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Objectives: This study aimed to investigate alterations in regional homogeneity (ReHo)
in early Parkinson’s disease (PD) at different Hoehn and Yahr (HY) stages and to
demonstrate the relationships between altered brain regions and clinical scale scores.

Methods: We recruited 75 PD patients, including 43 with mild PD (PD-mild; HY
stage: 1.0–1.5) and 32 with moderate PD (PD-moderate; HY stage: 2.0–2.5). We
also recruited 37 age- and sex-matched healthy subjects as healthy controls (HC).
All subjects underwent neuropsychological assessments and a 3.0 Tesla magnetic
resonance scanning. Regional homogeneity of blood oxygen level-dependent (BOLD)
signals was used to characterize regional cerebral function. Correlative relationships
between mean ReHo values and clinical data were then explored.

Results: Compared to the HC group, the PD-mild group exhibited increased ReHo
values in the right cerebellum, while the PD-moderate group exhibited increased ReHo
values in the bilateral cerebellum, and decreased ReHo values in the right superior
temporal gyrus, the right Rolandic operculum, the right postcentral gyrus, and the right
precentral gyrus. Reho value of right Pre/Postcentral was negatively correlated with HY
stage. Compared to the PD-moderate group, the PD-mild group showed reduced ReHo
values in the right superior orbital gyrus and the right rectus, in which the ReHo value
was negatively correlated with cognition.

Conclusion: The right superior orbital gyrus and right rectus may serve as a differential
indicator for mild and moderate PD. Subjects with moderate PD had a greater scope for
ReHo alterations in the cortex and compensation in the cerebellum than those with mild
PD. PD at HY stages of 2.0–2.5 may already be classified as Braak stages 5 and 6 in
terms of pathology. Our study revealed the different patterns of brain function in a resting
state in PD at different HY stages and may help to elucidate the neural function and early
diagnosis of patients with PD.

Keywords: Parkinson’s disease, resting-state functional MRI, regional homogeneity (ReHo), Hoehn and Yahr stage,
early diagnosis
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INTRODUCTION

Parkinson’s disease (PD) was first described by James Parkinson
in 1817 (Hurwitz, 2017) and is now the second most common
neurodegenerative disease after Alzheimer’s disease (Khan et al.,
2019). The worldwide prevalence of PD is approximately 0.3% in
the general population above 40 years of age (Pringsheim et al.,
2014). It is estimated that the number of people suffering from
PD in China will rise from 1.99 million in 2005 to 5 million in
2030, accounting for almost half of the total global population of
PD patients (Li G. et al., 2019). PD is a multi-system disorder
that is manifested by a range of motor symptoms, including
rest tremor, stiffness, bradykinesia, and postural instability, as
well as concomitant non-motor symptoms, such as hyposmia,
depression, anxiety, cognitive dysfunction, and sleep disorders
(Shrestha et al., 2017; Reich and Savitt, 2019; Singh et al.,
2020a; Zahra et al., 2020). With an aging population, the
prevalence of PD will undoubtedly reduce the quality of life
for the elderly and create a significant medical burden on
human society.

The core pathology of PD is considered to involve the
deposition of Lewy bodies and the destruction of dopamine
neurons in the substantia nigra pars compacta of the midbrain,
thus leading to disruption of the basal ganglia and the initiation
of motor symptoms (Rai et al., 2016, 2017, 2019; Singh
et al., 2020b). In Braak’s staging system, the pathology of
PD can be divided into six stages according to the presence
of Lewy bodies; the deposition of Lewy bodies begins in the
dorsal IX/X motor nucleus or intermediate reticular zone and
reaches the lower brain stem nuclei and eventually extends
upwards to the neocortex (Kon et al., 2020). However, when
motor symptoms appear, the loss of dopaminergic neurons
in the substantia nigra has already reached at least 60%
(Hornykiewicz, 2006), thus corresponding to Braak stage
3 or 4. At Braak stages 1 or 2, patients with PD often
have only motor symptoms with no typical characteristics
on conventional imaging. Consequently, these patients tend
to be diagnosed with other neurological diseases, such as
depression, anxiety disorders, Alzheimer’s disease, and sleep
disorders. Hence, identifying PD patients at an early stage
is critical for the clinical management and treatment of
this disease.

Resting-state functional magnetic resonance imaging (rs-
fMRI) can measure continuous cerebral activity by recording
blood oxygen level-dependent (BOLD) signals and is one of the
main major imaging methods used to study the neurobiological
mechanisms of PD. rs-fMRI can be divided into functional
separation and functional integration. Functional separation
predominantly investigates the characteristics of regional neural
spontaneous activity, such as the amplitude of low frequency
fluctuation analysis (ALFF) and regional homogeneity analysis
(ReHo). In contrast, functional integration emphasizes the
correlations and interactions between remote brain regions
by functional connectivity (FC) or network analysis, such as
independent component analysis (ICA), FC density analysis
(FCD), seed-based FC analysis, and graph analysis (Zuo and
Xing, 2014; Lv et al., 2018).

Functional integration is the primary method used to explore
the activity of the human brain. However, functional separation
can potentially influence the global network dynamics. For
example, changes in the ReHo value are thought to cause
alterations of remote FC (Jiang and Zuo, 2016). ReHo values are
determined by the Kendall coefficient of concordance (KCC) in
between the BOLD time-series, and describes the homogeneity
of a given voxel and the most adjacent 26 voxels (Yang et al.,
2020). ReHo values can be regarded as indicators of network
centrality to represent the significance of nodes in functional
connectomes within the cerebrum (Jiang and Zuo, 2016; Lv et al.,
2018).

A multitude of researchers has attempted to use magnetic
resonance to study the early phases of PD. For example, Claassen
et al. (2016) identified asymmetric cortical atrophy in the left
cerebrum, particularly in the left insula and olfactory sulcus.
In a series of rs-fMRI studies, a number of cerebral areas were
proposed to be related to early PD (Long et al., 2012; Yang et al.,
2013; Fioravanti et al., 2015; Xu et al., 2019). These studies made
a significant contribution to the possible cerebral structural or
functional changes in early PD. Nevertheless, these results were
inconsistent. We hypothesize that this inconsistency is because
PD patients at different stages correspond to different cerebral
alteration patterns.

Based upon the Hoehn and Yahr (HY) scale, created in
1967, the ‘‘modified HY scale’’ features 0.5 increments and has
been widely used to evaluate the clinical progression of PD
(Hoehn and Yahr, 1967; Goetz et al., 2004). Guan et al. (2019)
coupled various oscillation frequencies in PD and observed
progressive oscillation-specific nodal alterations from the early
to middle stages of PD. Further research based on the ALFF
and FC of PD patients with different HY stages indicated a
higher function default mode network(DMN) in stage II (Luo
et al., 2015). More recent research has focused on the use
of structural MRI to investigate PD patients at different HY
stages. Compared to a mild PD group, a group of patients with
moderate PD showed an increased cortical thickness in a number
of brain areas, including the temporal pole, isthmus cingulate
cortex, superior frontal cortex, fusiform gyrus, insula lobe, and
the inferior temporal cortex (Gao et al., 2018). Therefore, we
hypothesized that ReHo values will vary as PD progresses. In this
study, we used ReHo analysis to compare changes in cerebral
function at various HY stages of Parkinson’s disease (PD). We
also investigated how the pathogenesis of PD changed with
different stages.

MATERIALS AND METHODS

Subjects
All PD patients and healthy subjects were recruited between
December 2015 and October 2020. This research was authorized
by the Ethics Committee of the 2nd Xiangya Hospital. All
patients were diagnosed by two neurologists according to the
Movement Disorder Society (MDS) PD criteria (Postuma et al.,
2015). For both PD patients and normal controls, we obtained
a range of demographic and clinical information, including
age, gender, education, the 17-item Hamilton Depression

Frontiers in Aging Neuroscience | www.frontiersin.org 2 July 2021 | Volume 13 | Article 676899

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Li et al. Regional Homogeneity in Early PD

Scale (HAMD-17) score, and the Mini-Mental State Exam
(MMSE) score. For PD patients, we recorded disease duration,
the Unified Parkinson’s Disease Rating Scale score (UPDRS,
featuring a motor component named UPDRS-III), and the
HY Scale score. Patients who met the following criteria were
included: (1) patients satisfied the MDS PD criteria for clinically
established PD; (2) patients were right-handed; (3) patients
had stopped taking anti-PD drugs for 12 h; and (4) patients
had motor signs and symptoms at an HY stage of 1.0–2.5.
Subjects were excluded if they: (1) had other diseases that could
potentially affect brain function, such as atypical Parkinsonism,
depression, cerebral trauma, stroke, and other diseases of the
neurological system, n = 3; (2) had contraindications to MRI or
were unable to cooperate with an MRI scan and clinical scales,
n = 6; or (3) had an MMSE score less than the corresponding
education degree, n = 3. MMSE scores of >17 for illiterate
subjects, >20 for 1–6 years of education, and >23 for 7 or
more years of education, were defined as normal MMSE scores
(Li et al., 2016); (4) had excessive head motion (greater than
0.5 mm in transformation and 0.5 degrees in rotation), n = 4;
and (5) had not withdrawn from anti-Parkinson drugs, n = 6. In
total, 75 PD patients (with HY stages of 1.0–2.5) were included
in this research. PD patients with an HY stage of 1.0–1.5,
corresponding to unilateral motor symptoms, were defined as
having mild PD (PD-mild, n = 43). Patients with an HY stage
of 2.0–2.5, corresponding to bilateral motor symptoms, were
defined as having moderate PD (PD-moderate, n = 32). Thirty-
seven right-handed healthy subjects that were matched for age,
sex, and education, were recruited as healthy controls (HC,
n = 37).

Image Acquisition
Imaging data were acquired by a Siemens 3.0T MRI scanner by
a radiologist at the Radiology Department of the 2nd Xiangya
Hospital, Central South University. During MRI scanning, each
individual was asked to lie in a supine position wearing earmuffs
to reduce the sound of the MRI system. The patients also had
foam pads around their heads to minimize head movement. All
subjects were then informed to remain relaxed during rs-fMRI
acquisition, with their eyes closed but avoiding sleep and active
thought. Rs-fMRI images were acquired by an Echo Planar
Imaging (EPI) sequence with the following parameters: echo
time (TE) = 25 ms; repetition time (TR) = 2,500 ms; voxel
size = 3.75 × 3.75 × 3.5 mm; flip angle (FA) = 90◦; field of
view (FOV) = 240 × 240 mm2, data matrix = 64 × 64; slice
gap = 0 mm; slice thickness = 3.5 mm; 39 interleaved slices and
200 volumes. T1WI three-dimensional magnetization- prepared
rapid acquisition gradient echo (T1WI-3D-MP RAGE) images
were acquired with the following parameters: TE = 2.01 ms;
TR = 1900ms; voxel size = 1× 1× 1mm; slice thickness = 1mm;
FA = 9◦; FOV = 256 mm × 256 mm; 176 continuous sagittal
slices.

MRI Data Pre-processing
The rs-fMRI data were preprocessed by the Resting State
fMRI Data Analysis Toolkit (RESTplus) software version 1.21

(Xi-Ze et al., 2019)1; this is a software package that is
based on Statistical Parametric Mapping 8 (SPM8) on the
MATLAB R2014b platform (The MathWorks Inc., Natick,
MA, USA). Pre-processing involved seven steps, as follows:
(1) converting data from digital imaging and communications
in medicine(DICOM) to neuroimaging informatics technology
initiative(NIFTI); (2) eliminating the initial 10 volumes; (3) slice
timing; (4) realignment and the evaluation of head movement
(exclusion criteria: >0.5 mm in transformation and >0.5 degrees
of rotation); (5) spatial normalization (this was divided into
three steps: setting the origin to anterior commissure for each
patient’s T1WI-3D-MP RAGE; registration of high resolution
T1WI to mean functional MRI, division of the T1WI with
Diffeomorphic Anatomical Registration via the Exponentiated
Lie Algebra (DARTEL; Ashburner, 2007) toolkit, the generation
of a group template; transformation and normalization of the
resulting aligned data to the Montreal Neurological Institute
(MNI) space with the segmented gray matter from DARTEL);
(6) removal of the linear trend generated from MRI or
other factors; (7) nuisance covariate regression with six head
motion parameters, white matter, and cerebrospinal fluid signal
(Yan et al., 2013); and (8) filtering with a bandpass of
0.01−0.08 Hz.

Regional Homogeneity
Next, we used RESTplus software to calculate a voxel-wise ReHo
map for each patient. A z-transformation was then performed by
deducting the mean value of the entire brain from the resulting
ReHo map and dividing by the global standard deviation. In
addition, we smoothened the ReHomapwith a full width at a half
maximum (FWHM) Gaussian kernel of 6 mm. The standardized
ReHo Z-maps were then used for correlative analysis while the
smoothened ReHo maps were used for statistical analysis to
investigate regional homogeneity.

Statistical Analysis for Demographic and
Clinical Information
First, we tested data for normality with the Shapiro–Wilk
Test; Levene’s Test was used to evaluate the homogeneity of
variance. Patient age and the number of years of education
were distributed normally and showed homogeneity of variance;
the other clinical data did not comply with these stipulations
(p < 0.05). Differences in age and education degree across
the PD-mild, PD-moderate, and HC groups were compared
by analysis of variance (ANOVA), while the independent t-
test was used to identify differences between the entire PD
group and the HC or PD groups. Due to the qualitative nature
of the data, gender distribution among/between groups was
tested by the Pearson Chi-squared test. Due to the non-normal
distribution of data, differences in UPDRS, UPDRS-III, and
disease duration, between the PD groups were compared with
theMann–WhitneyWilcoxon test. Differences in theMMSE and
HAMD-17 scores across the three groups, and between the PD
groups, were compared with the Kruskal–Wallis test and the
Mann–Whitney Wilcoxon test, respectively. We also attempted

1http://www.restfmri.net
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TABLE 1 | Demographic information and clinical characteristics of the three groups.

Item PD PD-mild PD-moderate HC p(PD vs. NC) p(PD-mild vs. NC) p(PD-moderate vs. NC) p(PD-mild vs. PD-moderate)

Number (M/F) 75(42/33) 43(27/16) 32(15/17) 37(17/20) 0.316 0.131 0.938 0.170
Age (years) 58.95 ± 9.55 57.30 ± 8.58 61.16 ± 10.46 58.05 ± 8.78 0.634 0.717 0.166 0.076
Duration (month) 23.69 ± 20.74 18.00 ± 16.61 31.34 ± 23.39 − − − − 0.005
Education (years) 7.03 ± 3.71 7.35 ± 3.92 6.59 ± 3.42 7.64 ± 3.46 0.406 0.726 0.238 0.375
HY stages 1.63 ± 0.60 1.15 ± 0.23 2.27 ± 0.25 − − − − 0.000
UDPRS 25.12 ± 15.10 19.84 ± 11.90 32.22 ± 16.17 − − − − 0.001
UDPRS-III 15.3 ± 10.42 11.12 ± 7.09 20.94 ± 11.58 − − − − 0.000
MMSE 26.08 ± 3.73 26.35 ± 2.98 26.53 ± 2.64 25.38 ± 5.07 0.748 0.846 0.703 0.996
HAMD-17 5.82 ± 6.11 6.30 ± 6.30 8.78 ± 6.90 2.70 ± 3.13 0.000 0.002 0.000 0.060

Data are shown as means ± SD. PD, Parkinson’s disease; PD-mild, Parkinson’s disease at 1.0–1.5 stage; PD-moderate, Parkinson’s disease at 2.0–2.5 stage; HC, Healthy controls;
M, male; F, female; HY, Hoehn and Yahr; UPDRS, Unified Parkinson’s Disease Rating Scale; UDPRS-III, the motor part of UPDRS; MMSE, Mini-Mental State Examination; HAMD-17,
17-item Hamilton Depression Scale; −, Data not available.

to identify correlations among the clinical data. These analyses
were conducted by IBMSPSS statistical analysis software (version
25.0; SPSS Inc. Chicago, IL, USA).

Statistical Analysis for Regional
Homogeneity and Correlative Analysis
One-way analysis of covariance (ANCOVA) was used to
compare differences between the smoothened ReHo maps
created for the PD-mild, PD-moderate, and HC groups, with
age, gender, and education, serving as covariates. Significant
differences were generated among the three groups (voxel-level
p < 0.005; minimal cluster size >24 voxels; corresponding to
p < 0.05 for a two-tail test as corrected by the AlphaSim
program). In order to investigate the significant brain regions,
we used a post hoc two-sample t-test to compare differences
between each pair of the three groups (corrected by the AlphaSim
program with a voxel-level p < 0.005; cluster-level p < 0.05 for
a two-tail test and a cluster size >24 voxels). Brain regions
that showed significant differences in the ANCOVA were
extracted as masks so that we could investigate the correlative
relationships between mean ReHo values and clinical data in the
PD groups. Spearman’s correlation coefficient was calculated and
the threshold of significance was set to p < 0.05 (corrected by
Bonferroni’s correction). Correlation analysis was performed by
SPSS version 25.0.

RESULTS

Demographics and Clinical Characteristics
Table 1 summarizes the demographic information and clinical
characteristics of the three groups. There were no significant
differences between the three groups in terms of age, gender,
years of education, and MMSE scores (p > 0.05). In our study,
we excluded subjects with depression. However, we observed a
significant difference in the HAMD-17 scores when compared
between the PD and HC groups (p < 0.001); there was no
significant difference when comparing between the PD-mild and
PD-moderate groups (p = 0.060). The PD-moderate group had
significantly higher UPDRS scores and a significantly longer
disease duration than the PD-mild group (p = 0.001 and
p = 0.012, respectively). Correlation analysis revealed a positive

correlation between the following clinical parameters in the
PD groups: MMSE scores with years of education (r = 0.621,
p < 0.001); disease duration with UPDRS scores (r = 0.396,
p < 0.001) and UPDRS-III scores (r = 0.382, p = 0.001); HAMD
scores with UPDRS scores (r = 0.579, p < 0.001) and UPDRS-III
scores (r = 0.444, p < 0.001); HY stages with disease duration
(r = 0.323, p = 0.005), UPDRS scores (r = 0.576, p < 0.001),
UPDRS-III scores (r = 0.609, p < 0.001), and HAMD scores
(r = 0.295, p = 0.010).

Group Differences of Regional
Homogeneity
Statistical analyses were observed using an automated anatomical
atlas (AAL) template2. ANCOVA revealed the significant
differences between the PD-mild, PD-moderate, and HC
groups in the following brain regions: the bilateral cerebellum
(Cerebellum_8/9_R, Cerebellum_8_L, Cerebellum_Crus2_L),
the right superior orbital gyrus (Frontal_Sup_Orb_R),
the right rectus (Rectus_R), the right superior temporal
gyrus (Temporal_Sup_R), the right Rolandic operculum
(Rolandic_Oper_R), the right postcentral gyrus (Postcentral_R),
and the right precentral gyrus (Precentral_R; Figure 1).

In the post hoc analysis (Table 2 and Figure 2), only one
cluster survived when comparing the PD-mild group to the
PD-moderate group, with the cluster extending from the
Frontal_Sup_Orb_R to the Rectus_R (Figure 2A). When
compared to the HC group, the PD-mild group presented with
increased ReHo values in the Cerebellum_8_R (Figure 2B). The
PD-moderate group presented with increased ReHo values in the
bilateral cerebellum (Cerebellum_8_R, Cerebellum_8_L),
and reduced ReHo values in the Temporal_Sup_R,
Rolandic_Oper_R, Superior Temporal Gyrus, Postcentral_R,
and Precentral_R (Figure 2C). The results were corrected by the
AlphaSim program with a voxel-level p < 0.005, cluster-level
p < 0.05 for a two-tail test and cluster size >24 voxels.

Correlative Analysis
Using the two PD groups, we calculated Spearman correlation
coefficients between the ReHo values of the clusters showing
significant differences and clinical scale scores, including disease
duration, UPDRS, UPDRS-III, HY, MMSE, and HAMD-17

2http://www.gin.cnrs.fr/tools/aal
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FIGURE 1 | Comparison of Regional Homogeneity (ReHo) among PD-mild, PD-moderate, and HC groups. Significant differences were revealed in the following
brain regions: bilateral cerebellum (Cerebellum_8/9_R, Cerebellum_8_L, Cerebellum_Crus2_L), right superior orbital gyrus, right rectus, right superior temporal gyrus,
right Rolandic operculum, right postcentral gyrus, and the right precentral gyrus (p < 0.05).

scores. The brain regions related to the above clinical data
have been marked in Figures 3A and 3B. Negative correlations
were identified between the following pairs: ReHo values of the
Frontal_Sup_Orb_R and MMSE scores (Figure 3C, r = −0.378,
p = 0.001), ReHo values of the Pre/Postcentral_R and HY stages

(Figure 3D, r = −0.308, p = 0.007). The results were corrected by
Bonferroni’s correction (0.05/6).

Correlations were also identified between the following pairs:
ReHo values of the Cerebellum_8/9_R and HY stages (Figure 3E,
r = 0.230, p = 0.047), ReHo values of the Pre/Postcentral_R and
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TABLE 2 | Brain regions showing significant ReHo differences between paired groups from the PD-mild, PD-moderate, and HC groupings.

Groups Brain region (AAL template) Cluster size Peak MNI coordinates (x y z) t-value

PD-mild<PD-moderate Frontal_Sup_Orb_R
Rectus_R

24 18 21 −12 −3.8828

PD-mild > HC Cerebellum_8_R 57 9 −63 −63 3.5775
PD-moderate > HC Cerebellum_8_R

Cerebellum_9_R
143 9 −51 −63 4.3226

Cerebellum_8_L 24 −42 −51 −57 3.8637
PD-moderate< HC Temporal_Sup_R

Rolandic_Oper_R
56 60 −24 9 −4.3039

Precentral_R
Postcentral_R

30 21 −30 66 −4.8632

L, left hemisphere; R, right hemisphere; AAL, automated anatomical atlas; MNI, Montreal neurological institute; sup, superior; t-value, t statistic of post hoc analysis in two sample
t-test.

FIGURE 2 | (A) PD-mild vs. PD-moderate groups; ReHo had decreased in
the Frontal_Sup_Orb_R and the Rectus_R. (B) PD-mild vs. HC; ReHo had
increased in the Cerebellum_8_R. (C) PD-moderate vs. HC; ReHo had
increased in the bilateral cerebellum and decreased in the Temporal_Sup_R,
Rolandic_Oper_R, Superior Temporal Gyrus, Postcentral_R, and
Precentral_R. Table 2 shows more specific information relating to the
significant brain regions.

UPDRS-III (r = −0.252, p = 0.029). However, both of them were
not significant under the Bonferroni’s correction.

DISCUSSION

In this study, we used the ReHo value as an indicator to
investigate differences in local synchronization among HC, PD-
mild, and PD-moderate groups. We also analyzed correlations
between different brain regions and clinical scale scores. We
attempted to investigate the imaging and functional features of
PDwithin HY 2.5 stages in order to assist with the early diagnosis
and treatment of PD patients.

In comparison with the PD-moderate group, we
observed reduced ReHo values in the PD-mild group in the
Frontal_Sup_Orb_R extending to the Rectus_R. Previous
structural and functional MRI studies have revealed that frontal
regions, such as the insula, orbitofrontal, olfactory sulcus, and
dorsolateral frontal, are more apt to change than posterior
regions in the early stage of PD (Yang et al., 2013; Claassen
et al., 2016; Chaudhary et al., 2020). The Frontal_Sup_Orb,
located in the ventral surface of the prefrontal lobe, is part
of the orbitofrontal cortex (OFC); the Rectus is sometimes
incorporated into the OFC. It has become clear that the OFC
is related to the production of emotions, sensory integration,
and hedonic experiences. These are complex neural mechanisms
in which information flows from the OFC and other brain
regions, especially the anterior cingulate cortex (ACC) and the
amygdala (Kringelbach, 2005; Deng et al., 2016). When the OFC
malfunctions, subjects may experience a number of mental or
behavioral disorders, such as cognition dysfunction, emotion
disorder, a failure to make decisions, social dysfunction, and
impulse-control disorders (Damasio et al., 1994; Rudebeck
and Rich, 2018). For patients with PD, these disorders are
frequently associated with non-motor symptoms and tend
to occur during the early stages of the disease (Pfeiffer et al.,
2014; Bhattacharjee, 2018). In the present study, we observed
differences in the ReHo values in the Frontal_Sup_Orb and
the Rectus between the PD-mild and PD-moderate groups;
correlation analysis suggested that this brain region was
associated with cognition (Figure 3C). Collectively, our
data indicate that changes in the Frontal_Sup_Orb and the
Rectus may serve as a differential indicator for mild and
moderate PD.

Compared with theHC group, the PD-mild and PD-moderate
group showed increased ReHo values in cerebellum_8/9_R
and cerebellum_8_L region. Over recent years, the role of
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FIGURE 3 | Correlation of Regional Homogeneity (ReHo) between brain regions and clinical scale scores in patients with PD. (A) FSOR, Frontal_Sup_Orb_R; (B)
CER8/9R, Cerebellum_8/9_R; Pre/PostC_R, Pre/postcentral_R. (C) The ReHo value of Frontal_Sup_Orb_R was negatively correlated with Mini-Mental State Exam
(MMSE). (D,E) The ReHo value of Pre/Postcentral_R and Cerebellum_8/9_R were negatively and positively correlated with HY stages, respectively. The red solid line
shows the existence of a significant correlation, while the blue dotted line depicts the 95% prediction interval for the red solid line.

the cerebellum in PD has received increasing amounts of
research attention. A number of pathological, morphological,
and functional, studies have revealed that the cerebellum plays
an important role in the pathological and compensatory effects

of PD with regards to both motor and non-motor symptoms
(Wu and Hallett, 2013; Stöger et al., 2017; Li M. et al., 2019;
Miterko et al., 2019). Deep brain stimulation (DBS) of the basal
ganglia or the pedunculopontine nucleus may work well on
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PD patients if there is a connection to the cerebellum, thus
indicating the compensatory role of the cerebellum in PD, at
least indirectly (Miterko et al., 2019). In addition, it is now
widely accepted that the cerebellum plays a role in perceptual
and connective processing (Baumann et al., 2015; Adamaszek
et al., 2017; Kansal et al., 2017). The posterior cerebellar lobes,
particularly lobules VI and VII, are known to be involved in
a range of cognitive tasks, including memory and execution
(Stoodley et al., 2012; Li M.-G. et al., 2019). Collectively, these
lines of evidence indicate that the cerebellum may contribute to
both motor and non-motor symptoms in PD patients. In our
study, the increased ReHo values observed in the cerebellummay
form part of the compensatory mechanism in PD.

When compared with the HC group, patients in the
PD-moderate group showed a more extensive increased ReHo
value in the cerebellum than the PD-mild group; furthermore,
this increase was noted in both the right and left cerebellum.
Correlation analysis indicated that the ReHo value in the
Pre/Postcentral_R decreased as disease deteriorated, while the
ReHo value in the cerebellum increased (not significant under
the strict Bonferroni’s correction). Consistent with previous
findings, our study suggested that the increase in ReHo value
in the cerebellum forms part of a compensatory effect for
abnormalities in the cerebral cortex. We believe that larger
increases in ReHo value in the cerebellum of the PD-moderate
group referred to a wider form of compensation. It appears
that the compensation for cortical changes moved from right to
the left in the cerebellum; however, whether this direction was
inherent or related to the left- and right-onset of PD, remains
unclear and requires further investigation.

In comparison with the HC group, subjects in the
PD-moderate group exhibited reduced ReHo values in the
cerebral cortex while subjects in the PD-mild group did
not, including the Rolandic_Oper_R, Temporal_Sup_R,
Postcentral_R, and Precentral_R regions. Some previous studies
have reported structural or functional alterations in the Rolandic
Operculum in PD patients (New et al., 2015; Xu et al., 2018; Liu
et al., 2019; Wang T. et al., 2020). One previous study focused on
the voice network of PD patients with vocalization impairment;
this work identified alterations in the Rolandic Operculum (New
et al., 2015). In the current study, we observed reduced ReHo
values in the PD-moderate group when compared to the HC
group, thus providing further support to the growing number
of studies that have revealed the importance of the Rolandic
Operculum in PD. Lesions or gray matter atrophy in the
Rolandic Operculum have been related to movement disorders
or tonic contractions of the perioral muscle; these changes can
induce swallowing dysfunction or dysarthria (Tonkonogy and
Goodglass, 1981; Biesbroek et al., 2016; Shen et al., 2016; Wang
Y. et al., 2020). In addition, an fMRI study concluded that
the Rolandic Operculum was involved in speech production
and motor control (Behroozmand et al., 2015). Swallowing
dysfunction has been frequently observed in PD patients and is
evident in up to 100% of patients with advanced stages (Simons,
2017). However, this form of dysfunction is not just observed
in the late stages of PD; mild oropharyngeal symptoms and
esophageal dysfunction are quite common events in the early

stages of PD (Potulska et al., 2003; Simons, 2017). Dysphagia
or speech disturbances are frequently observed in patients with
different stages of PD. The most common speech impairment
is hypokinetic dysarthria, a disorder that is characterized by
articulatory deficits and phonetic monotony (Jankovic, 2008;
Ricciardi et al., 2016; Melchionda et al., 2020). Combined with
previous findings, our current analyses indicate that the reduced
ReHo values in the Rolandic Operculum of patients in the
PD-moderate group were most likely related to the swallowing
and speech disorders observed in PD patients. The neocortex has
been shown to be involved in Braak stages 5 and 6 of PD; this
relates to the progressive deposition of Lewy bodies in the brain
(Kon et al., 2020). Previous functional and in vivo metabolic
studies have also suggested that abnormal cortical activity can
be observed in the early stages of PD (Brooks, 2010; Choe et al.,
2013). Combined with these earlier findings, our data suggest
that cases of early PD in HY stages 2.0–2.5 may already have
reached Braak stages 5 and 6 in terms of pathology.

There were some limitations to the present study that need
to be considered. Firstly, we compared different HY stages of
PD using a cross-sectional study instead of a longitudinal study.
Secondly, although we identified a functional change in the
Rolandic Operculum in patients in the PD-moderate group, we
were unable to perform further correlation analysis due to the
lack of clinical assessment data relating to swallowing function
or speech disorders. Thirdly, we did not include PD patients
with HY stages 3.0–5.0; this was because of the small number of
patients in these stages and due to the risk of dopamine against
withdrawal syndrome (Rabinak and Nirenberg, 2010) in these
patients.

CONCLUSION

In conclusion, our current findings suggest that the HC,
PD-mild, and PD-moderate, groups exhibited different ReHo
alterations in the bilateral cerebellum, right superior orbital
gyrus, right rectus, right superior temporal gyrus, right Rolandic
operculum, right postcentral gyrus, and right precentral gyrus.
The superior orbital gyrus and rectus may serve as differential
indicators for mild and moderate PD. Patients with moderate
PD had greater scope for ReHo alterations in the cortex and
compensation in the cerebellum than those with mild PD. PD
patients in HY stages 2.0–2.5may already be at Braak stages 5 and
6 in terms of pathology. Our findings revealed differences in the
resting-state brain functional pattern in PD patients at different
HY stages and may help us to elucidate the neural function and
the early diagnosis of PD.
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