentally characterized mutation effects, this422

suggests a robustness in the learned biological rules that can inform the plausibility of insights de-423

rived from feature interpretation. Besides this improvement in feature consistency, we found that the424

translation task confers an additional context-awareness to the model in a way that matches biological425

intuition. Even though simple features like ORF length are obvious correlates of ribosomal translation426

activity in the cell, the training process does not automatically impart this mechanistic insight into a427

neural network. We observed that EDC did not respond strongly towards mutations to either start428

codons or premature stop codons, suggesting such elements play a minimal role in its classification429

logic despite its relatively high best-case performance of 0.932 F1. Similarly, although mRNN rec-430

ognizes start codons, it responded primarily to certain codons found 100-200 nt downstream of the431

start codon, rather than waiting for the stop codon (Hill et al. 2018). Bioseq2seq, however, responds432

negatively to start codon mutations, stop codon mutations, and nonsense mutations, suggesting that433

its decision-making is strongly influenced by its learned ORF features. Bioseq2seq’s faithful modeling434

of ORF features and mRNA periodicity improves the chances that it also makes biologically relevant435

effect predictions with respect to synonymous mutations and motif discovery, which require greater436

detail. We believe that the translation task steers the network toward more robust and meaningful437

representations that align with biological knowledge and show relative stability across replicates. In438

our view, these properties are vital prerequisites to enable a broader reliance on machine learning439

feature interpretation as a tool for scientific discovery.440

Our treatment of gradient-based attributions is a contribution to the ongoing debate in the ma-441
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chine learning literature about the trustworthiness of such methods as neural network explanations.442

We benchmark gradient-based mutation effect predictions in the biological sequence domain against443

in silico mutagenesis, which is the concrete model response to meaningful sequence perturbations.444

Strikingly, the translation task appears to adversely affect the quality of gradient approximations, with445

all methods achieving relatively poor correlation with ISM for bioseq2seq but acceptable approximation446

quality in EDC. At a minimum, our results suggest that users of gradient-based feature explanations447

for genomics should follow a protocol similar to ours to validate gradient-based mutation effect predic-448

tions against more expensive but direct input perturbations. It might suggest that for some problems449

it is better to restrict architecture choices to convolutional neural networks, for which speedups of450

ISM exist (Schreiber et al. 2022). More fundamentally, there could be a practical trade-off between451

model complexity and accurate gradient approximation such that reduced fidelity of fast model pertur-452

bations is a price to pay for the superior classification performance and biologically plausible feature453

importance values that we observed in bioseq2seq.454

We also introduce MDIG as a novel heuristic approximation for ISM, which we demonstrate can455

improve over Taylor approximation at a constant increase in computational complexity. MDIG is largely456

based on IG, but uses a more realistic mutation-specific baseline, and only integrates part of the way457

to the baseline value, staying closer to the original sequence. Despite the limited capacity of MDIG to458

estimate bioseq2seq mutation effects at the local, i.e. transcript level, we show its utility for identifying459

the most impactful sequence features at the global, i.e. class-wide level. This is supportive of recent460

work finding that the usefulness of approximate feature attributions can be improved by ensembling461

across alternative models (Gyawali et al. 2022). The similarity of important motifs and metagene462

representations derived from MDIG to their ISM analogues indicates that in aggregate MDIG retains463

interpretive value even where it does not faithfully model every individual mutation effect. Subject to464

appropriate validation, MDIG could be used where large-scale ISM experiments are infeasible or as a465

first-pass method to flag interesting sequences for more detailed review.466

Interpreting bioseq2seq using ISM and MDIG revealed putative signals of regulatory information,467

which emerged purely from the learning process without prior specification. From a certain point of468

view, learning the sequence features that distinguish translated mRNAs from lncRNAs with untrans-469

lated ORFs would be informative for promoting ribosomal engagement and would promote translation.470
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We therefore expect that sequence features predicted to increase coding potential will correlate with471

codon bias. Common methods for assessing codon usage bias, such as Codon Adaptation Index,472

predict coding sequences according the relative skew of synonymous codons for a particular acid to-473

wards the codons most common in highly expressed genes. Bioseq2seq learned strong preferences474

within synonymous groups, as evidenced by consistently high mean value of ∆S across the entire475

transcript for specific codons. Codon preferences were noticeably grouped by the nucleotide in the476

third codon position, with substitutions towards nearly all codons ending in C having a positive mean477

effect, while nearly all ending in T/U have a negative effect. The existence of codon preference trends478

along the length of the transcript could reflect the fact that synonymous codon usage is known to be479

biased positionally, including towards rare codon clusters (Chaney et al. 2017). Replacing codons480

with those preferred by bioseq2seq in the average case could perform a similar function to optimizing481

based on CAI, but bioseq2seq learns mutation effects in the context of a codon’s transcript position482

and sequence neighborhood. Our mutation effect predictions are therefore a much richer source483

of information, and future work could test via experiment whether these preferred mutations impact484

translational efficiency and have potential to guide mRNA sequence optimization. The discovered mo-485

tifs also reflect sensible biological intuitions, with the MDIG motifs in particular emphasizing upstream486

AUGs as increasing coding potential and stop codon trinucleotides as decreasing coding potential.487

This is consistent with evidence that upstream ORFs act to suppress the translation of the main ORF488

(Johnstone et al. 2016). Our motifs have a number of possible matches to RNA-binding proteins489

(RBP), which play essential roles in regulating transcript stability and translational activity. A potential490

match to the binding motifs for SAMD4A, a human RBP from the CIS-BP-RNA database (Ray et al.491

2013) involved in the regulation of mRNA translation, was highlighted within regions of mRNA 3’UTRs492

which increase coding probability according to MDIG, consistent with the model treating this binding493

site as a valuable marker of coding potential. Several mRNA motifs reflect the Kozak sequence, and494

we find a contrasting pattern downstream of lncRNA AUGs with downstream Us and As which locally495

improves coding potential but is ultimately depleted in true protein coding sequences. The UGG trin-496

ucleotide recurs across several MDIG motifs in a variety of sequence contexts and positions. This497

could be explained in a number of ways: UGG is the unique codon for tryptophan, the rarest amino498

acid (Barik 2020), and is also one mutation away from the stop codons UGA and UAG.499
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Our demonstration that bioseq2seq can recover potentially translated micropeptides is a proof-500

of-concept for using machine predictions to explore this cryptic space of the proteome. Though the501

recovery rate of putative micropeptides from lncPEP is low overall, any such capability is incidental502

to our training setup and bioseq2seq mildly outperforms RNAsamba on the available data. Crucially,503

bioseq2seq is not inherently limited to only translating the longest ORF, which could prove to be a504

modeling advantage for this application given that many micropeptides are known to be harbored505

in ORFs other than the longest in a transcript (Makarewich and Olson 2017). Increased availability506

of validated micropeptide annotations and improved procedures for autoregressive decoding – see507

(Yang et al. 2018) for an example – could help a future method based on bioseq2seq to achieve508

higher reliability.509

We anticipate that the LFNet architecture will be of broad utility in biological sequence model-510

ing tasks, with frequency-domain multiplication enabling larger context convolutions than in common511

convolutional architectures and lower computational complexity of O(N logN) in comparison to trans-512

formers. Our extension of GFNet from (Rao et al. 2021) bridges older signal processing approaches513

for gene discovery with the flexibility of deep models. We also note the complementarity of our method514

with (Tseng et al. 2020), which, instead of empolying the Fourier-transform as a token-mixing method,515

used it to enforce a smoothness prior for importances on biological sequence models. Other appli-516

cations of LFNet could include biological sequence data with variable periodic signals, such as nu-517

cleosome positioning (Epps et al. 2011) and gene organization (Wright et al. 2007), as well as other518

periodic non-biological data such as music. We designed the LFNet architecture based on an intu-519

ition that it could effectively leverage 3-nt periodicity, but such periodic structure is not necessarily an520

inherent requirement – the GFNet model was originally intended for computer vision.521

There are numerous possible follow-up directions based on this work. Future versions could scale522

to a larger and more phylogenetically diverse dataset beyond the eight mammalian transcriptomes523

used here, as well as to longer sequence lengths. In this work we have treated coding potential as a524

binary classification problem, but the methods presented are readily applicable to the more general525

problem of predicting translational efficiency as a regression problem. The periodicity inductive bias in526

particular is likely to transfer to this task – Ribo-Seq data is also characterized by a 3-nt periodicity of527

footprint density, and this has informed the development of many ribosome profiling data analysis tools528
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(Calviello et al. 2016; Xu et al. 2018). The regression setting could also increase the prospects for529

discovering novel regulatory features, such as in the UTRs, which our model treated as less important530

than the CDS. A network trained to stratify transcripts according to a quantitative measure of protein531

expression would likely learn more fine-grained distinctions than one modeling a binary separation532

between mRNAs and lncRNAs. Finally, our results raise the possibility that general-purpose nucleic533

acid language models could benefit from joint training with protein foundation models in a similar534

translation-like setup.535

4 Methods536

4.1 Seq2seq architecture for translation537

Our model follows the encoder-decoder sequence-to-sequence (seq2seq) framework common in ma-538

chine translation of natural languages (Vaswani et al. 2017). We call the model bioseq2seq because539

it applies the seq2seq paradigm to biological translation — with nucleotides and amino acids rather540

than human languages as the vocabularies. The output of bioseq2seq is a classification token 〈PC〉541

for protein coding and 〈NC〉 for noncoding – followed by the translated protein in the case of 〈PC〉542

and nothing in the case of 〈NC〉. Note that the network is not provided the location of the CDS, so it543

must learn to identify valid ORFs and select between potential protein translations.544

Training bioseq2seq in this way allows us to test the hypothesis that the translation task will re-545

quire the model to learn precise representations of each nucleotide, which will in turn help to attribute546

model decisions to specific sequence patterns. As a comparison with bioseq2seq, we also trained a547

model for binary classification. This secondary model, which we denote as Encoder-Decoder Clas-548

sifier (EDC), has an identical network design to bioseq2seq, but a different training data format, as it549

was trained to output only the classification token without the additional protein product for mRNAsI.550

We developed our models in PyTorch based on a fork of the OpenNMT-Py repository for machine551

translation (Klein et al. 2018).552

IAlthough including a decoder is somewhat atypical when producing a single output classification, we do this to enable
a direct comparison between the training tasks under a common architecture. The role of the decoder in the EDC setting
is to calculate multi-headed attention distributions over the encoder hidden states, with the pre-pended ‘start-of-sentence’
token playing a similar role to the ‘[CLS]’ in encoder-only classification setups.
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4.2 Local Filter Network553

We initially experimented with transformer neural networks (Vaswani et al. 2017) for both the en-554

coders and decoders but failed to produce competitive models, as biological sequences incur exces-555

sive memory costs as model sizes and sequence lengths grow. In these experiments, we found that556

the transformer encoders for bioseq2seq learned self-attention heads which principally attended to a557

small number of relative positional offsets while calculating the input embeddings. Additionally, feature558

attributions showed evidence of a strong 3-nucleotide periodicity (See Supplementary Fig S8).559

A variety of recent papers have introduced efficient architectures which aim to preserve the ability560

of transformers to globally mix information at lower computational cost. A number of these approaches561

have used the Fourier transform as a substitute for self-attention, because it is an efficient global562

operation computable in O(N logN) time via the fast Fourier transform (FFT) algorithm (Lee-Thorp563

et al. 2021; Guibas et al. 2021). One such example for computer vision is the Global Filter Network,564

which takes the FFT of image patches and applies a learnable frequency-domain filter via elementwise565

multiplication, before inverting the FFT to return the representation to the time domain.566

As the 3-base periodicity property is localized to coding regions within transcripts, we propose a567

simple modification to Global Filter Networks by substituting the global FFT with the short-time Fourier568

transform (STFT). While GFNet operates on non-overlapping patches of the input, we follow common569

practices for STFT using a stride equal to half the window size and weighting with the Hann function.570

To emphasize that our modification applies time-frequency analysis to sequence representations, we571

refer to this layer as a Local Filter Network (LFNet). A learned weight matrix W is applied equally572

to each window of the STFT and then the modified frequency content is returned to the time domain573

via the inverse FFT. A residual term is added to the result to carry along the previous representa-574

tion. Following (Guibas et al. 2021), we apply the soft-shrink function after the weight multiplication575

to promote sparsity in the LFNet weights. LFNet layers are only used in the encoder stack of our576

networks, while the decoder stack consists of transformer decoder layers. This is because PyTorch577

currently lacks an implementation of causal masking for FFT, as would be necessary to efficiently train578

an autoregressive model with only LFNet layers.579
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4.3 Dataset580

We built training and evaluation data sets using available RefSeq transcript and protein sequences for581

eight mammalian species: human, gorilla, rhesus macaque, chimpanzee, orangutan, cattle, mouse,582

and rat from RefSeq release 200 (O’Leary et al. 2016). We collected all RNA sequences annotated as583

mRNA or lncRNA and excluded transcripts over 1200 nucleotides (nt) in, which reduces the available584

data to 63,272 transcripts. Next, we linked each mRNA with the protein translation identified by Ref-585

Seq and partitioned the data into 80/10/10 training/validation/testing splits. To maximize the diversity586

of the dataset, we included transcripts with predicted coding status (XR_ and XM_ prefixes in Ref-587

Seq), as well as the curated transcripts (NM_ and NR_). For the training set, we used a balanced split588

between mRNAs and lncRNAs, selecting the split to equalize the length distribution of the two classes589

as much as possible. Finally, we ran CD-HIT-EST-2D to exclude from the test set all transcripts that590

exceed 80 % similarity with any transcript in the training set (W Li and Godzik 2006). The resulting591

test set contains 2288 lncRNAs and 2703 mRNAs.592

4.4 Hyperparameter tuning and training593

We used dynamic batch sizes, so that RNA-protein training pairs were binned based on approximate594

length to reduce the amount of padding. The maximum number of input tokens per batch was set to595

9000 for both model types, and eight steps of gradient accumulation was used to increase the effective596

batch size. All models were trained to minimize a log cross-entropy objective function computed from597

each amino acid character in the output.598

The hyperparameters including number of encoder and decoder layers, model embedding dimen-599

sion, learning rate schedule, and L1 sparsity parameter were tuned via the Bayesian Optimization600

Hyperband (BOHB) algorithm provided in the Ray Tune library (Liaw et al. 2018). Candidate models601

were trained in parallel on four Tesla M10 GPUs with 8 GB GPU RAM and 640 CUDA cores, with one602

GPU per model. To enable a fair comparison between the bioseq2seq and EDC training objectives,603

hyperparameter tuning was run for each separately over an identical hyperparameter space from an604

initial starting point used during LFNet development. We also trained replicates for EDC using the605

best hyperparameters for bioseq2seq and refer to the best EDC model as EDC-large and the EDC606

with equivalent hyperparameters to bioseq2seq as EDC-small. We then produced four replicates for607
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each of bioseq2seq, EDC-large, and EDC-small. For further details on hyperparameter tuning and608

model training see the Supplementary Details.609

4.5 Mutation effect prediction610

Estimating the effects of sequence mutations can provide insight into the importance that the model611

assigns each input nucleotide. The gold standard for computationally scoring mutation effects, known612

as in silico mutagenesis (ISM), requires comparing the model predictions for all single-nucleotide613

variants with that of the original sequence (Zhou and Troyanskaya 2015). The computational expense614

of this procedure – 3L model evaluations for a transcript of length L – motivates us to explore the615

effectiveness of gradient-based approximations.616

Below we refer to the network output function by S, and the output gradient with respect to its input617

as ∇xS(x). In general, S can be any scalar output, and here we use S = l〈PC〉− l〈NC〉, the difference618

in logits, i.e unnormalized log probabilities, for the RNA classification tokens in the first decoding619

position. We denote the two sequences being compared as x , x′ ∈ RL×V for one-hot encodings of620

categorical variables and V as the input vocabulary size.621

Taylor series approximation The simplest ISM surrogate begins with a Taylor expansion of a dif-622

ferentiable function F around a point of interest x′.623

F (x′) ≈ F (x) +∇xF (x)>(x′ − x) + o(‖x′ − x‖)

In this fashion, we can expand around S and discard all higher order terms for a first-order Taylor624

approximation of the difference in S.625

∆S(x′, x) = S(x′)− S(x) ≈ ∇xS(x)
>(x′ − x) (1)626

Since we confine our analysis to single-mutations, this simplifies to627

∆S(x{i, j −→ k}, x) ≈ ∂S(x)

∂xik
− ∂S(x)

∂xij
(2)628

where x{i, j −→ k} is the result of mutating RNA x at position i from nucleotide j to k. Thus, all 3L629
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values are computable from ∇xS(x) in just one forward/backward pass of the network.630

Mutation-Directed Integrated Gradients The input gradient represents only an infinitesimal change631

in the input-output behavior of the network, rather than the effect of a full character substitution as in632

ISM. When a local approximation does not accurately describe the global function behavior, this is a633

well known limitation called gradient saturation (Shrikumar et al. 2019). As a more sophisticated proxy634

for ISM, we adapt a procedure called Integrated Gradients (IG), which was designed to reduce the635

the effect of gradient saturation and satisfies several desirable axioms for importance metrics (Sun-636

dararajan et al. 2017). IG uses a baseline input x′ and computes an integral using input gradients for637

a differentiable function F along the linear path between x′ and x.638

IG(x, x′)ib = (xib − x′ib)

∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xib
dα (3)639

This equation relates to Taylor-approximation in that, given one hot encodings,
∑

j IG(x, x′)ij is640

equal to integrating the right hand side of Eq. 2 with x ranging over the interpolation path from Eq.641

3. Based on this view, we propose a rough heuristic for estimating ISM using four evaluations of IG,642

which we dub Mutation Directed Integrated Gradients (MDIG).643

∆S(x{i, b −→ k}, x) ≈ MDIG(x)ib = IG(β · poly(b) + (1− β) · x, x)ib ∀b ∈ {A,C,G, T} (4)644

Here, poly(b) is a sequence of all nucleotide b of the same length as x, e.g. all guanines, and645

β ∈ (0, 1] is a hyperparameter that balances distance of the baseline from x, which is needed to646

reduce gradient saturation, and distance from x′, a sequence largely unrelated to x. Note the order647

of arguments, which re-frames the baseline as the destination rather than the source.648

To compare MDIG against a traditional usage of Integrated Gradients, we constructed an alternate649

baseline by placing the vector [0.25, 0.25, 0.25, 0.25] – a uniform probability mass function over the four650

bases – in all input positions. The mutation effect scores are then defined as ∆S(x{i, b −→ k}, x) ≈651

IG(U(x), x)ik − IG(U(x), x)ib where U(x) represents the uniform baseline. In this way, the uniform652

IG approach requires just one evaluation of Eq 3 overall, while MDIG requires one evaluation per base653
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b.654

4.6 Evaluation metrics for gradient attributions655

We compared L× 3 vectors (sequence length × 3 possible mutations) of mutation effect predictions

using the metrics

Pearson(x, y) =
cov(vec(x), vec(y))

σ(vec(x))σ(vec(y))

Median position-wise cosine similarity(x, y) = median(

[
cos(x1, y1), cos(x2, y2), · · · cos(xL, yL)

]
)

Where cov() is the covariance, σ() is the standard deviation,vec() is the vectorization operator, which

flattens a matrix into a vector, cos(x, y) = x·y
||x||||y|| , and xi refers to a row vector of matrix x. The

inter-replicate agreement is

Inter-replicate agreement(x) = |
(
S

2

)
|−1

∑
i,j∈(S

2
)

metric(mut(x)i,mut(x)j)

where
(
S
2

)
is the set of all possible subsets of cardinality 2 from the set of model replicates S, mut(x)i

is the mutation effect prediction coming from replicate i for a given RNA x, and metric is one of

Pearson r or median position-wise cosine similarity, as described above. The agreement with ISM is

defined with intra-replicate comparisons.

Agreement with ISM(x) = |S|−1
∑
i∈S

metric(ISM(x)i,mut(x)i)

4.7 Motif discovery from mutation effect predictions656

To uncover sequence elements salient to bioseq2seq predictions, we converted ISM scores into im-657

portance scores for the endogenous characters. In particular, we set the importance score of an658

endogenous base with respect to a given class as equal to the absolute value of ∆S for the strongest659

mutation in the direction of the counterfactual class, following (Kelley et al. 2016) which used the660

equivalent from regression models for visualizing importance. For example, an endogenous xi within661

an mRNA was defined as contributing towards a true positive classification of 〈PC〉 to the extent662

that substituting any of the three alternate bases in position i produces a highly negative ∆S, which663
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pushes the prediction towards a false negative of 〈NC〉. We calculated importance using both classes664

on all transcripts. For instance, we looked for strong local contributions towards a prediction of 〈PC〉665

within annotated lncRNAs.666

For a given importance setting, we then extracted a window of 10 nt upstream and 10 nt down-667

stream around the position with the highest importance score for a total length of 21 nt. This process668

was run separately for mRNA 5’ and 3’ UTRs and CDS sequences, and similarly for lncRNAs using669

the longest ORF and its upstream and downstream regions. We used the STREME motif discov-670

ery tool to efficiently identify sequence motifs occurring frequently in these regions of interest (Bailey671

2021). STREME estimates p-values for motifs, and after collecting all discovered sequence logos, we672

reported all that were significant at the 0.001 level after applying the Bonferroni correction for multiple673

testing.674

5 Data Access675

Code for running our trained models and replicating the experiments and figures in this paper is676

provided at https://github.com/josephvalencia/bioseq2seq and pretrained models and data677

at https://osf.io/xaeqg/.678
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