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ABSTRACT
This study aims to explore biomarkers associated with vitiligo and analyze the pathological role of immune 
cell infiltration in the disease. We used the robust rank aggregation (RRA) method to integrate three vitiligo 
data sets downloaded from gene expression omnibus database, identify the differentially expressed genes 
(DEGs) and analyze the functional correlation. Then, the comprehensive strategy of combined weighted 
gene coexpression network analysis (WGCNA) and logical regression of the selection operator (LASSO), 
support vector machine recursive feature elimination (SVM-RFE), and random forest (RF) machine learning 
algorithm are employed to screen and biomarkers associated with vitiligo. Finally, the immune cell 
infiltration of vitiligo was evaluated by CIBERSORT, and the correlation between biomarkers and infiltrating 
immune cells was analyzed. Herein, we identified 131 robust DEGs, and enrichment analysis results showed 
that robust DEGs and melanogenesis were closely associated with vitiligo development and progression. 
TYR, TYRP1, DCT and LARP7 were identified as vitiligo-related biomarkers. Immune infiltration analysis 
demonstrated that CD4 T Cell, CD8 T Cell, Tregs, NK cells, dendritic cells, and macrophages were involved in 
vitiligo’s pathogenesis. In summary, we adopted a comprehensive strategy to screen biomarkers related to 
vitiligo and explore the critical role of immune cell infiltration in vitiligo.
Abbreviations: TYR, Tyrosinase; TYRP1, Tyrosinase-related protein-1; DCT, dopachrome tautomerase; 

LARP7, La ribonucleoprotein domain family, member-7; RRA, robust rank aggregation; DEGs, differen-
tially expressed genes; WGCNA, weighted gene coexpression network analysis; LASSO, logical regression 
of the selection operator; SVM-RFE, support vector machine recursive feature elimination; RF, random 
forest; GWAS, Genome-wide association study; FasL, Fas-Fas ligand; Tregs, T-regulatory cells; NK, natural 
killer; GEPCs, gene expression profiling chips; GO, gene ontology; GSEA, gene set enrichment analysis; 
FDR, false discovery rate; AUC, area under the curve; ROC, receiver-operating characteristic; BP, biological 
process; CC, cellular component; MF, molecular function.

ARTICLE HISTORY
Received 31 March 2021 
Revised 14 May 2021 
Accepted 15 May 2021 

KEYWORDS
Vitiligo; machine learning 
algorithm; immune cells; 
biomarkers; cibersort

CONTACT Yifei Wu pfkxwz@163.com Department of Dermatology, the First People’s Hospital of Yunnan Province, The Affiliated Hospital of 
Kunming University of Science and Technology, Kunming, Yunnan, 650032, China

BIOENGINEERED
2021, VOL. 12, NO. 1, 2214–2227
https://doi.org/10.1080/21655979.2021.1933743

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-1030-0491
http://orcid.org/0000-0001-5001-4396
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21655979.2021.1933743&domain=pdf&date_stamp=2021-06-09


Introduction
Vitiligo is an autoimmune dermatological disease 
characterized by the destruction of melanocytes 
and chronic depigmentation, resulting in gradual 
white patches in the skin. Globally, the prevalence 
rates ranged from 0.5% to 2% approximately [1,2]. 
The etiology of vitiligo is very complex, involving 
genetic predisposition, oxidative stress, environmen-
tal triggers, metabolic abnormalities, impaired 
renewal, and altered inflammatory and immune 
responses. Genome-wide association study 
(GWAS) has identified multiple genetic loci, which 
increased vitiligo risks, including gene polymorph-
ism, immunity, antigen presentation, melanocytes, 
and peptidases [3]. Systematic reviews have shown 
that histopathological and serological diagnoses 
revealed some biomarkers associated with disease 
activity in vitiligo. These biomarkers include cyto-
kines (IL-1β, IL-17, IFN-γ, TGF-β), autoantibodies, 
oxidative stress markers, immune cells, and antibo-
dies (RCLs), soluble CDs (sCD25, sCD27), and che-
mokines (CXCL9, CXCL10) [4]. However, the 
relationship between these biomarkers and the 
pathogenesis of vitiligo is not fully clear.

Vitiligo is associated with polymorphisms in 
genes involved in the immune response and in 
melanogenesis [5]. Recent immunological studies 
have extensively proved that immune cell infiltra-
tion plays a vital role in the occurrence and devel-
opment of vitiligo. For instance, melanocyte- 
specific CD8 + T cells are enriched in the peri- 
lesional skin of vitiligo in vitro studies [6]. CD8+ 

cytotoxic T cells can cause melanocyte injury [7], 
and the ratio of CD8 + T cells increases in lesional 
skin and peripheral blood of vitiligo patients [8,9]. 
CD8 + T cells can directly induce cytolysis of 
target cells by releasing soluble cytotoxic molecules 
and Fas-Fas ligand (FasL) interaction, inducing 
skin depigmentation cytotoxic T-cell response 
[10]. In addition to CD8 + T cells, many kinds of 
immune cell infiltration are found, including CD4 
+ Tcells, T-regulatory cells (Tregs), natural killer 
(NK) cells, dendritic cells, and skin resident T cells 
in the blood and skin lesions of vitiligo patients 
[11,12]. The degree of infiltration of these immune 
cells is highly correlated to activity and severity of 
vitiligo. However, the immunopathological 

mechanism of vitiligo remains imprecise. 
Therefore, evaluating immune cell infiltration 
degree in vitiligo and exploring changes in relative 
abundance of immune cell types of potential asso-
ciated markers to further elucidate the molecular 
mechanism underlying vitiligo and develop new 
immunotherapy targets is highly significant.

As a classical bulk RNA deconvolution algo-
rithm analysis tool, CIBERSORT is usually 
employed to evaluate immune cell infiltration 
degree in tissue samples. CIBERSORT has been 
used in skin diseases to analyze immune cell 
infiltration characteristics in malignant melano-
mas [13], acne [14], atopic dermatitis, and psor-
iasis [15]. However, we have not found any 
other studies that utilize CIBERSORT algorithm 
to analyze immune cell infiltration abundance in 
vitiligo and evaluate its value. In this study, we 
used CIBERSORT for the first time to analyze 
the difference of immune infiltration between 
lesional and normal tissues in 22 immune cell 
subsets.

Thus, this study aimed to further screen and 
determine biomarkers related to vitiligo using 
machine learning integrated strategies and 
weighted gene coexpression network analysis. In 
addition, we also used the CIBERSORT algorithm 
to study the changes in differences between bio-
markers and infiltrated immune cells to under-
stand better the molecular immune mechanisms 
involved in vitiligo. We hope to provide directions 
for further research via a variety of algorithm 
strategies to identify associated markers of skin 
diseases.

Materials and methods

Data collection and data processing

We selected three vitiligo gene expression micro-
array (gene expression profiling chips, GEPCs) 
from the GEO database [16], including 
GSE53,146, GSE65127, and GSE75819. The 
RMA algorithm was applied to background cor-
rection and data normalization [17]. The sam-
ples’ inclusion criteria were as follows: lesional 
skin and normal skin of patients with vitiligo, 
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excluding non-lesional and peri-lesional skin tis-
sue. GSE53146 contains 5 lesional skin and 5 
normal skin, GSE65127 contains 10 lesional 
skin and normal skin, and GSE75819 comprises 
15 lesional skin and normal skin. These lesional 
skin were mainly from the upper back, abdo-
men, forearm, lower leg, and thigh. Then, 
DEGs identified each dataset through ‘limma’ 
package [18], and the volcano plot of DEGs 
was drawn to show their differential expression. 
DEGs with p < 0.05 and |log2FC| > 1 were 
considered statistically significant.

Robust rank aggregation analysis

The RRA method was utilized to integrate three 
datasets, identify robust DEGs [19], and minimize 
the deviation and error between multiple datasets. 
The upregulated and downregulated genes were 
sequenced in each dataset. RRA package is exe-
cuted to obtain robust DEGs based on the ranked 
genes in the three datasets. FC > 1 and P-value < 
0.05 were considered to be truncation criteria for 
significant robust DEGs. We rectified the expres-
sion matrices of GSE53146, GSE65127, and 
GSE75819 datasets to standardize the data and 
merge them into an independent dataset after 
quality control RRA analysis.

Functional correlation analysis

The ‘clusterProfiler’ package was used for gene 
ontology (GO) and KEGG enrichment analysis 
to identify the function of robust DEGs [20]. 
The gene set enrichment analysis (GSEA) of 
gene expression matrix was conducted by 
‘clusterProfiler’ package, and ‘c2.cp.kegg.v7.2. 
symbols.gmt’ was selected as the reference gene 
set [21]. A false discovery rate (FDR) < 0.25 and 
p < 0.05 were considered significant enrichment.

Screening characteristic related biomarkers via 
the comprehensive strategy

We combined WGCNA, logical regression of the 
selection operator (LASSO) [22], support vector 
machine recursive feature elimination (SVM- 
RFE) [23], and random forest (RF) [24] to analyze 
vitiligo-related biomarkers. WGCNA was 

employed to find DEG modules with high correla-
tions to vitiligo, and RF was utilized for supervised 
machine learning. The least absolute shrinkage 
and LASSO were combined with the feature selec-
tion of SVM-RFE to find vitiligo-related biomar-
kers. WGCNA was used to identify highly 
synergistic gene sets and identify biomarkers 
based on interconnectedness of gene sets and asso-
ciation between gene sets and phenotypes [25]. 
SVM-RFE was a machine learning method based 
on a support vector machine used to find the best 
variables by deleting feature vectors generated by 
SVM and further identifying these biomarkers’ 
associated value in vitiligo through ‘e1071’ package 
[26]. RF was a widely used machine learning algo-
rithm based on decision tree theory. The RF algo-
rithm was a machine learning algorithm based on 
decision tree theory classified according to its abil-
ity to deal with high-dimensional data and select 
the most informative gene clusters. The pROC 
R package [27] was employed to compute the 
area under the curve (AUC) of a receiver- 
operating characteristic (ROC) curve to evaluate 
the joint associated efficiency of biomarkers. 
P < 0.05 was considered to be statistically 
significant.

Evaluation and correlation analysis of immune 
infiltrating cells

The CIBERSORT algorithm was utilized to filter 
22 kinds of immune cell matrix [28]. According 
to p < 0.05, the immune cell infiltration matrix 
was obtained. The ‘ggplot2’ package was 
employed for PCA cluster analysis of immune 
cell infiltration matrix [29]. The ‘corrplot’ pack-
age was deployed to draw the correlation heat-
map to visualize the correlation of 22 kinds of 
immune cell infiltration [30]. The ‘ggstatsplot’ 
(https://github.com/IndrajeetPatil/ggstatsplot) 
and ‘ggplot2’ packages were used to analyze the 
Spearman correlation between characteristic bio-
markers and immune infiltrating cells and visua-
lize the results.

Results

Although many biomarkers of vitiligo have been 
identified in previous studies, the relationship 
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between the immune infiltration characteristics 
and these biomarkers of vitiligo remained unclear. 
Thus, this study aimed to screen potential biomar-
kers related to vitiligo by using multiple machine 
learning integrated strategies (LASSO, SVM-RFE, 
RF) and WGCNA analysis. To understand better 
the molecular immune mechanisms involved in 
vitiligo, we also used the CIBERSORT algorithm 
to study the changes in differences between bio-
markers and infiltrated immune cells. Ultimately, 
TYR, TYRP1, DCT, and LARP7 have been 
screened as candidate biomarkers associated with 
vitiligo. In addition, the immune infiltration char-
acteristics of these biomarkers were analyzed.

Screening of DEGs in different datasets

The DEGs of GSE53146, GSE65127 and 
GSE75819 were identified by limma package. 
According to cutoff criteria of |log2FC| > 1 and 
P < 0.05, there were 847 DEG in GSE 53146, 
including 412 upregulated and 435 downregu-
lated genes. A total of 73 DEGs were screened 
from GSE65127 data set, including 9 upregulated 
and 64 downregulated genes. A total of 1064 
DEGs were selected in GSE75819, including 
777 upregulated and 287 downregulated genes. 
The volcano plot was used to show DEGs in 
different data sets (Figure 1a-c).

Identification of robust DEGs by robust rank 
aggregation

A total of 131 robust DEGs were identified by RRA 
method, including 89 upregulated and 42 downregu-
lated genes. We allocated the top 20 upregulated and 
downregulated robust DEGs in visual heatmap accord-
ing to P-value < 0.05 (Figure 1d).

Functional enrichment analyses of robust DEGs

The GO analysis shows the top five most relevant 
terms. For biological process (BP), GO analysis showed 
that robust DEGs were mainly concentrated in pigmen-
tation, melanocyte differentiation, immune response, 
immune system process, neutrophil chemotaxis, anti-
microbial humoral immune response mediated by anti-
microbial peptide, and killing of cells of other organism 
signal pathways. The cellular component (CC) part, 

melanosome, is mainly enriched in melanosome mem-
brane, endoplasmic reticulum membrane, cytoskele-
ton, intracellular membrane-bounded organelle, and 
lysosome. The significantly enriched term in molecular 
function (MF) group was peptidase, transferase, oxidor-
eductase, cytokine, chemokine and endopeptidase 
activities (Figure 2a). The KEGG and GSEA analysis 
results showed that melanogenesis, oxidative phos-
phorylation, cell cycle, tyrosine metabolism, and pro-
teasome signal pathways were highly related to vitiligo 
pathology (Figure 2b-c). These signaling pathways and 
gene ranks at the leading edge were visualized by rank- 
based enrichment analysis and ‘ggplot2’ package 
(Figure 2d).

Screening characteristic related biomarkers via 
the comprehensive strategy

The LASSO logistic regression algorithm was used to 
identify 14 genes from robust DEGs as potential viti-
ligo-related biomarkers (Figure 3a-b). Ninety-eight 
genes were identified as potential biomarkers from 
robust DEGs by SVM-RFE algorithm (Figure 3c). 
Twelve genes were identified from robust DEGs using 
RF algorithm (Figure 3d). To further improve screening 
characteristic biomarkers’ accuracy, we used WGCNA 
to analyze independent data sets merged by quality 
control to identify the modules containing highly cor-
related genes. The soft-threshold power 5 was chosen to 
ensure that criterion of approximate scale-free topology 
(Figure 4a-b). We set MEDissThres as 0.25 to merge 
similar modules and generated 10 modules (Figure 4c- 
d). The hub genes were obtained in turquoise module, 
which is highly related to developing the disease. 
Finally, the gene markers obtained by the four algo-
rithms were overlapped, and the related biomarkers, 
including TYR, TYRP1, DCT, and LARP7, were 
obtained (Figure 5a). We used GSE90880 dataset as 
the verification set to validate the efficacy of four related 
biomarkers. The four biomarkers’ associated efficiency 
in the verification set reached a significant level 
(AUC = 0.942), indicating a high associated value 
(Figure 5b).

Analysis of Immune Infiltrating Cells

The PCA cluster analysis results displayed differ-
ences in some immune infiltration between nor-
mal and lesional samples (Figure 6a). The 
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CIBERSORT algorithm showcased the infiltration of 22 
kinds of immune cells that there were no significant 
differences in the infiltration of immune cells between 
T cells CD4 memory activated, macrophages M0, mast 
cells activated, and eosinophils. The correlation heat-
map exhibited a positive correlation between plasma 

cells and B cells memory in the immune infiltrating 
cells of vitiligo. A positive correlation was found 
between T cells regulatory (Tregs) and B cells naive, 
and a positive correlation was present between NK 
cells resting and T cells CD4 memory resting. While 
macrophages M2 and dendritic cells resting have 

Figure 1. Volcano plots of DEGs distribution in GSE53146 (a), GSE65127 (b) and GSE75819 (c). the yellow and purple dots represent 
upregulated and downregulated genes, respectively. (d) the heatmap of top 20 upregulated and downregulated robust DEGs 
identified by RRA method. yellow represents a high expression of robust DEGs, while purple represents a low expression of robust 
DEGs.
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a negative correlation, T cells CD4 memory resting 
and T cells CD8 also negatively correlate (Figure 6b). 
The violin plot also manifested that the immune 
infiltration of Tregs and mast cells resting was more, 
while that of plasma cells and NK cells activated was 
less (Figure 6c).

Analysis of the correlation between related 
biomarkers and immune infiltrating cells
Correlation analysis showed that TYR was positively 
correlated with dendritic cells activated (r = 0.644, 
p < 0.01), macrophages M0 (r = 0.495, p < 0.01) and 
T cells follicular helper (r = 0.278, p = 0.03) . TYR 
was negatively correlated with mast cells resting 

Figure 2. Functional enrichment analysis of robust DEGs. (a) GO enrichment analysis and its BP, CC, and MF three parts. (b) KEGG 
enrichment analysis. (c) GSEA showed that the top 5 signal pathways were most related to vitiligo pathology. (d) rank-based 
enrichment analysis visualized five signal pathways and showed melanogenesis signal pathways and gene ranks at the leading edge.
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(r = −0.328, p = 0.01), monocytes (r = −0.34, 
p = 0.01) and macrophages M2 (r = −0.387, 
p < 0.01) (Figure 7a). TYRP1 was positively corre-
lated with mast cells resting (r = 0.276, p = 0.03), and 
negatively correlated with T cells follicular helper 
(r = −0.296, p = 0.02) and NK cells activated 
(r = −0.303, p = 0.02) (Figure 7b). DCT was posi-
tively correlated with Tregs (r = 0.316, p = 0.02), and 
negatively correlated with T cells CD4 memory acti-
vated (r = −0.269, p = 0.03) and macrophages M1 
(r = −0.367, p = 0.01) (Figure 7c). LARP7 was posi-
tively correlated with macrophages M1 (r = 0.354, 
p < 0.01), mast cells activated (r = 0.332, p = 0.01) 
and eosinophils (r = 0.326, p = 0.01). LARP7 was 
negatively correlated with neutrophils (r = −0.304, 

p = 0.02) and macrophages M2 (r = −0.398, p < 0.01) 
(Figure 7d).

Discussion

Vitiligo is a common immune-mediated depig-
mented disease that is easy to diagnose but with 
a long treatment cycle. Although vitiligo has little 
impact on physical health, it seriously affects 
patient beauty and causes a substantial psycholo-
gical burden. To further understand the molecu-
lar mechanisms of the occurrence and 
development of vitiligo, we identified 131 robust 
DEGs using RRA method, including 89 upregu-
lated genes and 42 downregulated genes. GO 

Figure 3. Screening characteristic related biomarkers via comprehensive strategy. (a) the least absolute shrinkage and selection 
operator (LASSO) logistic regression algorithm is used to retain the most predictive features. (b) different colors represent different 
genes. based on support vector machine recursive feature elimination (SVM-RFE) algorithm (c) and random forest (RF) algorithm (d) 
to screen biomarkers.
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enrichment analysis revealed that robust DEGs 
were mainly related to pigmentation, melanocyte 
differentiation, immune response, and other 
immune cell signal pathways. The enrichment 
pathways of KEGG and GSEA are mainly corre-
lated with melanogenesis, oxidative phosphoryla-
tion, cell cycle, tyrosine metabolism, and 
proteasome signal pathways. Furthermore, rank- 
based enrichment analysis showed significantly 
more modulated genes in GSEA analysis. 
Previous studies have shown that these potential 
signaling pathways are not only related to mela-
nin production and metabolism, but also involved 
in the development of vitiligo [31,32].

As a system biology method, constructing 
WGCNA and identifying gene clusters or modules 
help to explore the characteristic relationship 
between disease and gene clusters. Meanwhile, we 
integrated the machine learning algorithm to 
improve the accuracy of screening biomarkers. 
LASSO logistic regression determines variables by 
exploring λ. SVM-RFE selects variables and 
explains direction and strength of correlation 
between predictors and outcomes by recursive fea-
ture elimination of non-linear kernels [33]. RF can 
deal with unbalanced and missing values in data. 
These three machine learning algorithms are 
mainly used to screen feature variables and estab-
lish the best classification model. Herein, TYR, 

Figure 4. (a) the cluster dendrogram of genes in independent data sets. the branching of clustering dendrograms of the most 
closely connected genes produced 10 gene coexpression modules. (b) relationships of consensus modules with samples. it contains 
a set of highly linked genes. each specified color represents a specific gene module. (c) analysis of the scale-free fit index for various 
soft-thresholding powers (beta). the red line represents merging threshold. (d) the mean connectivity of various soft threshold 
power was analyzed.
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TYRP1, DCT, and LARP7 were chosen as biomar-
kers to identify vitiligo by combining machine 
learning algorithm and WGCNA.

Tyrosinase (TYR) is a critical enzyme in mela-
nin metabolism, with abnormal expression closely 
related to vitiligo, melanoma, and Parkinson’s dis-
ease. Tyrosinase-related protein-1 (TYRP1) is mel-
anocyte-specific enzymes involved in melanin 
biosynthesis. Melanocyte-specific markers 
involved in melanin synthesis are mainly respon-
sible for tyrosine-to-melanin conversion, including 
tyrosinase-related protein-(TRP-) 1, TRP-2, and 
tyrosinase. The destruction of melanocytes, dys-
function, and obstruction of synthesis pathways 
are the leading causes of vitiligo. In human mela-
nocytes, the cyclic adenosine monophosphate/pro-
tein kinase A (cAMP/PKA) pathway, as one of the 
mediators, can promote the signal transfer from 
melanin system to melanogenesis enzymes dopa-
chrome tautomerase (DCT), TYR, and TYRP1, 
which is regulated by both Wnt and MAPK signal 
pathways [34]. Recent studies showed that 
increased cAMP signaling could promote mela-
noma tumor progression. H2O2-induced ATP 
synthase β induces melanogenesis by activating 
PAH and cAMP/CREB/MITF signaling in mela-
noma cells [35]. The melanocyte-specific melano-
cortin-1 receptor (MC1R) binds to α-melanocyte- 
stimulating hormone (α-MSH) and activates ade-
nylate cyclase, resulting in increased intracellular 
cAMP levels [36]. These melanin-synthesized 
genes are regulated by a microphthalmia- 

associated transcription factor (MITF), modulat-
ing melanocytes’ differentiation and leading to an 
elevated TYR level, TRP1 and TRP2 [37].

The expression of TRP-2, also known as DCT, 
DCT is regulated by MITF and can be secreted by 
normal melanocytes and glial cells and presented 
in MHC class I-presentation on CD8 + T cells 
[38]. Both DCT and TYR can be expressed in 
mature melanocytes related to proliferation, 
migration, and differentiation of melanocyte pre-
cursors [39]. Vitiligo is associated with primary 
allele of SNP in TYR region [40]. TYR, TYRP1, 
TYRP2, and DCT mRNA levels in vitiligo patients 
are significantly downregulated and can lead to 
decreased melanin synthesis [41,42]. Another 
study on melanocyte autophagy found that the 
expression of MITF, TYR, TYRP1, and TYRP2 
proteins decreased in vitiligo patients [43]. 
Previous studies have reported that melanocyte 
signal pathway is one of the core signal pathways 
in vitiligo, dominating melanocyte production, 
destruction, and pigment transport as transcrip-
tion factors of melanocyte signal pathway, TYR, 
TYRP1, and DCT involved in vitiligo progression.

La ribonucleoprotein domain family, member-7 
(LARP7), belongs to LARP RNA binding protein 
family and is BRCA1 ubiquitinase substrate regu-
lating the metabolism and function of many RNA 
species and inhibit the occurrence of gastrointest-
inal tumors [44]. In the zebrafish melanoma model 
study, it was found that knockout LARP7 could 
rescue melanocyte gene expression and observe 

Figure 5. (a) the venn diagram showed the intersection of biomarkers obtained by four algorithms. (b) four associated markers were 
fitted into one variable, and ROC curve was used to verify the associated efficiency.
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melanocytes in knockout HEXIM1 [45]. 
Therefore, we speculate that LARP7 is involved 
in transcriptional regulation and proliferation of 
melanocytes. However, the current research is still 

limited, and many clinical studies are required to 
confirm the associated value of biomarkers.

We used CIBERSORT to further evaluate the 
immune infiltration of vitiligo to explore the role 

Figure 6. Immune cells infiltration analysis. (a) PCA results of immune infiltration between lesional and normal samples. (b) The 
correlation heatmap showed 22 kinds of immune cell infiltration, and 4 kinds of immune cells with no difference were removed. The 
size of color square represents correlation intensity, red represents the positive correlation, and blue represents the negative 
correlation. (c) The violin plot showed the difference of 22 kinds of immune cell infiltration between two groups. The red markers 
represent immune cells with significant differences in infiltration.
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of immune cell infiltration in vitiligo. CD4 T Cell 
Subset plays a significant role in coordinating 
adaptive immune response and participates in pig-
mentation [46]. CD8 T cells can produce 
a cytotoxic reaction to melanocytes. CD8 T cells 
in the skin around the lesions of vitiligo patients 
can recognize melanocyte antigens and induce 
autologous melanocyte apoptosis [47]. CD4 and 
CD8 T cells mainly produce IFN-γ and TNF-α in 
vitiligo. The activation of CD8 T cells is related to 
damage of Tregs. Tregs can reduce the prolifera-
tion and cytokine production of autoreactive CD8 
T cells. Treg cells contain a subset of CD4 + T cells 
characterized by the expression of FOXP3 tran-
scription factors, which can locally proliferate 

and dampen skin effector memory T cell responses 
[10]. The induced expression of CCL22 in the skin 
increased Tregs infiltration and decreased 
pigmentation.

The impairment of Tregs’ number and function 
is closely linked to immune tolerance of vitiligo 
[11]. NK cells can be activated by local inflamma-
tion of vitiligo and drive adaptive immune 
response by releasing pro-inflammatory cytokines. 
NK cells have cytotoxicity, which can affect anti-
gen presentation and stimulate the function and 
maturation of dendritic cells [47]. Macrophages 
are involved in clearing melanocytes in vitiligo. 
Macrophage infiltration has been demonstrated 
in vitiligo lesions, and increased macrophage 

Figure 7. Analysis of the correlation between biomarkers and infiltrating immune cells. (a) Correlation between TYR and infiltrating 
immune cells. (b) Correlation between TYRP1 and infiltrating immune cells. (c) Correlation between DCT and infiltrating immune 
cells. (d) Correlation between LARP7 and infiltrating immune cells. The dot size represents correlation intensity between genes and 
immune cells. The lower the p-value, the more yellow the color, and the higher the p-value, the redder the color.
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numbers are also observed in perilesional skin 
[48]. Besides, our analysis revealed the details of 
infiltration of 22 kinds of immune cells in vitiligo. 
However, further experimental data are required 
to confirm the complex interaction between viti-
ligo and immune infiltration of biomarkers.

In this study, for the first time, we adopted 
a comprehensive strategy of WGCNA and 
machine learning algorithm to screen the biomar-
kers associated with vitiligo and employed 
CIBERSORT to analyze the immune cell infiltra-
tion of vitiligo. CIBERSORT analysis is based on 
limited genetic data, and the analysis of immune 
cell infiltration is still limited. Although some of 
the previous research results are consistent with 
our analysis results, the reliability of research 
results still needs to be verified by further experi-
ments. In addition, the site of the lesional skin has 
a significant impact on prognosis, such as the 
fingers and toes, palms and soles, lips, eyelids, 
nipples and areolas, elbows and knees, and geni-
tals, are considered to be difficult-to-treat areas. 
An another limitation in this study is the lack of 
relevant information on the site of the lesional 
skin. In the subsequent study, we should consider 
the influence of the lesion anatomical site of the 
vitiligo on the treatment effect.

Conclusions

In summary, we found that TYR, TYRP1, DCT, 
and LARP7 are biomarkers associated with vitiligo. 
CD4 T Cell, CD8 T Cell, Tregs, NK cells, dendritic 
cells, and macrophages are related to vitiligo 
occurrence. These immune cells may hold a vital 
role in vitiligo development. Further exploration 
of the interaction between immune cell infiltration 
would help determine the immunotherapy goal for 
vitiligo and improve immunomodulatory therapy 
for vitiligo patients.

Highlights

1. TYR, TYRP1, DCT, and LARP7 were selected as biomar-
kers associated with vitiligo.

2. Four biomarkers were associated with multiple immune 
cell infiltration in vitiligo.

3. TYR, TYRP1, DCT, and LARP7 were involved in the 
pathogenesis of vitiligo.
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