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Abstract 
Background: Prostate cancer is one of the most widespread cancers in men and is 
fundamentally a genetic disease. Identifying regulators in cancer using novel systems 
biology approaches will potentially lead to new insight into this disease. It was sought 
to address this by inferring gene regulatory networks (GRNs). Moreover, dynamical 
analysis of GRNs can explain how regulators change among different conditions, such 
as cancer subtypes.  
Methods: In our approach, independent gene regulatory networks from each prostate 
state were reconstructed using one of the current state-of-art reverse engineering ap-
proaches. Next, crucial genes involved in this cancer were highlighted by analyzing 
each network individually and also in comparison with each other. 
Results: In this paper, a novel network-based approach was introduced to find critical 
transcription factors involved in prostate cancer. The results led to detection of 38 es-
sential transcription factors based on hub type variation. Additionally, experimental 
evidence was found for 29 of them as well as 9 new transcription factors.  
Conclusion: The results showed that dynamical analysis of biological networks may 
provide useful information to gain better understanding of the cell. 
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Introduction 
 

The complexity and multigenic nature of cancer has 

necessitated various genome-wide studies to achieve a 

systems-level understanding of the key genetic media-

tors involved in prostate cancer 
1
. Most diseases are 

due to the collapse of cellular processes together with 

interaction networks 
2
. Therefore, exploring the bio-

logical network for complex diseases provides an un-

derstanding of the functional alterations in chronic dis-

eases 
3
. 

Network-based approaches contain many clinical ap-

plications to explore human diseases systematically. A 

better understanding of the effects of cellular networks 

on disease progression may lead to the identification of 

disease genes which, in turn, may offer better targets 

for drug development 
4
. One focal point in cancer 

analysis is the reconstruction of Gene Regulatory Net-

works (GRN) 
5
. However, cancer progression is a dy-

namic process with multiple stages; so, reconstruction 

of one static GRN may not be informative enough for 

the inference. Instead, reconstructing stage-specific 

GRNs during cancer progression and then comparing  
 

 

 

 

 

these GRNs would be beneficial to characterize the 

main genes and interactions involved in cancer pro-

gression. 

The availability of genome-wide gene expression 

data has helped develop various state-of-art GRN re-

construction methods 
5-7

. These methods seek to iden-

tify putative gene regulatory interactions by assuming 

that alterations in the expression level of a regulator 

(such as a transcription factor) have a direct effect on 

the cognate regulated genes.  

Empirical evidence of extensive GRN rewiring dur-

ing cancer progression, along with the availability of 

GRN reverse engineering approaches, have inspired us 

to conduct a systematic investigation to characterize 

the topological changes that occur in a prostate cell’s 

GRN during cancer progression. Therefore, in this 

study, an attempt was made to reveal candidate dis-

ease-associated genes and biomarkers for prostate can-

cer progression by integrative gene expression profil-

ing and network analysis at a systematic level. In this 

way, four stage-specific GRNs were reconstructed 
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based on a comprehensive prostate cancer gene expres-

sion dataset containing 171 different samples monitor-

ing gene expression at different disease phases. Topo-

logical comparison of these four GRNs based on hub 

type variations recapitulates the previous findings 

about extensive GRN rewiring 
8
. Through sub-network 

analysis, it is possible to identify significant genes 

which were supposed to change their hub type with 

highly relevant to specific phases of prostate cancer.  

Enormous efforts have been made to identify bio-

markers for various cancers by the analysis of different 

transcriptome data 
9-11

. Moreover, there were similar 

studies for analysis of sub-networks or hub genes 

which had been helpful for the understanding of the 

metastasis of cancer at the molecular level 
12

. Nonethe-

less, there are still few studies on identification of pros-

tate cancer biomarkers for disease progression 
13

. 

Therefore, in this study, a new integrative network-

based approach was developed to detect party hubs and 

date hubs based on Degree and BN algorithms during 

cancer progression.   

Our analysis led to identification of 38 important 

genes putatively involved in prostate cancer. Through 

extensive literature search, experimental evidences re-

vealed the role of 76.3% of candidate genes in prostate 

cancer (Table 1). This level of experimental confirma-

tion reflects the high accuracy of the proposed ap-

proach. 

Our study hereby demonstrates a useful approach 

for analysis of prostate cancer at the systematic level. 

For the genome-wide investigations, this will be a fun-

damental attempt for future development of the transla-

tional medical informatics, which lead to better patient 

diagnostics with high-throughput data through systems 

biology 
14

. 

 
Materials and Methods 

 

Network reverse engineering approaches 
Reverse engineering of GRNs from whole genome 

data entails deciphering the underlying gene regulatory 

circuits by observing changes in gene expression pro-

files 
5
. With advances in high-throughput technologies, 

several computational reverse engineering approaches 

using different statistical measures have been devel-

oped 
15-18

, including information-theoretic network in-

ference methods, which identify connections between 

genes by approximating the quantity of information 

common to any pair of genes. In the Dialogue on Re-

verse Engineering Assessment and Methods 5 (DREA-

M5) challenge, the context likelihood relevance (CLR) 

algorithm by Faith et al 
6
 had the best performance 

among information theory based approaches 
19

. 

Briefly, CLR determines an interaction between two 

genes to be significant by estimating the significance of 

their Mutual Information (MI) value against a back-

ground distribution of the MI values of every other pair 

involving one of the two genes of interest. In this way, 

the significance level is dynamically determined for 

each interacting pair according to their expression pro-

files. Given a gene expression dataset and the signifi-

cance scores calculated by CLR algorithm, the corre-

sponding empirical False Discovery Rate (FDR) can be 

estimated by running the algorithm on randomly shuf-

fled datasets. In this study, all GRNs were reconstruct-

ed using CLR with an FDR threshold of 0.05. It is im-

portant to note that CLR relies solely on the depend-

ency between expression profiles to detect interactions. 

Consequently, the resulting network is a co-expression 

network; so, the GRN is extracted from this network by 

considering only interactions where at least one tran-

scription factor is involved. 
 

Prostate cancer microarray data 
Prostate cancer microarray data were downloaded 

from the Gene Expression Omnibus (GEO) database, 

accession number GSE6919 
20

. This dataset contains 

171 samples, including samples from normal prostate 

tissue free of any pathology (Normal with 18 samples), 

normal prostate tissue adjacent to tumors (Adjacent 

with 63 samples), primary prostate tumor tissue (Tu-

mor with 65 samples), and metastatic prostate cancer 

(Metastasis with 25 samples). Microarray data were 

preprocessed and analyzed using the LIMMA package 

in R 
21

 which was originally developed for differential 

expression analysis of microarray data. Quantile nor-

malization and a moderated t-statistic were used to find 

differentially expressed genes.  More detailed descrip-

tions of the methods can be found in the original publi-

cations. 
 

Network topological analysis 
To predict the key regulators in the prostate cancer 

based on hub type variations, the stage-specific GRNs 

of prostate cancer were searched for transcription fac-

tors which either had a high number of connections or 

were bottleneck 
22,23

. The bottleneck genes are impor-

tant because if they are removed from a network, the 

network will be disrupted, as they are major intersec-

tions between clusters in the network 
24

. To find such 

genes, all constructed GRNs were topologically ana-

lyzed following the same rules using cyto-Hubba pack-

age 
25

 which is a plugin for one of the most useful 

structural analysis software, Cytoscape 
26

. Cyto-Hubba 

is used to detect the critical nodes of biological net-

works with many topological algorithms such as De-

gree, Bottleneck (BN), Maximum Neighborhood Com-

ponent (MNC), Density of Maximum Neighborhood 

Component (DMNC), and a Double Screening Scheme 

(DSS) 
25-27

. As mentioned before, Degree and BN were 

used to find the top ranked genes in all GRNs based on 

hub type variation which was the ultimate goal in this 

research. 
 

Results 
 

Stage specific network reconstruction of prostate cancer 
Using the CLR algorithm, four independent net-

works related to the four different cell stages were re-

constructed (Normal, Adjacent, Tumor, and Metasta-
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sis). The metastasis GRN had the lowest number of in-

teractions with 2505 interactions while the other three 

GRNs had around 3000 interactions each. Additionally, 

topological analysis of the GRNs revealed that all four 

networks exhibited the small-word property 
28

 and 

scales-free architecture 
29

 which are the well-known 

characteristics of most biological networks (Figure 1). 

All four reconstructed GRNs were mainly composed of 

the same set of genes; however, the conserved interac-

tions among these four networks were very low and the 

metastasis network had the most unique interactions 

(Figure 2). 
 

Detection of essential transcription factors involved in the 

prostate cancer 
Considering the importance of hub and bottleneck 

proteins in the structure of GRNs, the 50 highest-

ranked genes were identified for each stage-specific 

GRN based on their degree and bottleneck scores, sep-

arately. Top 50 genes were selected based on previous 

studies that showed the highest percentage of critical 

proteins found in top 50 ones based on Degree and BN 

algorithm 
25

. Although there were four conditions that 

resulted in detection of 200 genes, 144 of 200 genes 

had overlap during various conditions. Consequently, 

56 unique candidate genes were selected for further 

analysis. 

In each GRN, these 56 genes were categorized 

based on their degree and bottleneck scores in four 

groups: 1) Hub-NonBottleneck: genes with high de-

grees and low bottleneck scores are putative party hubs 
30

; 2) Hub-Bottleneck: genes with high degrees and 

high bottleneck scores are putative date hubs 
30

; 3) 

NonHub-Bottleneck: genes with low degrees and high 

bottleneck scores; 4) NonHub-NonBottleneck: genes 

with low degrees and low bottleneck scores. 

The results showed hub type variation for 38 genes 

across different stages, whereas 18 other genes were 

functionally conserved as date hubs under all condi-

tions (Table 2). 

Sub-networks consisting of the first neighborhoods 

of the 38 critical bottleneck transcription factors were 

extracted and compared, revealing changes in the 

Table 1. The function of 29 critical transcription factors putatively involved in prostate cancer 
 

Gene name Function 

AR Androgen receptor gene transcripts are over-expressed in most metastatic prostate cancers (40). 

ATF6 ATF6-mediated apoptosis is reported in many cancers such as prostate cancer (49, 50). 

SMAD3 SMAD3 is an essential mediator of tumor suppression and apoptosis in prostate cancer (41). 

GATA3 Prostatic GATA3 is involved in androgen regulation of the prostate-specific antigen gene (51). 

HLF HLF is involved in prostate cancer promotion and progression (52). 

PBX1 The Pbx1-HoxC8 heterocomplex causes androgen-independent growth in prostate cancer (53). 

FOXF1 FOXF1 has high expression in normal prostate and its expression decreases in prostate cancer (39). 

TCF21 TCF21 methylation levels accurately discriminate bladder and prostate cancerous tissues from their normal counterparts (54). 

STAT1 Progressive dysregulation of STAT1 in prostate cancer cells contributes to prostate tumor growth (55). 

EGR3 EGR3 is significantly over-expressed in prostate cancer  and is a candidate prognostic marker of poor outcome prostate cancer (56). 

FOS In human prostate cancer, up-regulation of FOS protein occurs in advanced diseases and correlates with MAPK pathway activation (57). 

KLF6 KLF6 controls cell cycle progression and apoptosis and is usually inactivate in many cancers such as prostate, ovary and colon (37, 38). 

FOXA1 
High-level FOXA1 expression is associated with the development of metastatic prostate cancer and could be used to classify patients 

who are at higher risk for metastases (58). 

ELK4 
ELK4 plays important roles in cell growth regulation of prostate cancer cells. The level of the transcript correlates with the progression of 
the disease (59). 

HOXC6 
Down-regulation of HOXC6 due to decreased proliferation rates of cell line and the over-expression of it rescues the cells from apoptosis 
in prostate cancer (60). 

VDR Studies discriminated the impact of VDR ligands upon prostate cancer cell proliferation, differentiation, and apoptosis (42). 

RARB RARB gene methylation in prostate samples is associated with an increased risk of subsequent prostate cancer (61). 

EZH2 
Over-expression of EZH2 causes invasion and growth of prostate cells. It is also a good biomarker for detection of the problem at an 

advanced stage (62). 

TFAP2A (AP-2) Cytoplasmic expression of AP–2 is reduced in prostate cancer cells (63). 

JUNB JUNB has an important role in controlling prostate cancer and can be a target for cancer therapy (64). 

SNAI2 Down-regulation of SNAI2 is associated with primary prostate cancers and is a negative regulator of proliferation in the cancer cells (65). 

ZEB1 Cancerous phenotype in prostate cancer cells is associated with increased expression of ZEB1 (66). 

MXD4 (MAD4) MXD4 which is known to have antitumor properties is significantly up-regulated in treated PC (67). 

MAZ MAZ expression deregulation relates to progression of many cancer types and plays an important role in PCa pathogenesis (68). 

HOXB13 Recurrent mutation in HOXB13 associates with an increased risk of hereditary prostate cancer (69). 

SIM2 Studies suggested an involvement of SIM2 in prostate tumor cell and cancer progression (70). 

INSM1 Investigation showed that INSM1 remarkably up-regulates at the advanced PC stages (71). 

PLAGL1 
PLAGL1 is a tumor suppressor gene that inhibits growth of tumor cells by controlling apoptosis and cell-cycle progression in prostate 
cancer (72). 

FOXC1 It was indicated that FOXC1 links to androgen-associated growth status of prostate cancer (39). 
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number of interactions and gene targets between the 

stages. For some transcription factors such as STAT1, 

AR, HLF, ZEB1, TCF21, ISL1, KLF6, HOXB13, 

SIM2 and FOXA1, the number of interactions in the 

metastasis stage decreased dramatically (Table 3); the 

interaction numbers of other transcription factors, such 

as ZNF-529, FOXC1, MNX1, and JUNB, increased 

considerably in the metastasis stage, indicating network 

rewiring (Table 3). These 14 transcription factors (Fig-

ure 2) showed dramatic changes in their number of 

interactions (fold change ≥2) during the cancer pro-

gression (Table 3). 
 

Discussion 
 

To reconstruct cell stage specific GRNs, an attempt 

was made to focus on the available comprehensive 

transcriptome dataset, originally published 
20

. This 

dataset was generated by sampling from four different 

Figure 1. The architecture of gene regulatory networks. All four networks (normal, adjacent, tumor and metastasis networks) follow the well-known 

characteristics of most biological networks; A) scale-free architecture defined as few highly connected genes (hubs) that link the other less con-

nected genes to the network; B) small-word property which means any two genes in the network can be connected by relatively short paths through 

all interactions. 
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types of prostate tissues including normal cells  (Nor-

mal), normal cells adjacent to cancer cells (Adjacent), 

primary tumor cells (Tumor), and metastatic cells (Me-

tastasis). In our approach, genes were analyzed and 

prioritized based on the transcriptome data. Hence, it 

was possible to make reliable predictions only for 

genes with altered expression level across various con-

ditions. To focus on these genes, only up/down-regu-

lated genes were considered (fold change ≥2 and 

p<0.05) in at least one cell stage (978 genes). Also, 

enrichment of known cancer genes was checked among 

this set by using a previously curated list of 555 high 

confidence cancer genes, originally published 
31

. 100 

genes were collected and identified as mediators in 

metastatic prostate cancer from 
32

, and 276 genes were 

added and annotated as either a cancer pathway or 

prostate cancer gene in the KEGG database. It was 

found that the cancer-related genes were about 1.55-

fold (hypergeometric two-tailed test, p=2.52E-6) and 

the prostate cancer-related genes were about 2.22-fold 

enriched (hypergeometric two-tailed test, p=6.07E-6) 

in our selected gene set which were fluctuated during 

prostate cancer. 

To identify master regulators and their associated 

circuits governing cell-specific behavior in each state, 

the GRNs of prostate cells were compared in different 

stages with each other. Because the CLR algorithm 

merely relies on the similarity of expression patterns to 

Table 2. 56 transcription factors showed different topological characteristics in different stages 
 

Gene name N A T M Gene Name N A T M 

HOXB13 PH DH PH DH ZNF516 DH DH DH DH 

ZEB1 PH DH DH DH GATA3 DH DH DH NB 

SIM2 PH DH DH NB ZNF423 DH DH DH DH 

TFAP2A PH DH DH DH KLF6 DH NN NN DH 

ZNF205 PH DH DH DH ZNF91 DH DH DH DH 

EZH2 PH NN DH PH ETS2 DH DH DH DH 

MXD4 PH DH DH DH NFYA DH DH DH DH 

ZNF146 PH DH DH DH MEIS1 DH DH DH DH 

CAMTA1 PH NB NN DH SMAD3 DH NB DH DH 

MAZ PH DH DH DH MEIS2 DH DH DH DH 

PLAGL1 PH DH DH PH STAT5A DH DH DH DH 

HOXC6 DH PH DH PH PRRX1 DH DH DH DH 

FOS DH PH DH DH NHLH2 DH NN DH DH 

ELK4 DH PH NN DH FOXN3 DH DH DH DH 

NKX2-2 DH DH PH DH EGR3 DH DH DH NN 

MNX1 NB NN PH DH ID1 DH DH DH DH 

AR DH DH DH PH NR4A1 DH DH DH DH 

PBX1 DH DH DH PH NR1H2 DH DH DH DH 

FOXA1 DH DH DH PH FOXF1 DH DH DH NN 

INSM1 NB DH NN PH ATF6 DH DH NB DH 

MEF2C DH DH DH DH STAT6 DH DH DH DH 

STAT1 DH DH DH NB VDR DH DH NN DH 

NR3C1 DH DH DH DH FOXC1 NB DH DH DH 

HLF DH DH DH NB STAT2 NB DH NB DH 

TP63 DH DH DH DH JUNB NN DH DH DH 

TCF21 DH DH DH NB RARB NB DH DH NB 

ISL1 DH NB DH NB SNAI2 NB NN DH NB 

EGR1 DH DH DH DH ZNF529 NN NN NB DH 
 

N) Normal; A) Adjacent; T) Tumor; M) Metastasis; DH) Date Hub; PH) Party Hub; NB) Nonhub-Bottleneck; NN) Nonhub-Nonbottleneck. 

 

Figure 2. Number of interactions. This figure shows the GRNs for 14 

TFs (orange nodes) that change their interaction numbers dramatically 

during cancer progression; A) Normal stage; B) Adjacent stage; C) 

Tumor stage; D) Metastasis stage which reflects the high level of 

rewiring of gene regulatory interactions. 
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infer interactions, constructed networks in this step 

contain both regulatory interactions (interactions be-

tween regulated genes and their putative regulators) as 

well as interactions between co-regulated genes (non-

regulatory interactions). Hereafter, these networks are 

called co-expression networks. To extract gene regula-

tory interactions from these networks, only interactions 

involved at least one human transcription factor were 

considered and a list of them were extracted 
33,34

. These 

networks are referred to as GRNs. 

To predict the key genes in the prostate cancer, an 

attempt was made to find the stage-specific co-expres-

sion networks of prostate cancer for high connectivity 

(hub) or bottleneck genes 
22,23

. Hub and bottleneck pro-

perties are considered important centrality indices be-

cause they are major intersections between clusters in 

the network and if they are removed from a network, 

the network will be disrupted 
24

. Han et al suggested 

the existence of two types of protein hubs in the pro-

tein-protein interaction networks, namely party hubs 

and date hubs 
30

. Although both interact with many 

proteins, the difference is that party hubs are proteins 

that interact with many other proteins simultaneously, 

whereas date hubs interact with their partners asyn-

chronously 
30

. By definition, the bottleneck proteins are 

responsible for the interconnection of clusters in the 

network, and thus bottlenecks with high degrees are 

most likely to be date hubs which contain groups of 

genes that assist in presenting common functions 
24,35

. 

The obtained results recapitulate previous findings in 

which some active sub-networks contained regulatory 

interactions were supplanted by new interactions which 

changed their degrees during different conditions 
36

. 

The result also reflected the high level of rewiring of 

gene regulatory circuits during cancer progression, as 

suggested elsewhere 
8
. As shown in table 3, for exam-

ple, more than 2-fold decrease in the number of interac-

tions for KLF6 was observed which controlled cell 

cycle progression and apoptosis. Indeed, experimental 

data suggest that KLF6 is inactivated in many cancers 

such as prostate, ovary and colon 
37,38

. On the other 

hand, consistent with more than 2-fold increase in the 

number of interactions (from 14 in normal stage to 33 

in the metastasis stage) for FOXC1 (Table 3), it was 

indicated that this gene is linked to androgen dependent 

growth of prostate cancer 
39

. 

Our result led to identification of 38 transcription 

factors which were bottleneck and changed their inter-

action during cancer progression. Although the func-

tional role of some famous transcription factors such as 

AR, SMAD3 and VDR are well known as genes linked 

to prostate cancer 
40-42

, the 9 transcription factors 

(CAMTA1, ISL1, MNX1, NHLH2, NKX2-2, STAT2, 

ZNF146, ZNF205, and ZNF529) are new candidates 

that may have critical roles in prostate cancer based on 

topological significance and regulatory changes during 

cancer progression. Among the remaining 9 transcrip-

tion factors, 5 of them were associated with other can-

cer types. ZNF146, CAMTA1, NKX2-2, MNX1, and 

ISL1 are most prominent in colorectal cancer, neuro-

blastoma, Ewing's sarcoma, leukemia and breast can-

cer, and bladder cancers, respectively 
43-48

. No evidence 

could be found to show the relationship between the 4 

remaining transcription factors and any type of cancer.  
 

Conclusion 
 

In this paper, an accurate network-based framework 

for the analysis of transcriptome data was presented. 

The analysis of prostate state specific GRNs revealed 

38 transcription factors which are critically important 

for prostate cancer progression. Also, 14 transcription 

Table 3. The number of interactions for 14 out of 38 transcription  

factors changed dramatically from normal to metastasis stage (fold change >2) 
 

Gene 

name 
Normal Adjacent Tumor Metastasis 

Fold 

change 

HOXB13 143 176 43 52 2.75 

ZEB1 135 137 74 33 4.09 

SIM2 120 132 115 25 4.80 

TFAP2A 60 30 25 63 0.95 

ZNF205 56 38 28 44 1.27 

EZH2 46 24 81 81 1.76 

MXD4 43 31 32 69 1.60 

ZNF146 42 45 60 72 1.71 

CAMTA1 41 22 21 37 1.11 

MAZ 39 64 56 46 0.85 

PLAGL1 26 36 39 30 0.87 

HOXC6 34 53 78 47 1.38 

FOS 63 49 69 65 0.97 

ELK4 35 34 17 33 0.94 

NKX2-2 28 33 43 30 0.93 

MNX1 26 20 29 70 2.69 

AR 103 61 35 48 2.15 

PBX1 45 64 117 37 0.82 

FOXA1 108 153 41 34 3.18 

INSM1 21 26 23 32 0.66 

STAT1 113 97 122 16 7.06 

HLF 123 120 86 25 4.92 

TCF21 59 102 58 25 2.36 

ISL1 65 26 68 22 2.95 

GATA3 42 34 68 22 1.91 

KLF6 76 26 20 37 2.05 

SMAD3 41 18 28 40 1.03 

NHLH2 27 18 32 34 0.79 

EGR3 32 35 40 26 1.23 

FOXF1 32 151 129 26 0.81 

ATF6 44 27 17 40 1.1 

VDR 30 27 18 33 0.91 

FOXC1 14 42 68 33 2.36 

STAT2 23 32 19 34 0.68 

JUNB 21 50 47 48 2.29 

RARB 21 31 27 26 0.81 

SNAI2 25 25 34 24 1.04 

ZNF529 10 26 24 42 4.2 
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factors were identified to be linked putatively to pros-

tate cancer metastasis stage, so they would be used as 

key factors for future research in the field of cancer 

studies. Additionally, experimental evidences revealed 

the role of 29 of candidate transcription factors in pros-

tate cancer. 

The low number of predictions and high degree of 

overlap with previously known events in the prostate 

cancer demonstrate the high efficiency of our approach. 

In addition, the low number of predicted gene sets 

makes it easy to design follow up experiments to vali-

date the results. In this study, it is believed that the re-

sults may provide critical information to gain better 

understanding of networks dynamics in the cell through 

complex diseases such as cancer.  
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