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Extracellular vesicles released from cells exposed to reactive oxygen species
increase annexin A2 expression and survival of target cells exposed to the
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ABSTRACT
Annexin A2 (AnxA2) is present in multiple cellular compartments and interacts with numerous
ligands including calcium, proteins, cholesterol, negatively charged phospholipids and RNA. These
interactions are tightly regulated by its post-translational modifications. The levels of AnxA2 and its
Tyr23 phosphorylated form (pTyr23AnxA2) are increased in many cancers and the protein is
involved in malignant cell transformation, metastasis and angiogenesis. Our previous studies of rat
pheochromocytoma (PC12) cells showed that reactive oxygen species (ROS) induce rapid,
simultaneous and transient dephosphorylation of nuclear AnxA2, most likely associating with PML
bodies, while AnxA2 associated with F-actin at the cell cortex undergoes Tyr23 phosphorylation.
The pTyr23AnxA2 in the periphery of the cells is incorporated into intraluminal vesicles of
multivesicular endosomes and subsequently released to the extracellular space. We show here that
extracellular vesicles (EVs) from cells exposed to ROS prime untreated PC12 cells to better tolerate
subsequent oxidative stress, thus enhancing their survival. There is an increase in the levels of
pTyr23AnxA2 and AnxA2 in the primed cells, suggesting that AnxA2 is involved in their survival.
This increase is due to an upregulation of AnxA2 expression both at the transcriptional and
translational levels after relatively short term (2 h) exposure to primed EVs.
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Background

Annexin A2 (AnxA2), a member of a large family of
Ca2C-dependent anionic phospholipid-binding proteins,
is a key player in tumor progression, neo-angiogenesis
and metastasis,1-3 i.e. processes that all require cytoskele-
tal rearrangements and thus result in morphological
changes. These changes that are related to the ability of
AnxA2 to bind certain lipids and both G- and F-actin,4

as well as to interact with different cadherin isoforms,3,5

are regulated by Tyr23 phosphorylation of AnxA2.6

Thus, silencing of AnxA2 expression, inactivation of the
Tyr23 site, or treatment with AnxA2 antibodies inhibit
cancer metastasis and prolong cell survival.7 Up-regula-
tion of AnxA2 and/or its Tyr23 phosphorylation are not
only involved in severe malignant development of can-
cers and a poor prognosis, but may also play a role in
chemotherapy resistance.8,9 Accordingly, AnxA2 has
been associated with DNA replication, transcription and
translation10 i.e. processes that have been linked to
increased resistance of cancer cells to chemotherapy.11

The involvement of AnxA2 in the above-mentioned
processes points to a protein capable of responding to
one or several signaling pathways in different cellular
compartments. Our recent results indicate that different
subcellular responses may occur simultaneously.12 Thus,
when cells are exposed to oxidative stress, AnxA2 in the
nucleus is dephosphorylated on Tyr23, while cortical
AnxA2 is phosphorylated on the same residue by the Src
kinase.12 AnxA2 itself may in turn act both as a regulator
and effector of the Src kinase, at least in the case of v-
Src.13 Tyr23 phosphorylation of AnxA2 leads to its bind-
ing to the cytoplasmic surface of endosomes,14 which
subsequently develop into multivesicular bodies
(MVBs),15 due to the invagination of the endosomal
membrane. As a consequence of this outside-in conver-
sion in topology,16 Tyr23 phosphorylated AnxA2 ends
up residing in the lumen of these intraluminal vesicles.
As the MVBs fuse with the plasma membrane, these
vesicles are released from the MVB lumen to the extra-
cellular space as exosomes.16 Thus, the luminal Tyr23
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phosphorylated AnxA2 may be involved in the exosomal
transport of cargo between cells. Indeed, it was recently
shown that AnxA2 is involved in the packaging of miR-
NAs into exosomes derived from human breast and
prostate cancer cell lines.17 Interestingly, the presence of

AnxA2 did not appear to influence the extent of exo-
somes released from these cells,17 further suggesting a
role in cargo transfer. Extracellular vesicles (EVs) are
believed to be involved in genetic exchange between cells
in the form of transfer of mRNAs and small RNAs,18

thus emerging as important mediators of intercellular
communication. For example, it is thought that extracel-
lular vesicle-mediated signaling is involved in the modu-
lation of the tumor microenvironment.19

We recently showed that oxidative stress induced by
ROS changes rapidly (within minutes) the subcellular
pattern of Tyr23 phosphorylated AnxA2. The nuclear
pTyr23AnxA2 is dephosphorylated and while the phos-
phorylated form partially localizes to nuclear PML bod-
ies, the dephosphorylated form preferentially localizes to
SC-35 positive nuclear speckles, possibly involved in
transcription. Simultaneously, a pool of cortical AnxA2
becomes Tyr23 phosphorylated by the Src kinase.12 The
release of pTyr23AnxA2-containing vesicles to the extra-
cellular space was most pronounced after about 1 h after
exposure to ROS, and was significantly reduced after
2 h.12 Since pTyr23AnxA2 has been shown to associate
with the endosomal pathway including MVBs, as well as
with exosomes released from MVBs,14,15 we investigated
whether it would be present in EVs including exosomes
released from cells after their exposure to ROS and found
this to be the case.12 In fact, AnxA2 has been regarded as
a marker of exosomes.20

Figure 1. Two hour pre-incubation of PC12 cells with EVs derived
from H2O2-treated cells increases their viability upon subsequent
1 h exposure to H2O2. Exosome-depleted medium was used and
EVs were resuspended in 1/20 of the original volume of cell
medium. Viability was calculated by trypan blue exclusion assay
(n D 6). Viability: p < 0.005.

Figure 2. Pre-incubation of PC12 cells with EVs derived from H2O2-treated cells results in »2-fold higher levels of pTyr23AnxA2 upon
subsequent treatment with H2O2, as compared to cells exposed to H2O2 only. PC12 cells were untreated (A), treated for 15 min with
1 mM H2O2 only (B), or treated for 15 min with 1 mM H2O2 after their pre-incubation for 2 h with EVs released from cells exposed for
1 h to H2O2 (C). pTyr23AnxA2 (green, A-C) was detected using monoclonal antibodies. The DAPI-stained nuclei are shown in blue. Scale
bars: 10 mm. The diagrams below each panel show the corresponding intensity profiles along the lines indicated in the respective pan-
els. Panel 2D: Corrected total cell fluorescence (CTCF) was measured from cells (20–30) in the samples shown (panels A–C); CTCF were
then divided by the number of cells measured.
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Results and discussion

Here, we investigated the functional significance of the
release of EVs in response to the exposure of PC12 cells
to ROS. EVs including exosomes were isolated from the
medium of PC12 cells following their treatment for 1 h
with 1 mM H2O2 (peak release of EVs after H2O2 expo-
sure). Untreated PC12 cells were then pre-incubated for
2 h in the presence of these EVs (denoted primed EVs).
Indeed, we observed that these cells developed a higher
tolerance for a subsequent 1 h exposure to 1 mM H2O2,
increasing their viability from »84% to »93% (Fig. 1).
Similar results regarding viability after exposure to H2O2

have been obtained with MC/9 cells.21

Interestingly, the level of pTyr23AnxA2 at the cell
cortex increase significantly in cells pre-incubated with
primed EVs and subsequently exposed to H2O2 for
15 min when compared to cells only exposed to H2O2

(Fig. 2, compare Panel B with C). It should be noted that
not all cells respond to H2O2 treatment by increasing
their cortical pool of pTyr23AnxA2. The poorly respond-
ing cells apparently contain low initial levels of AnxA2,
both in their cytoplasm and nucleus (Fig. 2B and C),
most likely due to cell cycle-dependent expression of
AnxA2.12,22 Therefore, we have only given the mean
intensity/cell (Fig. 2D). These analyses are not given for
the control cells since the localization of pTyr23AnxA2
is predominantly in the nucleus (Fig. 2A). To verify that
the increased levels of pTyr23AnxA2 in cells exposed to
primed EVs and subsequently to H2O2 are indeed related
to their pre-incubation with primed EVs, a Western blot
analysis was performed on lysates from control cells, cells
treated with H2O2 alone, cells pre-incubated with primed
EVs only, or cells pre-incubated with EVs and subse-
quently exposed to H2O2 (Fig. 3). It is evident that expo-
sure to ROS in the form of H2O2 leads to increased
Tyr23 phosphorylation of AnxA2 in general, while 2 h
pre-incubation with EVs from cells previously exposed
to ROS increases the level of total AnxA2 (Fig. 3). Appar-
ently, pre-exposure to EVs from H2O2-treated cells and
subsequent H2O2-exposure lead to a higher increase in
the level of pTyrAnxA2 than H2O2 treatment alone
(Fig. 3, compare lanes 4 and 2). Together with the imag-
ing data (Fig. 2), these results strongly indicate that the
pre-exposure of cells to EVs derived from ROS-stressed
PC12 cells increase their level of pTyr23AnxA2 during
their subsequent ROS-exposure (Figs. 2 and 3).

The increase in the level of total AnxA2 after preincuba-
tion with primed EVs (2 h) alone, or combined with expo-
sure to ROS (15 min), could be due to a) cargo delivery of
AnxA2 by EVs, or b) increased transcription and/or transla-
tion of AnxA2 in these cells. To distinguish between these
possibilities, the amount of total cortical AnxA2 was

investigated after exposure to ROS alone (Fig. 4B), or in
combination with primed EVs (Fig. 4D), and compared to
exposure to primed EVs alone (Fig. 4C). While the total cel-
lular level of pTyr23AnxA2 increases after 15 min of oxida-
tive stress without pre-incubation with primed EVs (Fig. 2),
there is no equivalent increase in total AnxA2 (Fig. 4G).
However, after the priming of cells with EVs for 2 h, there is
an almost 2-fold increase in total AnxA2 (Fig. 4G). By con-
trast, when transcription or translation in the cells incubated
with primed EVs was inhibited by Actinomycin D (AcD)
and cycloheximide (CHX), respectively, the increase in the
level of total AnxA2 was suppressed. This finding suggests
that the pre-incubation of PC12 cells with EVs derived from
cells exposed to ROS increases the expression of AnxA2,
possibly representing an adaptation to oxidative stress.23

Furthermore, the data also suggests that AnxA2 is involved
in the EV/exosome-mediated response to ROS, in line with
results showing the involvement of ROS in metastasis,24

angiogenesis and tumor growth.25 ROS is known to modu-
late the activity of several transcription factors, including
hypoxia-inducible factor-1 (HIF-1).26 Other examples are
the transcription factors SP1 and SP3, which are activated

Figure 3. Pre-incubation of PC12 cells with primed EVs increases
the levels of pTyr23AnxA2 upon subsequent exposure to H2O2, as
compared to cells exposed to H2O2 alone. 100 mg of protein
from total lysates derived from PC12 cells grown in the presence
of H2O2 for 0 min (control), 15 min (H2O2), or cells that were first
pre-incubated for 2 h with primed EVs before exposure to H2O2

for 0 min (EVs) or 15 min (EVs C H2O2) were separated by 10%
SDS-PAGE, transferred to nitro-cellulose membranes and probed
with antibodies against pTyr23AnxA2, total AnxA2, or tubulin as
indicated. Following incubation with HRP-conjugated secondary
antibodies and the ECL-reagent, the reactive protein bands were
detected using the ChemiDocTM XRSC molecular imager. Molec-
ular mass standards are indicated to the left of the upper blot.
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by ROS, leading to activated GC-boxes in the vascular endo-
thelial growth factor A (VEGF-A) promoter, which in turn
leads to increased expression of VEGF-A.27 HIF-1 plays a

critical role in inducing chemoresistance and metastasis,28

and may also increase the expression of AnxA2.29 Upregu-
lated expression of AnxA2 is associated with metastasis in

Figure 4. Pre-incubation of PC12 cells with EVs derived from H2O2-treated cells increases the expression of total AnxA2 both at the tran-
scriptional and translational levels. PC12 cells were untreated (A), treated for 15 min with 1 mM H2O2 (B), pre-incubated for 2 h with EVs
released from H2O2-treated cells (C-F) either with no additional treatment (C), or with a subsequent 15 min treatment with 1 mM H2O2

(D), in the presence of 3 mg/ml AcD (E) or 10 mg/ml CHX (F). Total AnxA2 (green) was detected using monoclonal polyclonal antibodies.
The DAPI-stained nuclei are shown in blue. Scale bars: 10 mm. The diagrams below each panel show the corresponding intensity profiles
along the lines indicated in the respective panels. Panel 4G: Corrected total cell fluorescence (CTCF) was measured from cells in the
images shown in Panels A-F; CTCF were then divided by the number of cells (20–30) measured.
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several cancer types, including gastric adenocarcinoma3 and
colon cancers.30 It has been observed that the levels of
pTyr23AnxA2 and total AnxA2, in particular associated
with the plasma membrane, are considerably increased in
cells derived from a metastatic tumor, as compared to the
primary tumor derived from the same patient.31 Thus, in
addition to its role in intracellular signaling, AnxA2 also
appears to be involved in mediating intercellular signaling
either directly (for example by binding to small regulatory
RNAs in EVs) or indirectly (by being a “responder” in the
EV-recipient cell)

Materials and methods

EVs were isolated as previously described.12 The kit pre-
cipitates both EVs that bud off from the plasma mem-
brane and EVs of endosomal origin (termed exosomes)
as well as other secreted membrane-enclosed vesicles.
Thus, the term EVs will be used.32 Briefly, EVs were
derived from PC12 cells after treatment with H2O2 for
1 h. 1.4 ml ExoQuick-TC was mixed with 7 ml media
from PC12 cells exposed to H2O2 for 1 h and grown in
exosome-depleted medium (System Biosciences). This
was left ON at 4�C and centrifuged at 1500 £ g for
30 min before a wash of the exosomal pellet in exosome-
depleted medium and another centrifugation was per-
formed. The resulting pellet was resuspended in 1 ml
exosome-depleted medium before further dilution when
added to cells. Fresh PC12 cells were treated with these
EVs for 2 h, and subsequently exposed to H2O2 for
15 min or 1 h (viability assays).

Cells, fixed and permeabilised as described earlier,33

were stained for immunofluorescence with primary anti-
bodies against pTyr23AnxA2 (sc-135753, Santa Cruz
Biotechnologies, 1:20) or AnxA2 (ab41803, Abcam,
1:250), with one modification; before staining with the
polyclonal antibodies against AnxA2, antigenic sites
were exposed by incubation for 5 min with 6 M guani-
dine-HCl in 50 mM Tris, pH 7.4.34 This treatment is not
necessary to detect pTyrAnxA2. When the fixed cells
were treated with guanidine-HCl and stained with poly-
clonal antibodies against AnxA2 (recognizes aa residues
150–250), AnxA2 was found predominantly associated
with the cortical region under the plasma membrane,
with an additional faint signal in the rest of the cyto-
plasm (Fig. 4). However, in non-guanidine-HCl-treated
cells the protein was mainly detected in the nucleus (see
also ref. 35, in addition to being detected in the cyto-
plasm (See Fig. 1, Panels I–II in ref. 12).

Fluorescence intensity graphs/profiles were measured in
ImageJ 1.48o. Total cellular fluorescence was calculated
using ImageJ 1.48o. An outline was drawn around the cells,
and integrated density, mean gray value (fluorescence) and

area were measured. Background measurements were also
carried out. The corrected total cell fluorescence (CTCF)
was calculated as: integrated density – (selected area x
mean gray value of background).36

Total cell lysates were prepared from PC12 cells that
had been first extensively washed in PBS. Subsequently,
the cells were lysed in RIPA buffer (25 mM Tris; pH 7.6,
150 mM NaCl, 1% NP-40, 1% sodium deoxycholate,
0.1% SDS) containing 2 mM EGTA. The resultant super-
natant after centrifugation at 12000 g for 20 min was the
total cell lysate. SDS-PAGE and western blot analysis
were performed as described.12 Total AnxA2 and its
Tyr23 phosphorylated form were detected using mono-
clonal antibodies directed against AnxA2 (610069; BD
Biosciences; 1:1000) and pTyr23AnxA2 (sc-135753,
Santa Cruz Biotechnologies, 1:200 dilution), respectively.
Monoclonal antibodies against tubulin (A01410–40,
Genscript, 1:8000) were used as loading control.

Abbreviations

AcD Actinomycin D
AnxA2 Annexin A2
CHX cycloheximide
CTCF corrected total cell fluorescence
EV extracellular vesicle
MVBs multivesicular bodies
PC12 rat pheochromocytoma cell
pTyr23AnxA2 Tyr23 phosphorylated Annexin A2
ROS reactive oxygen species
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