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It is well accepted that genes are simultaneously involved in multiple biological processes and that genes are coordinated over the
duration of such events. Unfortunately, clustering methodologies that group genes for the purpose of novel gene discovery fail to
acknowledge the dynamic nature of biological processes and provide static clusters, even when the expression of genes is assessed
across time or developmental stages. By taking advantage of techniques and theories from time frequency analysis, periodic gene
expression profiles are dynamically clustered based on the assumption that different spectral frequencies characterize different
biological processes. A two-step cluster validation approach is proposed to statistically estimate both the optimal number of clusters
and to distinguish significant clusters from noise. The resulting clusters reveal coordinated coexpressed genes. This novel dynamic
clustering approach has broad applicability to a vast range of sequential data scenarios where the order of the series is of interest.

1. Introduction

Microarray and next-generation sequencing (RNA-seq)
technologies enable researchers to study any genomewide
transcriptome at coordinated and varying stages. Since
biological processes are time varying [1], they may be best
described by time series gene expression rather than by a
static gene expression analysis. Acknowledging the nature
of genes that are involved in dynamic biological processes
(e.g., developmental processes, mechanisms of cell cycle
regulation, etc.) has potential to provide insight into the
complex associations between genes that are involved.

Functional discovery is a common goal of clustering gene
expression data. In fact, the functionality of genes can be
inferred if their expression patterns, or profiles, are similar
to genes of known function. There are published clustering
methods that include into the analysis the duration of the
experimental stages, or the staged dependence structure
of gene expression. The results from these approaches are
certainly more informative and realistic than groupings that
are gained from static clustering methods (i.e., clustering
at a single-staged experimental point), but their results are
limited in interpretation. The seminal work from Luan and

Li [2] is a good example of a clustering application that
takes the time dependent nature of genes into account. More
realistic, though, is the fact that some biological processes
typically start and end at identifiable stages, or time points,
and that the genes in a process may be dynamically regulated
at different stages of the biological process [3]. In other
words, genes can be coregulated over a finite series of points
(i.e., only a portion of points represent the total when the
transcriptome is being sampled).

A variety of subspace clustering methodologies have
attempted to address the time-dependent nature of tran-
scriptome experiments through biclustering [4], or plaid
models [5]. Although these bicluster (i.e., clusters obtained
by any subspace clustering method are referred to as
biclusters from this point forward) approaches are popular,
they have limitations. Namely, they restrict subspace clusters
to consecutive time points [6–9]. For example, Madeira
and Oliveira [8] discretized real-valued gene expression data
as upregulated, downregulated, and unchanged according
to the slope of expression change from one time point to
the next. They then rely on string processing techniques
to develop an algorithm that identifies contiguous column
coherent biclusters. Alternatively, Zhang et al. [9] alter
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original expression data by deleting and inserting border
time points, and then use an algorithm based on a mean
squared residue score to cluster the modified expression data.

We are motivated by the fact that the genes involved
in the biclusters that are obtained by [8, 9] have the same
starting and ending time point(s). Even though it is well
known that time lags exist for many genes that are involved
in the same biological process and that genes with the same
function may give rise to unique expression patterns/profiles,
to our knowledge this information has not been incorporated
into any statistical approach for clustering. Ji and Tan [6]
focus on extracting time-lagged gene clusters known as q-
clusters, where q is the time length of a bicluster (i.e.,
the number of consecutive time points in the bicluster),
that can have different time lengths, but genes in the
same cluster must have the same durations over time, even
though time lags exist among the genes. Song et al. [7]
proposed to use a wavelet-based cluster method to detect
time shift/delay situation. To our knowledge, none of the
current or existing subspace clustering methodologies is able
to provide biclusters that are varying in their duration of time
length.

We know that standard exploratory clustering methods
are useful for grouping items that behave in a similar
fashion. However, when these standard approaches are
applied to experiments that evaluate the transcriptome over
coordinated experimental stages, they fail to acknowledge
the dynamic nature of such processes. As such, this work
focuses on the dynamic and nonconsistent nature of gene
activity (Figure 1). Although presented here in the context
of coordinated transcriptome data, this novel dynamic
clustering approach is applicable to a vast range of sequential
data scenarios where the order of the series is of interest [10].

2. Methods

One important aspect of periodic (gene expression) profiles
is spectral frequency. Specifically, there may be discontinu-
ities (e.g., a gene may enter or exit a biological process at
any time point), or more generally, a time-varying spectral
frequency in nonstationary or piecewise stationary time
series (i.e., signal) that can be studied using techniques
and theories from signal decomposition [11]. “Time series”
and “signal” are used exchangeable from this point for-
ward. Once decomposed, the components can be quantified
based on their constrained coherency (CoCo, details in the
Section 2.2) and gathered via an agglomerative hierarchical
clustering that involves determining the number of clusters
and separating signal from noise.

2.1. Time Frequency Analysis. For a nonstationary time
series, time-frequency analysis is usually employed to map
one-dimensional time series onto a two-dimensional time-
frequency domain so that both the frequency and time
information can be considered [12, 13]. Addison [14] jus-
tifies the continuous wavelet transformation (CWT) based

time-frequency analysis and states that it has many bene-
fits over other time-frequency representations of multiple-
component signals (i.e., signals that contain multiple fre-
quencies) or signals with discontinuities in frequency [13].
We assume that even though a gene may be expressed
multiple times in a time series, it may also be involved in
multiple biological processes, and therefore multiple spectral
components need to be considered [15]. Toward this end, we
employ CWT to decompose gene expression signals, s(t):

W(b, a) = 1
a

∫
s(t)ϕ

(
t − b

a

)
dt, (1)

where ϕ(t) is the mother wavelet, a is the scale parameter, b is
the shift parameter, and the Morlet wavelet [16] is employed.
The significant frequency values and their associated starting
and ending time points for an expression signal, s(t) =
(s1, s2, . . . , sN ), are determined as follows.

(1) Perform a continuous wavelet transformation (CWT)
on the time series s(t).

(2) Generate a white noise time series w(t) = (w1,w2,. . .,
wN ), where wi’s are distributed as N(0,σ2), where σ2

is the variance of the time series s(t).

(3) Perform a CWT on the white noise time series from
Step 2 and obtain the time-frequency representation.

(4) Repeat Steps 2-3 M times (usually, M ≥ 1000). For
each frequency f at each time point t, the 95th
percentile of M modulus serves as the threshold. The
threshold surface is constructed by connecting all
thresholds across both frequency and time.

Let W0(t, f ) represent the threshold surface calculated
from white noise information, and let W(t, f ) represent the
CWT outcome of the original gene expression signal s(t).
Determining the significant components whose CWT values
are above the threshold surface is equivalent to identifying
the components from W ′:

W ′(t, f ) = max
{

0,W
(
t, f
)−W0

(
t, f
)}

, (2)

where t represents time and f denotes frequency. It is
worth noting that the meaningful component on the sliced
CWT has some width in the frequency domain, and that a
signal may contain several significant components. A “Crazy
Climber” ridge extraction algorithm is employed [12] to
extract significant frequencies and their related starting and
ending time points.

2.2. Similarity Measurement. The actual clustering (of genes)
requires a similarity metric that measures the pairwise rela-
tionship between genes via their decomposed components.
Since frequency is of interest, a coherency [17] is used. For
two signals x and y, coherency is

Cxy
(
f
) = P2

xy

(
f
)

Pxx
(
f
)
Pyy
(
f
) , (3)

where Pxx( f ) and Pyy( f ) are the respective power spectral
densities of the two signals and Pxy( f ) is their cross-spectral
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Figure 1: Three (red, blue, green) hypothetical gene clusters across
time. The specific genes in the red cluster is varying, and of different
duration, while the genes in the green cluster reenter the cluster after
a time of not being in the cluster, and all of the genes in the blue
cluster enter and leave the process at the same time.

density. Typically when calculating the coherency function
between two signals, the lengths of the signals are the
same. However, since the component signals may differ in
length, the median length for all frequencies is used to
represent a uniform time length. Further, since coherency
is a function of frequency, its range is from zero to half of
the sampling frequency of a discrete signal (i.e., a continuous
signal measured at discrete time points; [18]). In general,
the sampling frequency, or sampling rate, is the number of
time points per second as measured in Hertz. Given two
signals with frequencies fx and fy , we use the average of
the coherency function in the interval [ fx, fy] to represent
the coherency similarity and refer to it as “coherency” for
simplicity.

Although it is expected that coherency will decrease as
the difference between two frequencies (from two signals)
increases, there are situations (Figure 2) when a non-
monotonic coherency pattern identifiable from a coherency
plot exists. To ensure monotonicity, we provide a modi-
fied coherency that acknowledges that the valleys of the
coherency curves are nonincreasing along the frequency
differences when we construct a representative curve that
is monotonic in frequency difference. Although many other
similarity measures can be employed (e.g., Brownian Dis-
tance measurement [19]), our modification (CoCo) is data-
driven and provides a constrained coherency that serves as a
similarity measurement for clustering (Figure 2).

2.3. Clustering. We rely on agglomerative hierarchical clus-
tering coupled with Ward linkage [21] for clustering.
Although the Ward linkage finds compact and homogenous
clusters by minimizing the variance of objects, there are two
issues that we need to address: determining the number of
clusters and differentiating meaningful clusters from noise
clusters (i.e., clusters containing only noise).
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Figure 2: The nonmonotonic pattern of frequency differences
between two signals requires a modification to the coherency. A
constrained coherency (CoCo) identifies the valleys of the original
curve as nonincreasing along the frequency differences and provides
a monotonic representation of coherency. Illustration taken from
An and Doerge [20].

2.4. Cluster Validation

2.4.1. Number of Clusters. A variety of approaches have been
suggested for determining the number of clusters [22–24].
One well-known approach involves finding the “elbow” (or,
change point) of an error curve [25]. Unfortunately, most
work that relies on the elbow lacks statistical justification
[26]. Although others have attempted to compare the error
curve of the original data to the error curve of the data
generated from a null reference distribution (i.e., uniform
distribution) by employing the Gap statistic [27], this
approach is not applicable to overlapping clusters, nor is it
appropriate for noisy data [24, 25].

We approach the issue of determining the number of
clusters by globally evaluating the merge distance plot, which
is represented by the height of joint nodes in a cluster tree.
A null reference distribution is able to provide a merge-
distance threshold that can be compared to the original
merge distance. Specifically, a minimal convex set, or a
convex hull, is formed based on a set of convex combinations
of all points of interest [28]. The merge distance is obtained
by performing clustering on data generated from a uniform
distribution from the convex hull. Munneke et al. [29]
used a convex hull to generate randomly distributed gene
expression values so that distinctions between clusters arise
with statistical confidence. Here, a convex hull is employed
to assess the statistical significance of the merge distance
of hierarchical clusters. By evaluating the merge distance
globally, the number of clusters can be determined.

For a set X containing n objects, {x1, . . . , xn}, the convex
hull of X is

H(X) =
⎧⎨
⎩

n∑
i=1

αixi | xi ∈ X ,αi ≥ 0,
n∑
i=1

αi = 1

⎫⎬
⎭, (4)
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where xi can be one or more dimensions. For time series
gene expression data, n is the total number of decomposed
components and the xi’s are the component frequencies. The
following steps are used to determine the number of clusters.

(1) Perform hierarchical clustering with Ward linkage
and CoCo similarity on the original data (xi) con-
taining n points and obtain the merge distance set
M0 = (d2, . . . ,dn).

(2) Randomly choose n objects from the uniform distri-
bution [min(xi), max(xi)].

(3) Perform hierarchical clustering on the random data
set from Step (2), and obtain a new merge distance
set.

(4) Repeat Steps (2)-(3) M times (usually M ≥ 1000).
For each possible number of clusters (k, k = 2, . . . ,n)
the 95th percentile of M merge distances, d∗k , serves
as a threshold and the 95% threshold curve is con-
structed as M∗ = (d∗2 , . . . ,d∗n ).

(5) Compare M0 with M∗; the largest k which satisfies
dk > d∗k is the optimal number of clusters k0.

Since some gene expression data can be quite noisy, an addi-
tional step in cluster validation necessitates differentiating
the noise cluster from meaningful (i.e., significant) clusters.

2.4.2. Significant Clusters. A noise cluster differs from sta-
tistically significant clusters in terms of compactness and
separation. The objects in a noise cluster are scattered, while
the objects in a statistically significant cluster, which are
similar to the tight clusters in [30], are dense. Here, the
silhouette metric [31], a measure of tightness and separation
of clusters, is used to assess the level of statistical significance
of clusters. For each object i, its silhouette width is defined as

s(i) = b(i)− a(i)
max{a(i), b(i)} , (5)

where a(i) is the average dissimilarity of object i to other
objects in the same cluster and b(i) is the average dissim-
ilarity of object i to objects in its nearest neighbor cluster.
The range of the silhouette width is [−1, 1]. The average
silhouette width of objects in a cluster represents the quality
of the cluster in terms of compactness and separation. The
average silhouette of a noise cluster (if it exists) should be
low, while for statistically significant clusters it should be
high.

When evaluating the silhouettes for k0 clusters, a uniform
reference distribution is employed to generate independently
located objects upon which the hierarchical clustering oper-
ates. The silhouettes are obtained for the reference data for
the same cluster number k0 as follows [20].

(1) For k0 clusters from the original data, compute their
silhouettes.

(2) Randomly choose n objects from the uniform distri-
bution on the convex hull of the frequencies of the
original data.

(3) Perform hierarchical clustering on data from Step (2),
choose k0 clusters and obtain their silhouettes.

(4) Repeat Steps (2)-(3) M times (usually M ≥ 1000)
and obtain M sets of k0 silhouettes. For each of k0

silhouettes of the original data, calculate its P value
from M∗k0 values. Cluster significance is represented
by its P-value.

(5) The significance level is α. A cluster is significant if its
P value < α; otherwise, it is noise.

2.5. Dynamic Cluster. Up to this point, we have described
a two-step cluster validation that provides the number
of clusters and differentiates significant clusters from a
noise cluster. Since a gene’s expression over time can be
described in terms of frequencies and then decomposed into
components that each may have unique start and stop points,
the time-dependent structure of the data is retained, and the
concept of a dynamic cluster evolves naturally.

In anticipation of assessing the performance of the
proposed dynamic clustering algorithm via simulation, we
realize two further issues. First, to our knowledge, there are
no clustering approaches, which provide gene sets at different
(time) points. This makes comparing our approach with
existing approaches fruitless. Second, because we work from
simulated data, we need a metric to compare the clusters
that result from dynamic clustering with the cluster-scenario
from which they were simulated. To address these issues, we
develop a discovery index.

2.6. Discovery Index. The proposed cluster validation algo-
rithm objectively evaluates the quality of clustering results
using information from the data (i.e., silhouette width).
When prior information (e.g., pathway, etc.) is available,
obviously it contributes even more information upon which
to base cluster validation. Fortunately, this is exactly the
situation for time series gene expression with time-varying
frequencies; information on both true cluster membership
and true time duration for genes in clusters is available.
Since traditional criteria [32, 33] only involve the true cluster
membership, we provide a new criterion that takes into
account both time information and cluster characteristics.

Assume an estimated cluster E obtained via a clustering
method represents the true class C such that some genes in E
differ from genes in class C in terms of the gene identification
number or the gene time information. For each gene in either
true class C, or estimated cluster E, consider the true time
interval and estimated time interval. The discovery index for
gene g in class j or cluster j is defined as

Dg j =
Pg j ∩Qg j

Pg j ∪Qg j
, (6)

where Pg j denotes the true time interval and Qg j denotes the
estimated time interval. By this definition, 0 ≤ Dg j ≤ 1.
Specifically, when gene g appears in the class but is not
detected in the corresponding cluster we have Dg j = 0
since Qg j = 0; similarly, when it is detected in the cluster
but is not in the corresponding class we get Dg j = 0 due
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to Pg j = 0. For a class it is possible to define its cluster
by using all pairwise comparisons and a specified (small)
cut-off. We can find the closest cluster (i.e., estimate) for
each class. Specifically, if the distance between a class and
its closest cluster (i.e., the difference between two frequency
values) is less than the predefined cutoff, then the cluster will
be called its estimate. At times not all of the classes will be
detected, or some cluster may be superfluous since it may
not have a matching class. In these situations, the discovery
indices for the genes in either that class or that cluster are all
zero. Finally, the overall discovery index for the genes across
the corresponding clusters and classes is

D =
∑J

j=1

∑G
g=1 Dg j∑J

j=1 Oj

, (7)

where G the number of genes, J is the maximum of the
number of clusters and the number of classes, Oj is the
number of genes in the jth cluster or class, and Dg j is the
discovery index for gene g in the jth cluster or class. Clearly,∑G

g=1 Dg j ≤ Oj , so 0 ≤ D ≤ 1. The discovery index evaluates
the value of combining clustering and signal decomposition.

3. Simulation Studies

Because the proposed approach includes two subprocedures,
namely, time-frequency decomposition and clustering, and
because the result of the first subprocedure impacts the
results of the second subprocedure, a power study will be
conducted on these two subprocedures separately. The power
of the signal decomposition is investigated relative to the
noise level, frequency level, difference between frequencies
of components in a gene signal, and time lengths of
components. Interestingly, gene expression contains various
features, for example, some genes may have one component
with a certain frequency; some genes may have two compo-
nents with other frequencies; others may have more than two
components with different frequencies. We acknowledge that
investigating the performance of the signal decomposition,
and the proposed clustering method, for these types of data
is challenging simply because it is difficult to summarize
the distribution of the frequencies for multiple components
from multiple genes. Furthermore, the time durations of the
components affect statistical power.

3.1. Time-Frequency Analysis. Signal decomposition is influ-
enced by many parameters/factors, including frequency,
frequency difference (for multiple component signals), time
length of signal, ratio of the amplitude of the components,
and noise level. Because of the limitation of displaying
multiple factor effects simultaneously, a power study of signal
decomposition on two-component signals is performed for
investigating the effect of frequency, frequency difference,
amplitude ratio, and noise. Additional simulation studies can

be found in An’s paper [34]. In general, the two-component
signals are simulated from

s(t) = cos
(
2π f t + ϕ1

)
+ A cos

(
2π
(
f + Δ f

)
t + ϕ2

)

+ noiselevel ∗N(0, 1),
(8)

where t is time from 0 to 10 seconds, f represents spectral
frequency that varies from 0.1 Hz to 1.0 Hz, Δf denotes the
frequency difference between two components (from 0.1 Hz
to 1.0 Hz), A represents the amplitude ratio between two
components (0.5, 0.2, 1.0, 2.0, 5.0; the amplitude of the
first component is 1, as a baseline), and ϕ1 and ϕ2 are the
phase shifts that are randomly chosen from [0, 2π]. The
noise level varies from 0 to 1.0, in increments of 0.10. In
spectral analysis, particularly in fast Fourier transformations,
the length of a signal is usually a power of two. We consider
64 time points that equally partition the sample space.

The power of decomposing each gene expression time
series is defined as

∑c
k=1 wk∑q

i=1 ui +
∑m

j=1 vj −
∑c

k=1 wk
, (9)

where
∑q

i=1 ui is the total time duration of the q true
components (q = 2 for the two-component signal decompo-
sition),

∑m
j=1 vj is the total time duration of the m estimated

components, and
∑c

k=1 wk is the total time duration of
the coverlap components between the true and estimated
components. For each parameter combination, the overall
power of the signal decomposition is the average power for
decomposing 1000 signals.

Figure 3 illustrates the power study of decomposing two-
component signals with amplitude ratio 1.0 without noise.
A larger difference between two frequencies results in greater
power, and a lower frequency is more likely to be detected
than a higher frequency. Similar conclusions are obtained
for decomposing signals with different amplitude ratios and
different noise levels (plots not shown). The effect of time
duration is also investigated. Components with longer time
duration are more likely to be detected than those having
short time duration (plots not shown).

3.2. Dynamic Clustering. The performance of the dynamic
clustering approach coupled with the proposed validation
method is investigated using the discovery index, which
reflects the effect of both the signal decomposition and
the clustering. It is a considerable challenge to display
the discovery index for a set of data across all possible
combinations of parameters. Fortunately, it is possible to
assess the effect due to noise in the discovery index while
holding the other parameter settings fixed. The performance
of the dynamic clustering is assessed via fixed parameters
over increasing noise. Further, the effect of time, when other
parameter settings are fixed, is also assessed. Relying on the
previous simulation, we use 140 simulated genes to illustrate
the dynamic nature of the simulated time series.
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Figure 3: The decomposition power of CWT for two-component
signals without noise. The two components, both with the same
amplitude (i.e., ratio 1), have different frequencies.

3.2.1. Power Study: Noise Effect. Time series expression data
for 140 genes in three groups are simulated as follows:

group 1 = cos
(
2π ∗ 0.1t + ϕ1

)
+ cos

(
2π ∗ 0.8t + ϕ2

)

+ noiselevel ∗N(0, 1),

group 2 = cos
(
2π ∗ 0.4t + ϕ3

)
+ cos

(
2π ∗ 0.8t + ϕ4

)

+ noiselevel ∗N(0, 1),

group 3 = cos
(
2π ∗ 0.1t + ϕ5

)
+ cos

(
2π ∗ 0.4t + ϕ6

)

+ noiselevel ∗N(0, 1).

(10)

The time t and the phase shifts ϕj ( j = 1, . . . , 6) are simulated
as in the previous power study. There are 20, 40, and 80
genes in groups 1, 2, and 3, respectively. Each gene expression
profile contains two components whose frequencies are
0.1 Hz, 0.4 Hz, and 0.8 Hz. Each pair of genes from different
groups shares one common component. Sixty-four time
points equally partition the sample space [0, 10]. Noise level
varies at 0.5, 1, and 1.5.

The discovery index is calculated for each scenario, and
the average discovery index-calculated for each of the 1000
simulated data sets (Table 1). Figure 4 illustrates single gene
expression profiles with two components, 0.1 and 0.4 Hz, at
three different noise levels (0.5, 1, and 1.5). Interestingly,
the discovery index is very high even though the data are
moderately noisy (i.e., noise level 1.0 and the energy ratio
from signal and noise is 1 : 1). Dynamic clustering using the
proposed similarity metric and validation methods is able to
capture meaningful information from relatively noisy data.

3.2.2. Dynamic Clustering for Various Time Lengths. The
components in the previous simulation are simulated (3)
under varying times (0 to 10), across the entire time interval.
Since some genes may belong to a cluster in only a portion
of a time interval (simply because of noise), dynamic clusters
are demonstrated using simulated data where time intervals

Table 1: Dynamic indices for simulated data (1000 datasets) at
three different noise levels.

Noise level

0.5 1.0 1.5

Average of dynamic index 0.999 0.910 0.653

St. dev. of dynamic index 8e − 4 0.012 0.024

for some components are only a portion of entire time
interval. One hundred and forty genes are simulated as
follows:

group 1 = cos
(
2π ∗ 0.1t + ϕ1

)
+ N(0, 0.5), 0 ≤ t < 5

= cos
(
2π ∗ 0.1t + ϕ2

)
+ cos

(
2π ∗ 0.8t + ϕ3

)

+ N(0, 0.5), 5 ≤ t ≤ 10,

group 2 = cos
(
2π ∗ 0.4t + ϕ4

)
+ cos

(
2π ∗ 0.8t + ϕ5

)

+ N(0, 0.5), 0 ≤ t < 5

= cos
(
2π ∗ 0.4t + ϕ6

)
+ N(0, 0.5), 5 ≤ t ≤ 10,

group 3 = cos
(
2π ∗ 0.1t + ϕ7

)
+ N(0, 0.5), 0 ≤ t < 5

= cos
(
2π ∗ 0.1t + ϕ8

)

+ cos
(
2π ∗ 0.4t + ϕ9

)
+ N(0, 0.5), 5 ≤ t ≤ 10.

(11)

The true clusters (i.e., the clusters from which the 140 genes
are simulated) are illustrated in Figure 5 where different
colors represent different clusters. In each panel, the seg-
mentation represents the starting and ending time points
of the corresponding genes involved in that cluster. The
cluster characteristics are represented by the component
frequencies, 0.1, 0.4, and 0.8 Hz, and are listed on the top of
each panel.

Three significant clusters are detected by cluster valida-
tion. The dynamic property of the clusters is displayed in
Figure 6 and is visibly comparable to Figure 5 (simulation
setting). In the (red) cluster with frequency 0.1 Hz, all genes
from group 1 and group 3 are involved during the whole
time interval. For the (green) cluster with frequency 0.4 Hz,
all genes from group 2 appear in the entire interval. In
this cluster, some genes from group 3 remain in the second
half of the time interval and some genes are in the entire
time interval. For the third (blue) cluster with frequency of
0.83 Hz, most genes in group 1 are active in the second half
interval and most genes in group 2 are active in the first
half interval. Figure 6 reveals that components with a lower
frequency, and of long duration, are unlikely to be affected by
noise during the decomposition. Interestingly, the edge effect
of time series is involved in the results (Figure 6). Specifically,
the starting or ending time points for the genes in the third
(blue) cluster may not be accurately estimated, yet they can
be estimated precisely for the genes of a long duration (e.g.,
the genes in the first (red) cluster and genes from the second
group in the second (green) cluster).

Although we relied on the 140 genes from our earlier
simulation to demonstrate the performance of the proposed
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Figure 4: A single simulated gene expression profile with components 0.1 Hz and 0.4 Hz at three different noise levels: 0.5, 1, and 1.5 (from
left to right). The red line represents each profile without noise.

method, it is worth noting that performance improves as
the number of genes increases. Specifically, increasing gene
number allows our algorithm to more accurately identify the
noise cluster, thus separating the gene cluster(s) of interest
more precisely. While our simulation studies demonstrate
that our approach is able to both capture meaningful signals
from very noisy data and group them very well, we cannot
compare our method with existing methods [36] simply
because no information about time is contained in the
clusters obtained by other methods.

4. Real Data Application

Many microarray experiments have been conducted for
the purpose of understanding complex dynamic biologi-
cal processes and gene function of cell cycle (e.g., yeast,
human fibroblasts, human cancer cell lines, and Plasmodium
falciparum) [37–40]. Applicable here is the fact that it is
essential cell-cycle genes exhibit periodic expression over
time. Dynamic clustering is applied to cell-cycle Plasmodium
falciparum (known to cause malaria in humans) expression
data from [35].

4.1. Plasmodium falciparum. Between the mosquito vector
and human host, Plasmodium falciparum has a complex
life cycle. Its genome is sequenced and has over 5,000 cell-
cycle genes; 530 of them are annotated into 14 functional
groups [35]. A more complete understanding of the life
cycle and gene regulation will provide the foundation for
drug and vaccine development, for example, shortening its
life cycle may control transmission. Most of studies on the
P. falciparum data focus on either detecting periodic genes
[41, 42] or static clustering [43, 44]. Dynamic clustering
is applied to the 530 gene representations measured at
46 time points spanning 48 hours during the Intraery-
throcytic Developmental Cycle (IDC) with 1 hour time
resolution for the HB3 strain. The data are downloaded
from http://dx.doi.org/10.1371/journal.pbio.0000005.st002.
The missing data (for time point 23 and 29) are imputed by
the k-nearest neighbor algorithm [45] with k = 12.

4.2. Results. Using the continuous wavelet transformation
and ridge extraction, 530 time series gene expression profiles

are decomposed into a set of 1,019 component signals whose
frequencies are centralized for the purpose of calculation.
Hierarchical clustering using CoCo similarity is employed.
Two significant clusters and one noise cluster are detected
(Figure 7). The number of genes in each (and between)
significant cluster is summarized in Figure 8.

In the signal decomposition, the phase or phase shift can
be obtained for each component. Figure 9 summarizes genes
that are ordered by the phase (shift) of the corresponding
component. Red represents high values and green denotes
low values. The cluster characteristic is represented by period
(reciprocal of frequency). 444 genes are in the cluster with
period of 31.9 hours and 528 genes are in the cluster with
period of 63.8 hours. The periods of 31.9 hours and 63.8
hours are equivalent to1.5 cycles and 0.75 cycles, respectively.
These are consistent with the findings in the original research
[35]. Specifically, that the majority of the periodic gene
profiles exhibit an overall expression period of 0.75∼1.5
cycles in 48 hour interval.

Since the components contain time information (i.e.,
starting and ending time points), the number of genes in
a cluster may vary across time. The dynamic property of
clusters from the P. falciparum data can be summarized in
terms of number of genes at each time point (Figure 10).
A nonparametric bootstrap [46] is employed to calculate
the 95% confidence interval for the statistic. Hence the 95%
confidence band for the curve of the number of genes is
constructed by calculating the confidence intervals across all
time points.

As illustrated in Figure 10, the number of genes in Cluster
2 varies with time while the number of genes in Cluster 1 (i.e.,
the ones with longer period) remains constant. This confirms
the findings from the simulation study that genes with lower
spectral frequency are more likely to be detected than those
with higher frequency. Apparently, multiple periods in P.
falciparum data have not been studied (i.e., no published
results); therefore, the expression pattern in Figure 10 may
warrant further investigation.

4.3. Gene Ontology Analysis of the Clustered Genes. We
employed the web-accessible programs DAVID (Database
for Annotation, Visualization and Integrated Discovery [47,
48]) and PlasmoDB (Plasmodium Genomics Resource [49])

http://dx.doi.org/10.1371/journal.pbio.0000005.st002
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Figure 5: Panel plot for the true three clusters of 140 genes
simulated using (8). Each segment represents a component (gene id
on the y-axis) with the starting and ending time points detected via
signal decomposition. The frequency value in each cluster is given
at the top of each panel.
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Figure 6: Panel plot for the estimated three clusters from 140 genes
simulated using (8). Each segment represents a component (gene
id on the y-axis) with the starting and ending time points detected
via signal decomposition. The estimated frequency value for each
cluster is shown at the top of each panel.

for the gene ontology (GO) analysis. In DAVID, the GO-
BP FAT term is used to report enrichment results, as it
“attempts to filter the broadest terms so that they do not
overshadow the more specific terms” [50]. The biological
process “translation” is the only GO term that is detected as
enriched (with FDR = 8.9e − 19) for the genes appearing in
Cluster 1. The genes involved in both clusters with significant
GO terms are listed in Table 2.

There are a quite few genes involved in multiple (inde-
pendent) processes. For example, we find that the processes
“amino acid activation” and “tRNA metabolic process” share
19 genes in common, while these two processes have no
ancestor—child relationship. There is only one gene in
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Figure 7: Smoothed scatter plot of decomposed frequency (cen-
tralized) of 1,019 components for 530 P. falciparum genes [35]. The
dark blue area represents the high density of the points.
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Figure 8: Distribution of the gene counts in the two significant
clusters that result from an application of dynamic clustering to P.
falciparum data from Bozdech et al. [35].

Cluster 2 that is not in Cluster 1. This gene is involved in
the “glycolysis.” As a point of future research, we noticed that
the phase information is often used to cluster cell cycle gene
expression profiles [35, 44, 51]. As such, a nature evolution
of our approach is to employ phase information in clustering
(see Section 5).

5. Discussion and Conclusion

When the application is gene expression, methods from
signal processing have proven successful in decomposing
the nature of complicated time series that contain multiple
component signals. A two-step cluster validation is proposed
to statistically determine the optimal number of clusters
and to select the statistically significant clusters. To our
knowledge, there are no clustering approaches that provide
unique gene sets at different time points (i.e., genes in the
same cluster may have different starting and ending points,
and even have different time durations in the cluster). A
simulation study demonstrates the benefits of our approach
by showing that it is able to capture meaningful signals
and separate them, even for very noisy data. Finally, we
understand and acknowledge that it would be useful and
encouraging to compare our method with other existing
methods. Unfortunately, this is not possible simply because
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Figure 10: The number of genes varies across time in each of the two clusters found from dynamic clustering of 530 P. falciparum genes.
The red dashed lines are the 95% bootstrap confidence band.

no information about time is contained in the clusters
that are obtained by other methods. Time information is
the critical component for both determining the clusters
obtained by our method and calculating the “dynamic index”
formula which measures the clustering performance.

The proposed method focuses on clustering periodic
time series by considering the spectral frequencies that are
decomposed and extracted from periodic data. Beyond the
spectral frequency, phase information is obtained as well in
the signal decomposition. In fact, clustering only the spectral
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Table 2: P. falciparum genes appearing in both clusters and those
having significant gene ontology (GO) terms.

GO id GO name FDR

GO:0006412 Translation 1.55E − 13

GO:0006260 DNA replication 1.12E − 07

GO:0006418
tRNA aminoacylation
for protein translation

7.87E − 04

GO:0043038 Amino acid activation 7.87E − 04

GO:0043039 tRNA aminoacylation 7.87E − 04

GO:0006399 tRNA metabolic process 0.00962

frequency of time series may not be sufficient to understand
very complicated biological processes. In other words, even
though two genes involved in the same biological process
have the same spectral frequencies, they may play different
roles in the process. For example, one gene may serve as
a regulator for the other. Studying the phase relationship
between genes may help understand such regulation and
is a point of future research. Further, consider two genes
that participate in different phases of a cellular process. A
phase study is certainly necessary after clustering the spectral
frequencies. It is worth noting that we cannot change the
order of studies, (i.e., perform a phase study first followed
by a frequency study) since genes with different spectral
frequency must belong to different biological processes, and
genes with different phases may or may not belong to the
same process. Therefore, within each cluster of spectral
frequency, genes can be subclustered according to their
component phases so that the gene relationship may be
revealed in greater detail [34].

Genes involved in multiple biological processes (simul-
taneously) may play a major role in one process while
playing a minor role in another process. The importance
of a gene in multiple processes has potential for further
investigation. Since the energy of a time series is proportional
to its amplitude squared, the importance of a gene in a
process can be measured using the squared amplitude of
its corresponding component. Based on this, and due to
the fact that genes may participate in different processes at
different time, the dynamic importance of genes in biological
processes can be established. As a point of future research,
if three features of periodic time series, namely, spectral
frequency, phase shift, and amplitude, are all included, as
well as the time information of components, the complex
dynamic biological processes may be better understood [34].

Because the proposed dynamic clustering process is
time dependent, an appreciation for the number of time
points that are recommended for the method is a necessary
discussion. Since the main feature of a periodic time series
is spectral frequency, frequency detection is highly reliant on
the sampling rate. Therefore, the minimal or recommended
number of time points is related to the nature of biological
processes/clusters in which the genes are involved. According
to the Sampling Theorem [52], a signal can be exactly
recovered if the sampling rate is greater than twice the signal
frequency. Thus, if a signal has 5 cycles in one hour duration,

the sampling rate must be more than 20 points in one hour.
In other words, if the sampling rate is small, then a signal
with high frequency cannot be detected.

Finally, since spectral frequencies are extracted from
periodic time series, the time points occur at equally spaced
intervals. For periodic time series with unevenly spaced
points, evenly spaced time points can be artificially created
by imputing missing data. Thus, our proposed approach
is applicable, but some information may be lost due to
data imputation. Further, since the proposed two-stage
approach (i.e., data preparation and dynamic clustering) is
designed for periodic data, for data that are not periodic, the
signal decomposition approach is not applicable in the data
preparation step. However, if some other characteristic can
be defined and extracted from the nonperiodic time series,
the second step of the proposed approach remains applicable.

Dynamic clustering is a two-step cluster validation that is
able to differentiate meaningful clusters from noisy clusters.
The results from our approach provide insight into the
dynamic association among time-limited coexpressed genes
that might otherwise go undetected by current clustering
approaches. Clustering and gene network inference are both
known to help in predicting the biological functions of
genes or unraveling the mechanisms involved in biological
processes. Usually clustering and gene network methods are
developed independently. Specifically, in the gene networks,
the challenge is to deal with a large number of genes,
but when clustering, the clusters are assumed independent.
In actuality, gene network procedures and gene clustering
procedures cover each other’s shortcomings [53]. As such,
the proposed dynamic clustering has great potential for
inferring gene networks, in particular, for exploring net-
works at the level of gene clusters. Although the proposed
method is motivated by and explained in the context of
time series microarray data, it is a general method that is
applicable to any periodic phenomena, including but not
limited to seasonal data in marketing research, meteorology,
and astronomy.
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