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Pan- and core- network analysis 
of co-expression genes in a model 
plant
Fei He1 & Sergei Maslov1,2,3,4

Genome-wide gene expression experiments have been performed using the model plant Arabidopsis 
during the last decade. Some studies involved construction of coexpression networks, a popular 
technique used to identify groups of co-regulated genes, to infer unknown gene functions. One 
approach is to construct a single coexpression network by combining multiple expression datasets 
generated in different labs. We advocate a complementary approach in which we construct a 
large collection of 134 coexpression networks based on expression datasets reported in individual 
publications. To this end we reanalyzed public expression data. To describe this collection of networks 
we introduced concepts of ‘pan-network’ and ‘core-network’ representing union and intersection 
between a sizeable fractions of individual networks, respectively. We showed that these two types of 
networks are different both in terms of their topology and biological function of interacting genes. For 
example, the modules of the pan-network are enriched in regulatory and signaling functions, while the 
modules of the core-network tend to include components of large macromolecular complexes such as 
ribosomes and photosynthetic machinery. Our analysis is aimed to help the plant research community 
to better explore the information contained within the existing vast collection of gene expression data 
in Arabidopsis.

Coexpression networks represent all pairwise relationships of genes that have similar profiles in a given set of 
expression samples. Expression levels of such connected genes are either directly or indirectly co-regulated by 
the same regulatory elements. Since genes under the same regulatory control tend to be functionally associated, 
the most common use of coexpression networks is to infer unknown and to validate known gene functional roles 
and regulatory interactions between genes1. A coexpression network consists of all significantly correlated pairs 
of genes with correlation coefficients above a certain threshold. Once a coexpression network is constructed, 
the next step usually involves identification of densely interconnected modules, which are often enriched with 
genes involved in a specific biological function2. Coexpression network analysis has been actively used in plant 
functional genomics. For example, new genes involved in flavonoid biosynthetic process3, starch metabolism4, ali-
phatic glucosinolate biosynthesis5, lignin biosynthesis6,7 and photorespiration8 have been identified with the help 
of coexpression networks. Compared with animal (especially human) data, functional gene annotation in plants 
is less comprehensive even in a well-studied model organism such as Arabidopsis. Thus it is especially valuable to 
leverage the use of the existing plant transcriptomics data in order to improve identification of new and validation 
of existing gene and protein functions9–12.

A common approach to building coexpression networks is to infer correlation relationships from a com-
bination of multiple expression datasets produced by different labs1,2,13–15. For example, Mao et al. combined 
all the datasets from the AtGenExpress project (~1000 samples) to construct a coexpression network13. The 
larger sample size improves the statistical significance of relationships between genes. The inevitable experimen-
tal noise within microarray data may give rise to false positive interactions in which pairs of genes have high 
degree of coexpression in only one dataset but very low coexpression in other datasets16. The traditional approach 
relies on increasing the number of samples to infer more reliable correlation relationships17. On the other hand, 
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indiscriminately combining multiple samples may not be universally good. The combined samples need to be 
biologically comparable18. Furthermore, batch effects may give rise to false positive and spurious correlations 
between genes when microarray data from different labs are combined19,20.

Another problem with combined co-expression networks is that it may miss rare gene interactions formed 
under specific conditions such as a particular disease21. Increasing amount of evidence indicates that different 
gene networks operate in different biological contexts22,23. Thus, it is increasingly important to compare and con-
trast coexpression networks generated from individual datasets24–26. Experimental results suggest that more than 
one third of genetic interactions are condition-specific27. Several studies have also demonstrated that coexpres-
sion of genes varies in different conditions. Southworth et al. studied the difference between coexpression net-
works of young and old mouse brains and found genes involved in memory have more network connections in 
the young than in the old animals28. By leveraging the concept of differential rewiring, Hudson et al. captured the 
phenotypic differences between two breeds of cows29. Compared with normal tissue, many coexpression relation-
ships were lost in cancer tissue30.

A published study of changes in gene expression usually has its own experimental design created in order to 
answer a specific biological question or several related questions, such as, to understand the mechanisms of plant 
heat shock response31 or biological function of a plant hormone32. It might not be universally good to detect coex-
pression based on a combined dataset of microarray samples from different labs. Here we construct and analyze 
a comprehensive collection of 134 coexpression networks each based on expression samples from an individual 
published study, thus preserving context-specific network structure. We assume the network generated from each 
Gene Expression Omnibus (GEO) series represent a particular regulatory response specific to the experimental 
design and biological query of that study. Therefore, expression datasets from individual studies are ideal for the 
detection of condition-specific networks. We found most coexpression edges can only be detected in a few net-
works, while only a small fraction of edges can be repeatedly detected in many networks. Those two types of edges 
are enriched for distinctly different biological functions. Our analysis may provide guide for future coexpression 
network analysis in plants.

Results
A large collection of Arabidopsis coexpression networks. Previous work has combined expression 
datasets from many labs to build coexpression networks for animals or plants1,13,14. Although this strategy has 
been intensively used by plant scientists to assist gene characterization33, it preferentially captures the relation-
ships between genes that are conserved across most contexts. In contrast to this, in this study we built coexpres-
sion networks based on individual expression datasets from the model plant Arabidopsis in order to capture 
network aspects that appeared in a specific experimental setup21.

Thousands of gene expression profiling datasets are available for Arabidopsis in public repositories such as 
GEO. We focused on the Affymetrix GPL198 platform, since it is the most widely used platform and its annota-
tion is continuously updated. Many of those datasets are not suitable for network inference simply because the 
number of samples are not enough for a robust inference of correlation. Similar to a previous study performed in 
humans, we limited our analysis to datasets with at least 20 samples; 134 such datasets were acquired from GEO. 
Each of them was normalized in the same manner, and genes with very low mRNA abundance or genes without 
any significant changes were removed (see Methods). The top 0.1% most coexpressed gene pairs within each data-
set were then used to build individual networks34. We used GSE series number to identify individual published 
studies, thus each of our 134 networks is labelled with the GSE number of the corresponding GEO experiment/
series (Fig. 1).

The number of nodes in most of the series-based networks was between 500 and 5,000, while the number of 
edges was between 50,000 and 100,000 (Fig. 2a,b). The Pearson Correlation Coefficient (PCC) cutoff for each 
series-based network was about 0.73 (Figure S1). Since the number of samples for each coexpressed gene pair is 
at least 20, the correlation is statistically significant (p-value <  0.001 for PCC =  0.73 and sample size ≥ 20). About 
60% of these series-based networks were inferred from leaf, seedling and root tissues (Fig. 2c). The other 40% 
included other tissues such as flowers, seeds and shoots (Fig. 2c). As can be seen in Fig. 2d, these series-based 
networks were inferred from samples in a variety of experimental contexts, such as the effect of gene mutations or 
abiotic stress. The breadth of data sources were included to better capture of coexpression networks in different 
conditions.

Coexpression networks in Arabidopsis are highly context-dependent. Similar to the idea of ‘pan/
core genome’ in bacteria35,36 and plants37–39, we propose to use the term ‘pan-network’ for the union of all the 134 
series-based networks, while ‘core-network’ to represent the intersection of a considerable fraction (10 or more 
out of 134) of these networks. Indeed, unlike a large number of core genes shared across the entire networks there 
were no edges present in all 134 of our networks. This is similar in spirit to a soft cutoff used by one of us40 in 
detecting the core (“basic”) genome of a bacterial species (E. coli).

The pan-network representing the union of all 134 of our individual networks contains 2,294,175 
non-redundant edges and 18301 nodes/genes (Supplemental File 1). Every edge in the pan-network is character-
ized by its ‘universality number’, U, defined as the total number of our networks in which this edge was observed. 
More than 80% of the edges were observed in only one network (universality, U =  1), suggesting that gene net-
works in Arabidopsis operating under different conditions are drastically different from each other25. Compared 
to a more conventional approach in which the samples from all of 134 experiments are combined in one large 
table based on which a single coexpression network is calculated, our approach detects more edges (Figure S2a). 
In addition, our pan network has a better quality as it contains less false–positive interactions due to e.g. the batch 
effect. Indeed a higher fraction of edges in our pan-network than in the network based on the coexpression of all 
134 samples are supported by experiments other than expression data (Figure S2b and c).
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Figure 1. Our pipeline for construction of 134 GSE series-based coexpression networks in Arabidopsis. 

Figure 2. Basic statistics for 134 GSE series-based networks. (a) The histogram for the number of nodes in 
each series-based network; (b) The histogram for the number edges in each series-based network; (c) The bar 
chart of tissue types of the data source; (d) The bar chart of experimental conditions of the data source.
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Co-expression edges between kinases and transcription factors (TF) are often of a particular biological 
interest as they may indicate gene regulation triggered by signaling pathways. To illustrate this below we dis-
cuss several examples of edges with experimental evidence of physical interactions41. Firstly, we observed that a 
guanylate kinase (AT3G57550) is coexpressed with a MYB TF (AT1G18570) in only one out of the 134 experi-
ments (GSE40354, Supplemental File 1). The experimental context of the coexpression between those two genes 
involved treatment with bacterial elicitor42. Another edge deserving further investigation connects an F-box 
protein (AT1G47340) and SKP-1 (AT5G42190) (Supplemental File 1). F-box proteins are well known to interact 
with SKP-1 to degrade unwanted proteins43, however, hundreds of F-box genes are encoded in the Arabidopsis 
genome44. It is critical to determine the specificity of the interactions between those F-box genes and their interact-
ing partners. It is also important to understand under which environmental conditions the interaction happens45. 
Although previous experiments have already detected physical interactions between the edges discussed above41, 
the results from our analysis suggest the design of further experiments to reveal the specificity of these interac-
tions. In contrast to the edges that were observed in only one dataset (i.e. U =  1), the edges with larger values of 
U (Universality) were mostly formed between members of large multi-protein complexes (Supplemental File 1).

The core-network connects components of large molecular machines. A family of core networks 
of progressively increasing universality can be extracted from the pan-network by applying a strict cutoff on the 
universality of edges (e.g. a core-network formed by all edges existing in at least 5 datasets). As the cutoff value 
increases, the resulting network becomes smaller but more modular (Fig. 3). Modularity measures how well 
are these network modules separated from each other, while the clustering coefficient measures how tightly the 
neighbors of a node within a module are connected with each other. Both parameters are frequently reported 
for all types of biological networks, including protein-protein networks, metabolic networks and transcriptional 
networks46 but (to the best of our knowledge) ours is the first study of their systematic dependence on edge 
universality.

We used U =  10 as the cutoff to determine the core-network used in the rest of our study (marked red in 
Fig. 4), which contains 7326 non-redundant edges among 935 genes. The exact value of the cutoff defining the 
core-network is always somewhat arbitrary. Our choice was inspired by the network analysis shown in Fig. 3. 
Both clustering coefficient and especially modularity of the core network appear to saturate above the U =  10 
threshold. Interacting genes in thus defined core network are likely to be statistically significantly correlated even 
in datasets where they didn’t make the PCC cutoff. Indeed, the average PCC of core-network edges in datasets 
where they did not pass the PCC cutoff is still significantly higher than the average PCC of edges within the 
pan-network (student’s t-test, p-value =  0, see Figure S3). We refer to the set of edges present in the pan-network 
but not universal enough to be included in the core network as “condition-specific” (marked green in Fig. 4). The 
degree distribution of the core-network approximately follows a power-law (scale-free) pattern with the exponent 

Figure 3. Cutoff selection for construction of the core-network. Edge universality, Ui, is given by the number 
of network datasets it was observed. The number of nodes (a), the average degree (b), the modularity (c) and the 
clustering coefficient (d) of the network constructed from edges with universalities Ui greater than or equal to 
the X-coordinate of the plot.
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-1.5 transitioning into exponential cutoff above 50 (Fig. 5, Supplemental File 2)47,48. Many of its edges connect 
parts of large multi-protein complexes such as the ribosome and photosystems (Supplemental File 3). In fact, the 
network is enriched for physically interacting (binding) proteins49 (p-value <  0.001, Fig. 4). The modules of this 
network were also highly enriched in genes characterized by functional categories ‘translation’ or ‘photosynthesis’ 
(p-value <  10−10, Supplemental File 4). These facts are consistent with earlier observation that the genes involved 
in large molecular machines tend be coexpressed under many conditions13.

The pan-network is enriched in condition-specific biological processes. Since each expression 
dataset usually has its own experimental design addressing a specific biological question50, an edge detected in 
one dataset may not be detected in another21. As more and more evidence supports condition-specific networks 
in animals28–30, we hypothesized that biological processes that are active in a small set of specific contexts would 
form the bulk of our pan-network. First of all, although the edges with smaller values of U contained fewer direct 
physical Protein-Protein Interactions (PPIs) compared with the core-network, PPIs are still overrepresented 
among pan-network edges (p-value <  0.001, Fig. 4). This suggests that biologically meaningful connections exist 
among co-expressed genes which are less likely to be detected by the traditional methods16. The degree distri-
bution for the pan-network approximately followed a power-law pattern (exponent =  − 0.5 transitioning to the 
exponential cutoff above 500) (Fig. 5, Supplemental File 2). Besides the support from physical interactions, we 
wondered if more evidence could be found to reveal the biological significance of the pan-network.

With an average degree more than 200 (Supplemental File 2), an overview of the pan-network showed a 
densely connected large central component. However, we were able to detect network communities (i.e. modules) 

Figure 4. The pan-network contains both core and condition-specific edges. The overlap with the protein-
protein interaction (PPI) network for both types of edges are statistically significant (p-value <  0.001). The PPI 
data was downloaded from BioGRID version 3.4.132 (http://thebiogrid.org/).

Figure 5. Degree distribution for pan- and core-networks. The y-axis is the number of nodes with a 
particular degree.

http://thebiogrid.org/
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using a scalable algorithm51 implemented in Gephi 0.9 graph visualization software package52. In fact, the modules 
from the core-network and pan-network were identified using the same method to allow for an apples-to-apples 
comparison. We found two (out of six) modules in the pan-network enriched in ‘regulation of cell cycle’ 
(p-value =  5.39 ×  10−15) and ‘regulation of cell communication’ (2.93 ×  10−6), respectively (Fig. 6). Interestingly, 
those biological processes were not detected among core-network modules (p-value >  0.01, Supplemental File 4).

The most connected nodes, i.e. hubs, are generally the focus of the network analysis. For instance, hubs in 
protein-protein interaction networks are more likely to be essential genes53,54. Hubs in coexpression networks are 
often considered to be the most informative genes13,55,56. Approximate power-law degree distribution observed 
in our analysis confirms the existence of hubs in both pan-network and core-network (Fig. 5). Most of the hubs 
in core-network are ribosomal genes, while the hubs in the pan-network represent a broad spectrum of func-
tional categories, such as aminotransferase (AT3G49680), or ferredoxin (AT1G10960) (Table 1, Supplemental 
File 2). Genes involved in ‘response to abiotic stimulus’ were enriched among the top 200 most connected genes 
in the pan-network (p-value =  1.6 ×  10−10). In addition, chaperonin genes were also enriched (p-value <  0.01). 
Chaperonins play a critical role in helping plants fight against environmental stresses by reestablishing the normal 
conformation of proteins. This may explain their potential ability to interact with many different genes under dif-
ferent conditions57. For instance, AT1G55490, encoding a subunit of chloroplasts chaperonins, was coexpressed 
with 1605 genes in the pan-network. These instances of coexpression were from 49 different experiments in total 
(Supplemental file 5). In conclusion, we demonstrated that a broad spectrum of condition-specific biological 
processes can be revealed by the pan-network analysis.

Discussion
Networks of interactions between different genes are key to our understanding of cellular mechanisms. 
Large-scale network data for plants are still very limited and are expensive to generate experimentally. 
Coexpression networks inferred from gene expression profiling data allows one to study interactions between 
genes (or proteins they encode) albeit indirectly. Based on ‘guilt-by-association’, coexpression network analysis 
provides great power in providing clues for gene functions in plants58. It also suggests candidates for the design 
of both high-throughput59,60 as well as more focused low-throughput experiments3,4,7,8. Thousands of expression 
profiling experiments are available for Arabidopsis in the GEO50. In our previous study we reported a principle 
component analysis of ~7000 expression samples from more than 300 publications in Arabidopsis61. The develop-
mental stage, growth conditions and the tissues of the mRNA samples used in each study are highly variable, since 
each of these experiments was designed to answer a specific biological question50. In this study, we assume the 
coexpression network inferred from a given experiment represents a part of the overall gene regulatory network 
perturbed by these specific changes in environmental or intrinsic conditions. We found relatively small number 
of edges (core network) that can be repeatedly detected in multiple conditions. Differences between functional 
enrichment within modules in pan- and core-networks emphasize the importance of biological context in coex-
pression analysis.

Recent studies have shown that coexpression networks in animals are highly condition-specific28–30. For 
example, by comparing mice of different ages, Southworth et al. found many coexpression gene modules can-
not be detected in older mice28. Network rewiring was first revealed through comparisons between different 
cellular states, such as healthy and cancerous tissues21. Our study showed plant coexpression networks are also 
under dramatic changes under different conditions. To complement our pan/core-network analysis focused 

Figure 6. The functional enrichment for network modules in the core-network (a), and in pan-network (b). 
The most over-represented biological processes were shown for each module in the core-network while the 
biological processes that only enriched in pan-network modules were listed. See Supplemental File 4 for details.
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on individual edges s, we further calculated the preservation of co-expressed gene modules in each dataset62. 
Consistent with the results shown in the above, the most preserved modules are enriched in ‘photosynthesis’ 
(p-value <  10−10, Supplemental File 6). The modules which can only be detected in one dataset are enriched in 
more specific biological processes, such as ‘pollen exine formation’ (p-value <  10−10) and ‘nucleosome organiza-
tion’ (p-value =  3.9*10−7) (Supplemental File 6). In the plant community, the context-specificity of gene coexpres-
sion has been usually ignored5,8,13,63,64. Our search of existing literature revealed that most previous meta-analysis 
studies of plant expression data (except for a few notable examples discussed below) combined datasets from 
different labs to detect pairs of universally co-expressed genes (Supplemental File 7). Using 15 rice gene expres-
sion datasets, Childs et al. compared coexpression networks generated from the combined expression data against 
those from individual datasets. They found networks from individual datasets to contain specific but potentially 
informative gene modules65. Lee et al. detected coexpression relationships based on individual datasets instead 
of one combined dataset for Arabidopsis as well as for rice9,66. Although Lee et al. successfully predicted gene 
functions based on the individual networks they constructed, the differences between networks from different 
labs were not systemically evaluated in their study.

Our collection of 134 co-expression networks in Arabidopsis based on individual experimental series in GEO 
database can be used to answer the question of whether one should combine multiple expression datasets before 
constructing the co-expression network and if yes, which datasets can be best grouped together. In principle, 
by combining together similar series one can get the best of both worlds: increased statistical power to detect 
significantly correlated genes can be gained without losing condition-specific edges. To shed light on this prob-
lem we constructed a 134 ×  134 matrix of similarities between our set of networks. The similarity was estimated 
using two different measures. The first similarity matrix shown in Fig. 7a and made available for download as 
Supplemental File 8 was constructed in the spirit of pan- and core-network analysis. It quantifies the fraction of 
edges shared between a pair of networks (See Methods). While clusters of similar networks, corresponding mostly 
to identical tissue types (empirical p-value <  10−5 based on permutation tests), are visible already in this measure, 
the contrast between similar and different networks can be made even sharper (Fig. 7) if one uses an alternative 
similarity measure based on shared modules of co-expressed gene across a pair of networks detected by the 
WGCNA algorithm’s62 method ‘modulePreservation’ (Supplemental File 9). We used this similarity measure to 
construct the ‘network of networks’ connecting pairs of networks with average module similarity score above 10 
(Fig. 7). Densely interconnected modules in this ‘network of networks’ represent good candidates for series that 
can be integrated without significant loss of condition-specific edges. We plan to investigate pros and cons of this 
approach in a follow up study.

Our analysis demonstrated that coexpression networks inferred from different microarray datasets share rel-
atively small number of common edges, while at the same time maintaining a large number of condition-specific 
edges. We constructed a pan-network to represent the union of all detected co-expressed edges among 134 data-
sets. We also proposed the concept of core-network representing edges detected in multiple datasets. Compared 
to the pan-network, the core-network is more modular and enriched in genes from large multi-protein com-
plexes. The hubs of the pan-network include genes that play a role in response to a variety of environmental 

Degree Gene description

Top 10 hubs in pan-network

AT1G33040 1524 nascent polypeptide-associated complex subunit alpha-like

AT2G37660 1527 NAD(P)-binding Rossmann-fold superfamily protein

AT1G15820 1529 light harvesting complex photosystem II subunit 6

AT3G49680 1549 branched-chain aminotransferase 3

AT5G46110 1551 Glucose-6-phosphate/phosphate translocator-related

AT1G55490 1605 chaperonin 60 beta

AT1G74470 1607 Pyridine nucleotide-disulphide oxidoreductase family protein

AT3G56940 1615 dicarboxylate diiron protein, putative (Crd1)

AT4G01150 1642 located in thylakoid

AT1G10960 1648 ferredoxin 1

Top 10 hubs in core-network

AT2G46820 86 photosystem I P subunit

AT3G60770 86 Ribosomal protein S13/S15

AT4G03280 86 photosynthetic electron transfer C

AT4G21280 86 photosystem II subunit QA

AT2G36170 88 Ubiquitin supergroup; Ribosomal protein L40e

AT1G42970 89 glyceraldehyde-3-phosphate dehydrogenase B subunit

AT5G16130 90 Ribosomal protein S7e family protein

AT1G26880 98 Ribosomal protein L34e superfamily protein

AT1G54780 102 thylakoid lumen 18.3 kDa protein

AT3G23390 103 Zinc-binding ribosomal protein family protein

Table 1.  The hubs in pan-network and core-networka. aSee Supplemental File 2 for a full list of nodes.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:38956 | DOI: 10.1038/srep38956

stimuli. In comparison, the modules within the pan-network are enriched in signaling and regulatory functions. 
We also considered several measures of similarities between individual coexpression networks and constructed 
‘network of networks’ connecting similar networks to each other. We anticipate concepts of pan- and core- coex-
pression networks to provide a useful description of gene regulation architecture in a variety of species and we are 
currently working on extending our analysis to model organisms other than Arabidopsis.

Methods
Microarray data. All the expression datasets in this study were based on the Affymetrix platform GPL198. 
Only datasets containing at least 20 samples were used67. The CEL files of 134 expression datasets were down-
loaded from GEO (see Supplemental File 10) and normalized by MAS5.068. The probesets were converted into 
TAIR gene locus ID based on the annotation file for GPL198. We only used 21678 probesets each of which has a 
unique mapping on a single Arabidopsis gene.

Filtering biologically relevant genes. We manually grouped samples within each dataset into different 
replicate groups based on the metadata provided in the dataset. Then we applied ANOVA (Analysis of variance) 
to identify genes that are differentially expressed between replicate groups (p-value <  0.01). If there were fewer 
than 3000 differentially expressed genes, the top 3000 genes ranked by p-value were used. We then applied the 
following standards to exclude genes with low expression. 1) For a gene to be included, at least one of its expres-
sion abundance values in a dataset was identified as expressed (i.e. present) by MAS5.0; and 2) For a gene to be 
included, at least one of its expression abundance values in a dataset was higher than the 90% percentile of the 
abundance of transposable element on the same array69. Those biologically relevant genes were then used to build 
series-based coexpression networks.

Building the series-based network for each GEO dataset. For each GEO dataset, we calculated the 
Pearson Correlation Coefficient (PCC) between the expression profiles of two genes. All possible pairs were 

Figure 7. Microarray datasets that are generated from the same tissue type tend to form similar 
coexpression networks. The clustering of 134 series-based networks based on the similarity between their 
edges (a) and overlap between modules (b). The ‘network of networks’ (c) connecting pairs of networks with 
module similarity scores above 10. Network nodes (c) and matrix rows (a,b) are colored according to the tissue 
type with the color guide shown in the figure.
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calculated. Then, the top 0.1% pairs with the highest correlations were used to build the network for each dataset 
(i.e. p-value <  0.001)34. A recent study showed that genes within the same metabolic pathway tend to have positive 
correlations70. In addition, taking into account negatively correlated gene pairs complicates the interpretation of 
our results. Therefore, we focused our analysis only on positively correlated gene pairs.

Enrichment test. The GO annotation data were downloaded from GeneOntology web site (http://geneon-
tology.org/gene-associations/gene_association.tair.gz, July 18, 2014). The annotations inferred from the expres-
sion profile (i.e. IEP) were removed to avoid the possibility of ‘self-fulfilling prophecy’. All the daughter nodes 
were recursively mapped to the mother node based on ‘is_a’ relationship. Only the GO terms that are not broadly 
associated with too many genes were used according to the Bonferroni correction:










<

.# of genes associated with the GO term
# of genes in the genome

0 05
# of GO terms in the genome (1)

2

The Fisher’s exact test was utilized to calculate the significance of the enrichment for each GO term, followed 
by Benjamini–Hochberg correction.

Calculation of network similarity between different datasets. We first used the fraction of over-
lapped edges between two networks to measure their similarity (Supplemental File 8) which was based on Jaccard 
index,

∩
∪

Ei Ej
Ei Ej (2)

where Ei and Ej are the edges in network i and j, respectively. Another measure of network similarity was calcu-
lated as follows (Supplemental File 9). First, densely interconnected network modules were detected by Weighted 
Gene Co-Expression Network Analysis (WGCNA) software for each one of our 134 networks71. Second, the 
method, ‘modulePreservation’ within WGCNA was utilized to calculate the preservation of each module in 
another dataset62. Then the average Z-summary score of all the modules shared between a pair of networks was 
used to represent their similarity. This score was normalized between 0 and 1 for visualization purpose by,

−
−

−

max S
max min

1 (3)
i j,

where Si,j is the similarity (i.e average Z-summary) between a pair of datasets. max and min represent the largest 
and smallest similarity, respectively. A cutoff of Si,j >  10 was applied in order to keep the network pairs with the 
strongest similarity when be visualized62. If a network has more than 10 neighbors, only the first 10 neighbors 
were shown. If a network has no neighbor, it was not shown. For more information on the calculation of network 
similarity using WGCNA, see Supplemental File 11.
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