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Abstract

Discriminant analysis procedures that assume parsimonious covariance and/or means structures have been proposed for

distinguishing between two or more populations in multivariate repeated measures designs. However, these procedures

rely on the assumptions of multivariate normality which is not tenable in multivariate repeated measures designs which

are characterized by binary, ordinal, or mixed types of response distributions. This study investigates the accuracy of

repeated measures discriminant analysis (RMDA) based on the multivariate generalized estimating equations (GEE)

framework for classification in multivariate repeated measures designs with the same or different types of responses

repeatedly measured over time. Monte Carlo methods were used to compare the accuracy of RMDA procedures based

on GEE, and RMDA based on maximum likelihood estimators (MLE) under diverse simulation conditions, which included

number of repeated measure occasions, number of responses, sample size, correlation structures, and type of response

distribution. RMDA based on GEE exhibited higher average classification accuracy than RMDA based on MLE especially

in multivariate non-normal distributions. Three repeatedly measured responses namely severity of epilepsy, current

number of anti-epileptic drugs, and parent-reported quality of life in children with epilepsy were used to demonstrate

the application of these procedures.
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1 Introduction

Discriminant analysis (DA) is commonly used to classify an individual into one of two (or more) populations on

the basis of correlated response measures. In more recent years, relevant work has been done in capturing the

longitudinal nature of clinical data and using it for classification via discriminant analysis.1–8 These research

studies include DA extensions to repeated measures data with multiple response. Utilizing the correlation struc-

ture across responses with a multivariate model could increase the classification accuracy.9 Classical DA does not

model the covariance structure, and thus the information regarding the possible structure in the covariance for
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repeated measurements taken on the same individual and between responses is lost.10–13 Moreover, classical DA is
based on multivariate normality assumption to guarantee an optimal solution. Equal covariance structures are
assumed in the groups10 for linear discriminant analysis (LDA), while quadratic discriminant analysis (QDA)
allows for unequal covariance structures between the groups.11–13

Most DA methodologies in multivariate repeated measures data are based on mixed effects model.
Multivariate linear and non-linear mixed effects models that assume unstructured1,14 and parsimonious struc-
ture7,9,15,16 for the variance-covariance matrix have been introduced. For instance, several continuous markers
and a multivariate linear mixed effects model were used to evaluate a prognosis of primary biliary cirrhosis
patients14 and non-linear mixed effects model to distinguish between women with and without pregnancy abnor-
malities.15 Similarly, three continuous markers were used to classify patients suffering from prostate cancer.7

Generalized linear mixed effects models have been extended in multivariate repeated measures studies for different
type of responses (continuous, counts, and binary).1,3,17 Most mixed effects model DA assume that the random
effects follow a multivariate normal distribution. Moreover, the dimension of random-effects quickly increases as
more responses and more measurements occasions are added to the model, increasing the computational burden
and instability.1,8,14 In addition, it is difficult to evaluate the marginal likelihood of jointly generalized linear
mixed effects models when the response is non-normal.

Contrary to mixed effects models approaches, some researchers have utilized the generalized estimating equa-
tions (GEE) based on multiple marginal models of multiple responses. To avoid the specification of the full
likelihood function especially for discrete data, GEE18 is a suitable approach for parameter estimation for repeat-
ed measures data without full specification of the likelihood. Specifically, GEEs directly specify a marginal mean
model for each response and induce the correlation between measurements of responses through a working
correlation matrix. GEEs offer a computationally non-intensive parameter estimation algorithm and the resulting
parameter estimates have population-averaged interpretation. A joint modeling of multiple response variables is
based on straightforward extension of univariate GEEs with correlation structure across responses which provides
separate set of regression parameters for each response variable.19,20 GEEs are less sensitive to covariance mis-
specification compared to mixed effects models.18,21

This study examines the accuracy of discriminant analysis based on multivariate GEE framework for classifica-
tion in multivariate repeated measures designs with same/different types of responses. The article is organized as
follows. In section 2, we describe the GEEs framework for multivariate repeated measures data. The proposed
approach, the extension of the GEE framework to discriminant analysis, is presented in section 3. In section 4, we
summarize the results of a Monte Carlo simulation study to assess the accuracy of the proposed repeated measures
discriminant analysis based onGEERMDAapproach under diverse simulation scenarios. Data from amultivariate
longitudinal study of childrenwith epilepsywere used to demonstrate the application of these procedures in section 5.
Finally, a discussion of the key findings from the study and its implications are described in section 6.

2 GEE for multivariate repeated measures data

Suppose we have a random sample of N individuals. For each individual i¼ 1, . . ., N, let yi ¼ ðy0i1; y0i2; . . . ; y0iQÞ0 be
a PQ x 1 vector of Q correlated responses that are each repeatedly measured at P occasions, and
Xi ¼ IQ � Xi� is a corresponding KQ�PQ block diagonal covariate matrix, where Xi� ¼
ðXi1; Xi2; . . .Xik; . . . ; XiKÞ is a K x P matrix of covariates, IQ is an Q x Q identity matrix, and � is the
Kronecker product symbol. For the analysis of multivariate correlated data, the marginal mean vector is asso-
ciated with the covariates through a generalized linear model (GLM) as follows

lipq ¼ E yipqjXip

� � ¼ fðX0
ipbqÞ; (1)

where, f(�) is the inverse response-specific link function, bq ¼ ðbq1; bq2; . . . bqk; . . . ; bqKÞ0 is the K� 1 dimensional
vector of the qth response regression coefficients, and Xip is the corresponding covariate at time p for the ith
individual. The KQ-dimensional parameter vector of b ¼ ðb’1; b’2; . . . ; . . . ; b’QÞ’ and the marginal model in equation
(1) is represented by li ¼ E yijXi

� � ¼ f X0
ib

� �
: In the quasi-likelihood framework with repeated measures responses,

the regression coefficients in b can be estimated by solving the generalized estimating equations (GEEs)

U bð Þ ¼
XN
i¼1

D0
iX

�1
i yi � lið Þ ¼ 0 (2)
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where Di ¼ @li
@b is the block diagonal matrix of derivatives mean with respect to the regression parameters, li is the

marginal mean vector, and Xi is the PQ�PQ working covariance matrix.
The PQ�PQ marginal covariance matrix is

Xi ¼ /Ri; (3)

where / is a scale parameter that can be known or estimated and Ri is an PQ�PQ working covariance matrix,
which results in a total of PQ (PQþ 1)/2 unknown parameters to be estimated22,23 which may not always be
feasible (i.e. when PQ is close to N). To reduce the dimension of the unknown parameters of the covariance

matrix, a parsimonious structure is sometimes used, such as a Kronecker product covariance structure

Ri ¼ A
1=2
i RðaÞ � RðqÞÞA1=2

i (4)

where Ai is an PQ�PQ block diagonal matrix, which contains the marginal variance of responses on the main
diagonals, RðaÞ is a Q� Q working correlation matrix of the responses with the parameter vector a, and RðqÞ is

the working correlation matrix for a given response at different time points with the parameter q: This structure
reduces the number of covariance parameters to be estimated.23–27 Consequently, RðaÞ and RðqÞ denote between-
response correlation matrix and within-response correlation matrix, respectively. Further, assuming a structured
working correlation, such as exchangeable (EX), first-order autoregressive (AR1), or unstructured (UN), for

RðaÞ and exchangeable (EX) or unstructured (UN) structures for RðqÞ, can lead to an even more parsimonious
model.22,28,29 The parsimonious structure provides flexible model for covariance, particularly when sample size is
small.22,28,29 Inferences of interest are easily influenced by the correlation structure’s assumptions, and unstruc-
tured correlation structure might cause convergence problems as the number of parameters to be estimated grows

rapidly.30 Specifically, Ub ¼ 0 are solved with a Fisher-Scoring algorithm such that

b̂ ¼ ~b þ
XN
i¼1

~D
0
i
~X

�1

i
~Di

 !�1 XN
i¼1

~D
0
i
~X

�1

i yi � lið Þ
 !

(5)

Under mild regularity conditions, the parameter estimates are consistent and asymptotically normally distrib-
uted even when the “working” correlation structure of responses is misspecified, and the variance-covariance
matrix can be estimated using a robust “sandwich” variance estimator.31 The asymptotic covariance matrix of the
non-vanishing (non-zero) component of b̂ via the sandwich estimator formula is31,32

^cov b̂
� �

¼
XN
i¼1

D̂
0
iX̂

�1

i D̂i

 !�1

M̂�
XN
i¼1

D̂
0
iX̂

�1

i D̂i

 !�1

; (6)

with

M̂� ¼
XN
i¼1

D̂
0
iX̂

�1

i ^cov yið ÞX̂�1

i D̂i (7)

and ^cov yið Þ ¼ yi � l̂ið Þ yi � l̂ið Þ0 is an estimator of the true variance-covariance matrix of yi:
18,31 Note that if Xi is

correctly specified, Xi ¼ covðyiÞ:33,34 Moreover, GEE requires the correct specification of marginal mean and
variance as well as the link function, which connects the covariates of interest and the marginal means.

3 GEE extension to multivariate repeated measures discriminant analysis

Following the GEE notation, we assume that the ith individual in the jth population (j ¼1,2) with multivariate
repeated responses yji; has a marginal mean lji, and variance covariance matrix Xji assumed to be PQ�PQ

positive definite. Analogously, with estimations of l̂ji ¼ fðXjib̂jÞ and the variance covariance matrix X̂ji from the
GEE model in population j using a pre-defined structure, the homoscedastic model is obtained when the variance
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components are homogeneous, that is, X1 ¼ X2 ¼ X; the pooled covariance matrix. Based on LDA, a ran-

domly selected ith individual with multiple response vector yi is classified in the first group, if

yi �
l̂1 þ l̂2

2

� �0
X̂

�1
l̂1 � l̂2ð Þ > log

p̂2

p̂1
(8)

where l̂j and X̂
�1

j are the GEE estimates from equations (1) and (2), p̂1 and p̂2 are the a priori probabilities that

observations belong to populations 1 and 2. Otherwise, the individual is classified into the second group. For

QDA (i.e. X1 6¼ X2Þ, the ith subject with multiple response vector yi is classified in the first group, if

yi � l̂2ð Þ0X̂�1

2 yi � l̂2ð Þ � yi � l̂1ð Þ0X̂�1

1 yi � l̂1ð Þ > log
X̂1

X̂2

þ 2log
p̂2

p̂1
; (9)

otherwise, it is classified into the second group.

4 Simulation study

A Monte Carlo simulation study was conducted to examine the accuracy of linear and quadratic GEE discrim-

inant analysis procedures that assume Kronecker product structured covariances compared to MLE repeated

measures discriminant analysis based on structured covariances.22,29,35 The following conditions were investigat-

ed: (a) number of repeated measurements ðPÞ; (b) total sample size ðNÞ, (c) group sizes ðn1; n2Þ, (d) pattern and

magnitude of correlation among the repeated measurements (qÞ, (e) mean configuration, (f) covariance hetero-

geneity, and (g) population distribution. All procedures were investigated for two independent groups. The

number of repeated occasions/time points was set at P ¼ 3 and 5, and number of responses was set at Q ¼ 3

and 5. Previous studies about DA procedures for multivariate repeated measures data have considered P ranging

from 3 to 10, an increase in classification accuracies were quite significant when P increased from three to five.36,37

Total sample sizes of N ¼ 80, 140 and 200 were investigated. This is consistent with previous simulation studies

that examined the accuracy of DA for multivariate repeated measures data between 60 and 500. Moreover,

consistent with previous studies that examined the impact of equal and unequal group sizes,36–39 we investigated

conditions of N ¼ 80, ðn1; n2Þ ¼ ð40; 40Þ; and (32; 48Þ; which represent a group size ratio of 1:1 and 2:3,

respectively. Similar equal and unequal group size ratios were investigated when N ¼ 140 and N ¼ 200.

Furthermore, the accuracy of DA procedures is known to be influenced by both the magnitude and pattern of

within- and multivariate-response correlations.40 Therefore, we investigated the following within-response corre-

lation structures: (a) Compound Symmetry with q ¼ 0:3 and q ¼ 0:7, (b) autoregressive order 1 with q ¼ 0:3 and

q ¼ 0:736,37 for RðqÞ, and the between-responses correlation, RðaÞ was assumed to be unstructured (See Table 1

for more details).
Hence, we assumed two Kronecker correlation structures; UNAR¼Unstructured between-responses and

Autoregressive order-1 within-response correlation matrix, and UNCS¼Unstructured between-responses and

Compound symmetry within-response correlation matrix. For covariance heterogeneity, we assumed

X1 ¼ X2 and X1 ¼ 3X2.
In order to assess the performance of the discriminant function, we investigated multivariate correlated con-

tinuous response variables, count response variables, and different types of correlated responses, namely Case 1,

Case 2, and Case 3, respectively. Case 1: For the correlated continuous response variables, we assumed three

normal variables jointly observed for nj subjects, where each observed at P time points. The true marginal mean

response model lipq was assumed to take the following functional form that uses an identity link function

lipq ¼ bq1xip þ bq2tip (10)

The number of covariates; K ¼ 2, where xip was generated from an independent normal random varia-

ble Nð0;1Þ as a time-invariant covariate, and tip denoted the time of observation as a time-varying covariate.

Details of the true parameters b for population 1 and population 2 can be found in Table 2.
On the other hand, the marginal variance matrix of responses was assumed to have a common variance of 60.

Case 2: For the multivariate count response variables, data were generated from a multivariate Poisson
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distribution using the log link function instead of identity link in Case 1 and log transformation of time of

observation as a time-varying covariate.

logðlipqÞ ¼ bq1xip þ bq2logðtipÞ (11)

The true parameters b for population 1 and population 2 can be found in Table 2. Case 3: For generating

different types of correlated responses, one of the responses generated from case 1 (multivariate normal distri-

bution data) was converted to Bernoulli response using the NORmal-To-Anything (NORTA) algorithm41 with

probabilities from the logit function.
Linear and quadratic discriminant analysis rules were developed using the marginal mean and variance-

covariance matrix estimated via GEE, and MLE for equal and unequal covariance matrix, respectively. The

classification performance of the procedures was evaluated using the overall average classification accuracy

and its corresponding standard errors.

Overall classification accuracy ¼ correct classifications

number of classifications ðNÞ (12)

All combinations of simulation conditions were investigated for each procedure and each method of estima-

tion, resulting in a total of 194 combinations. There were 500 replications for each combination. All analyses were

completed in R statistical software version 3.5.3.

4.1 Simulation results

Tables 3 and 4 describe the average classification accuracies and standard errors of repeated measures linear and

quadratic discriminant analysis based on GEE, and MLE, respectively, by population distribution, number of

repeated occasions, and number of responses. For each type of estimator, there were negligible differences (<
0.04) for linear DA UNCS and UNAR procedures. But RMDA based on GEE procedures were more accurate

Table 1. Configuration of unstructured between-responses correlation matrix given within-response correlation coefficient for the
Monte Carlo Study.

Within-response

Correlation 0.3 0.7

Coefficient (q)

Q ¼ 3

1 0:15 0:30
0:15 1 0:45
0:30 0:45 1

2
4

3
5 1 0:65 0:66

0:65 1 0:70
0:66 0:70 1

2
4

3
5

Q ¼ 5

1 0:28 0:25 0:28 0:28
0:28 1 0:30 0:40 0:23
0:25
0:28
0:28

0:30
0:40
0:23

1

0:24
0:24

0:24
1

0:37

0:24
0:37
1

2
66664

3
77775

1 0:70 0:79 0:64 0:70
0:70 1 0:73 0:65 0:74
0:79
0:64
0:70

0:73
0:65
0:74

1

0:63
0:62

0:63
1

0:62

0:62
0:62
1

2
66664

3
77775

Q: Number of responses.

Table 2. True parameters (b) for population 1 and population 2 simulated data.

Population distribution

Number of

responses Population 1 Population 2

Normal/mixed-type 3 ð0:3;1; 2;0:1;1; 1:5Þ ð0:6;2; 4;0:2;2; 3Þ
5 ð0:2;1; 2;1:5;1; 0:4;0:7;3; 1:2;0:8Þ ð0:4;2; 4;3; 2;0:8;1:4;6; 2:4;1:6Þ

Poisson 3 ð0:3;0:1;0:2;0:1;0:3;0:5Þ ð 0:9; 0:3; 0:6; 0:3 ; 0:9; 1:5Þ
5 0:3;0:1;0:4;0:1;0:45;0:6;0:2;0:15;0:3;0:4ð Þ ð0:9; 0:3;1:2;0:3;1:35;1:8;0:6;0:45;0:9;1:2Þ
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than RMDA based on MLE among UNCS procedures. For example: for the UNCS correlation matrix under
GEE, the average accuracy for P ¼ 3 was 0.74 and P ¼ 5, it was 0.89, while for the UNCS correlation matrix
under MLE, the average accuracy for P ¼ 3 was 0.66 and Q ¼ 5, it was 0.63 when the number of responses was
five (Table 3).

Moreover, RMDA based on GEE had the highest average classification accuracy compared to RMDA
procedures based on MLE when responses were sampled from a multivariate Poisson distribution and mixed
type responses. For example, when P¼ 3 and Q¼ 5, the average classification accuracies of RMDA procedures
based on GEE and MLE were 0.97 and 0.84 when data were sampled from a multivariate Poisson distribution
with response variables. Whereas, the average accuracy of the GEE and MLE procedures were 0.72 and 0.58,
respectively, when mixed type responses, under UNAR correlation matrix (Table 3). In the quadratic discriminant
analysis procedures, RMDA procedures based on MLE were least accurate regardless of number of repeated
occasions, number of responses, estimation method or multivariate distribution of response variables (Table 4).

Table 3. Overall mean accuracy (standard error) for repeated measures LDA procedures based on GEE, and MLE by population
distribution, number of responses, number of measurements occasions, and correlation structure.

Population

distribution

Number of

responses

Number of

measurements

occasions

GEE MLE

UNAR UNCS UNAR UNCS

Normal 3 3 0.62 (0.04) 0.64 (0.04) 0.63 (0.04) 0.65 (0.04)

5 0.73 (0.04) 0.75 (0.04) 0.69 (0.04) 0.70 (0.04)

5 3 0.68 (0.04) 0.74 (0.04) 0.66 (0.04) 0.66 (0.04)

5 0.83 (0.03) 0.89 (0.03) 0.82 (0.03) 0.63 (0.03)

Poisson 3 3 0.88 (0.04) 0.90 (0.03) 0.79 (0.04) 0.81 (0.04)

5 0.97 (0.02) 0.97 (0.03) 0.84 (0.05) 0.85 (0.05)

5 3 0.99 (0.01) 0.99 (0.01) 0.89 (0.04) 0.90 (0.04)

5 0.99 (0.01) 0.99 (0.01) 0.95 (0.02) 0.95 (0.02)

Mixed-type 3 3 0.62 (0.04) 0.63 (0.04) 0.55 (0.04) 0.55 (0.04)

5 0.72 (0.04) 0.74 (0.04) 0.58 (0.04) 0.58 (0.04)

5 3 0.68 (0.04) 0.72 (0.04) 0.67 (0.04) 0.57 (0.04)

5 0.81 (0.03) 0.87 (0.03) 0.62 (0.04) 0.62 (0.04)

UNAR: unstructured between-responses and autoregressive order 1 within-response correlation matrix; UNCS: unstructured between-responses and

compound symmetry within-response correlation matrix; GEE: generalized estimating equation; MLE: maximum likelihood estimation.

Table 4. Overall mean accuracy (standard error) for repeated measures QDA procedures based on GEE, and MLE by population
distribution, Number of responses, number of measurements occasions, and correlation structure.

Population

distribution

Number of

responses

Number of

measurements

occasions

GEE MLE

UNAR UNCS UNAR UNCS

Normal 3 3 0.77 (0.04) 0.80 (0.04) 0.65 (0.04) 0.66 (0.04)

5 0.85 (0.04) 0.88 (0.04) 0.71 (0.04) 0.71 (0.04)

5 3 0.85 (0.04) 0.89 (0.04) 0.66 (0.04) 0.66 (0.04)

5 0.90 (0.03) 0.94 (0.03) 0.85 (0.03) 0.90 (0.02)

Poisson 3 3 0.93 (0.03) 0.94 (0.03) 0.78 (0.04) 0.79 (0.04)

5 0.99 (0.01) 0.98 (0.03) 0.85 (0.05) 0.85 (0.05)

5 3 0.99 (0.01) 0.99 (0.01) 0.90 (0.04) 0.92 (0.03)

5 0.99 (0.01) 0.99 (0.01) 0.95 (0.02) 0.95 (0.02)

Mixed-type 3 3 0.74 (0.04) 0.75 (0.04) 0.56 (0.04) 0.55 (0.04)

5 0.84 (0.04) 0.85 (0.04) 0.58 (0.04) 0.58 (0.06)

5 3 0.83 (0.04) 0.86 (0.04) 0.58 (0.04) 0.58 (0.04)

5 0.91 (0.03) 0.94 (0.03) 0.63 (0.04) 0.63 (0.04)

UNAR: unstructured between-responses and autoregressive order 1 within-response correlation matrix; UNCS: unstructured between-responses and

compound symmetry within-response correlation matrix; GEE: generalized estimating equation; MLE: maximum likelihood estimation.
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For example, when Q¼ 5 and P¼ 3 under UNAR correlation matrix, the average classification accuracies of
RMDA procedures based on GEE and MLE were 0.85 and 0.66 when data were sampled from a multivariate
normal distribution with response variables.

Furthermore, the average accuracy of each linear and quadratic discriminant analysis procedure increased as
the number of repeated occasions and number of responses increased, regardless of the estimation method or
multivariate distribution of response variables. For example, for Q¼ 3, when data were sampled from a multi-
variate normal distribution, the average increase in classification accuracy of the RMDA procedure based on
GEE and MLE were about 0.11 and 0.05, respectively, as p increased from three to five, under UNCS correlation
matrix (Table 3). Likewise, the average increase in classification accuracy of the RMDA procedure based on GEE
and MLE were about 0.10 and 0.01, respectively, as Q increased from three to five, under UNCS correlation
matrix and P¼ 3 (Table 3).

It is worth mentioning that, we observed little or no differences in classification accuracies for linear and
quadratic discriminant procedures when RMDA procedures based on MLE were used, whereas the classification
accuracies for quadratic discriminant procedures based on GEE increased compared to its corresponding linear
discriminant procedures (Tables 3 and 4)

For example: the average accuracy for RMDA procedure based on GEE and MLE were 0:64 and 0:65,
respectively, for linear discriminant procedure (Table 3), while for quadratic discriminant procedure, the average
accuracies were 0.80 and 0.66, respectively (Table 4) under the UNCS correlation matrix, when data were sampled
from a multivariate normal distribution with response variables and P¼ 3.

5 Health-Related Quality of Life in Children with Epilepsy Study (HERQULES)

Multivariate repeated measures data were obtained from the Health-Related Quality of Life (HRQOL) in
Children with Epilepsy Study (HERQULES), a two-year prospective cohort study assessing the course and
characteristics potentially associated with HRQOL in children with new onset epilepsy across Canada.12,13

Details of HERQULES have been described elsewhere.12,13 Data were collected as soon as possible following
the diagnosis of epilepsy at baseline (0month), and approximately 6months, 12months, and 24months later.
Standardized questionnaires were used to collect parent-report of their children’s HRQOL and a series of child
and family characteristics, while a neurologist report form collected information on clinical characteristics of the
child’s epilepsy.

Using these multivariate repeated measures data, we sought to identify patients who will not achieve remission
from seizures within two years from disease onset. This group is referred to as the refractory group. A patient is
defined as being in remission if they had a continuous 12-month period without any seizures at any point within
two years from diagnosis.3 Early identification of patients who have refractory epilepsy can allow clinicians to
explore alternative treatment options (e.g. surgery) to manage seizures and other aspects of the disease.3 Data for
this numeric example consist of response variables such as severity of epilepsy,14 current number of anti-epileptic
drugs (AEDs), and parent-reported quality of life in children using epilepsy-specific scale which were measured
over four measurement occasions and the covariates were time of observation as a time-varying covariate, age at
seizure onset, and sex as time invariant covariates. Repeated measures linear and quadratic discriminant analysis
classification rules were developed based on multivariate GEE model using these data.

Of the 187 patients included in this analysis, 101 patients were in the remission group and 86 patients were in
the refractory group within two years. The sample included children ages 4 to 12 years. The average age (standard
deviation) in the remission group was 8.25 (2.46) years and in the refractory group was 8.25 (2.46) years. The
patients included 45.54% and 41.86% females in the remission and refractory groups respectively. The QOLCE-
55 ratings underwent a linear transformation such that domain scores yield values from 0 (low HRQOL) to 100
(high HRQOL). The ratings were treated as a continuous variable. The GASE scale is a seven-point Likert scale
ranging from 1 (not severe at all) to 7 (extremely severe) was recoded as a binary variable, with �3 coded as severe,
thereby using the median severity 3, corresponding to “somewhat severe” as a cut-off.42

5.1 Results for HERQULES data

Figure 1 describes the longitudinal changes in the levels of each of the response variables for all patients in each
diagnostic group. For patients who achieved remission, severity of seizures appears to decrease over time, whereas
seizure severity remained high for the refractory group. The difference between the overall quality of life of the
two groups is less noticeable. However, the overall quality of life appears constant over time in the refractory
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group, but as time increases, the overall quality of life of the remission patients gradually increases. The number of

AEDs increased over time for the refractory patients, while those in the remission group had slightly reduced

number of AEDs.
Table 5 gives the group-specific correlation parameter estimates of the joint modeling of the multiple repeated

responses using multivariate GEE. We observed that in both remission and refractory groups, HRQOL was

negatively associated with severity of seizures and the number of AEDs. However, there was little to no associ-

ation between severity of seizures and the number of AEDs.
The accuracy of LDA and QDA classifiers based on GEE and maximum likelihood estimators are described in

Table 6. Overall, RMDA procedures based on GEE exhibited higher overall classification accuracy than RMDA

based on MLE in both LDA and QDA. Moreover, the classification accuracies observed using GEE estimators

increased when QDA (accuracy, 0.79) was used for classification compared to its LDA (accuracy, 0.71) approach,

while the accuracy using MLE estimators for remains the same for both QDA and LDA (accuracy, 0.67). The

classifiers were more accurate in correctly reclassifying patients in the remission group but less accurate for

reclassifying those in the refraction group.

Table 5. GEE group-specific correlation parameter estimates for HERQULES data by the assumed
correlation structure.

Remission Refractory

UNAR UNCS UNAR UNCS

q 0.812 0.749 0.744 0.726

Corr(Y2Y1) –0.025 –0.023

Corr(Y3Y1) 0.003 0.001

Corr(Y3Y2) –0.042 –0.038

UNAR: unstructured between-responses and autoregressive order 1 within-response correlation matrix; UNCS:

unstructured between-responses and compound symmetry within-response correlation matrix; number of (AEDs) (Y1),

HRQOL (Y2), Severe Seizure (Y3).

Figure 1. Observed longitudinal profiles of number of anti-epileptic drugs (AEDs), quality of life, and seizure severity from the
Remission group (left column) and the Refractory group (right column). Solid lines show LOESS smoothed profiles for Poisson,
normal, and binomial models calculated using data from all patients. Baseline (0month), and 6months, 12months, and 24months.
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6 Discussion

This study investigated discriminant analysis procedures for multivariate repeated measures data using GEE for

discriminating between population groups. The proposed approach allows the incorporation of repeated measures

responses and covariates to improve the accuracy of the classifier. Our results showed that the RMDA based on

GEE model resulted in better classification accuracy than the conventional RMDA based on maximum likelihood

estimators especially in multivariate repeated measures data with discrete and/or mixed type of responses.43,44

This is because the GEE allows for the incorporation of multivariate repeated measures outcomes of different

types without the need to fully specify the likelihood.20,30,44,45 Another advantage of these procedures is their

ability to accommodate both time-invariant and time-varying covariate to improve the accuracy of

modelclassifiers.
Furthermore, our study revealed the impact of increasing repeated occasions and number of responses on the

accuracy of the investigated procedures. The impact of increasing number of repeated occasions is consistent with

literature on other RMDA methods22,37; however, the studies from literature did not investigate the impact of

increasing number of responses. Specifically, the RMDA based on GEE was most accurate with increases in the

number of repeated occasions and number of responses compared to RMDA based on MLE. Overall, the qua-

dratic discriminant analysis was able to better classify individuals than the linear discriminant analysis in RMDA

based on GEE. QDA provides a less restrictive procedure by allowing different covariance matrixes for each

group, which minimizes misclassification. Even though classification rules based on LDA can perform badly if the

assumption of a common within-class covariance matrix is violated, classification rules based on QDA require a

larger sample size to overcome the singularity problem.13,46,47 Even though the procedures developed in this study

are based on two-group multivariate repeated designs, our conclusions can be extended and generalized to multi-

group designs.48,49

Despite the unique strengths of this class of repeated measures discriminant analysis models, they are not

without their limitations. First, the RMDA based on GEE relies on correctly specified link function and parsi-

monious covariance structures, which might not be tenable in typical multivariate repeated measures data. It is

well known that GEEs yield asymptotically consistent parameter and variance estimates even under incorrect

specification of the correlation structure but correctly specified link function.18,43,45 This means that a crucial step

in the GEE approach is to select a correct link function linking the mean response to the covariates.50 With regard

to parsimonious covariance structures, even though several authors have observed many advantages of using

Kronecker product structure for analyzing multivariate repeated measures data,22,24,37,51,52 one could use the

usual unstructured variance covariance matrix when there is sufficient data. Moreover, some work has been done

on the testing of hypotheses of Kronecker product structure.22,24,26 It is also not clear whether the misspecification

of the working correlation structures for these procedures could influence their classification accuracy.53

However, one does not know a priori which correlation structure is correct. Future research is needed to examine

Table 6. Classification accuracy for the generalized estimating equation (GEE), and maximum likelihood
estimation (MLE) methods for repeated measures LDA and QDA by the assumed correlation structure.

GEE MLE

UNAR UNCS UNAR UNCS

LDA

Remission 0.772 0.770 0.762 0.760

Refractory 0.651 0.640 0.570 0.558

Overall 0.711 0.705 0.665 0.660

QDA

Remission 0.871 0.880 0.752 0.750

Refractory 0.709 0.698 0.581 0.570

Overall 0.790 0.789 0.667 0.660

LDA: linear discriminant analysis; QDA: quadratic discriminant analysis; GEE: generalized estimating equation; MLE:

maximum likelihood estimation; UNAR: unstructured between responses and autoregressive order 1 within response

correlation matrix; UNCS: unstructured between responses and compound symmetry within response correlation

matrix.
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the impact of misspecification of covariance structure on the accuracy of these classifiers. In addition, to help in
choosing a working correlation matrix that is close to the true correlation matrix, a quasi-likelihood under the
independence model criterion (QIC) which is a modified Akaike information criterion (AIC) has recommended
for GEE model.54,55 Secondly, the assumption of complete multivariate repeated measures data in which there are
no missing data on all responses and at all measurement occasions might not be realistic in multivariate repeated
measures data often encountered in applied research. Even in a well-controlled repeated measures study, missing
data may frequently occur due to missed visits, withdrawal from the study, or loss to follow-up.20 Some studies
have been done to address drop-out problems in repeated measures studies via weighted generalized estimating
equations56 and imputations. Further research could extend the DA procedures based on GEE by implementing
some of the multiple imputation techniques.20,57–59 Finally, our study focussed on comparing marginal models
(GEE and covariance pattern models), which may not be efficient when accounting for individual-specific var-
iations and dealing with missing data. Discriminant analysis based on mixed models constitute an alternative class
of longitudinal classifiers that can account for individual-specific variations in longitudinal trajectories and
accommodate incomplete longitudinal data, however, rely on the multivariate normality assumption.7,9,15,16

Future research will investigate the accuracy of discriminant analysis classifiers based on marginal and
random-effects conditional models.

In summary, this study proposes a new class of discriminant analysis procedures based on GEE, which can be
used for distinguishing between population groups in multivariate repeated measures data characterized by mul-
tivariate non-normal distributions with continuous, binary, or mixed types of response variables.
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