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Background. Because rates of evolution and species divergence times cannot be estimated directly from molecular data, all
current dating methods require that specific assumptions be made before inferring any divergence time. These assumptions
typically bear either on rates of molecular evolution (molecular clock hypothesis, local clocks models) or on both rates and
times (penalized likelihood, Bayesian methods). However, most of these assumptions can affect estimated dates, oftentimes
because they underestimate large amounts of rate change. Principal Findings. A significant modification to a recently
proposed ad hoc rate-smoothing algorithm is described, in which local molecular clocks are automatically placed on
a phylogeny. This modification makes use of hybrid approaches that borrow from recent theoretical developments in
microarray data analysis. An ad hoc integration of phylogenetic uncertainty under these local clock models is also described.
The performance and accuracy of the new methods are evaluated by reanalyzing three published data sets. Conclusions. It is
shown that the new maximum likelihood hybrid methods can perform better than penalized likelihood and almost as well as
uncorrelated Bayesian models. However, the new methods still tend to underestimate the actual amount of rate change. This
work demonstrates the difficulty of estimating divergence times using local molecular clocks.
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INTRODUCTION
Estimating divergence times from molecular data is a special

statistical endeavor, as the parameters of interest cannot be

directly estimated from molecular sequences: only distances

between pairs of sequences or site likelihood values can be

estimated. Such distances are measured in terms of the expected

number of changes per site along the molecule (DNA, RNA or

protein). This is equivalent to taking the product of a rate of

molecular evolution and of a time duration, two quantities of

significant biological interest. Unfortunately, neither rates nor

times are identifiable parameters. As a result, estimating di-

vergence times demands that special assumptions be posited. To

this end, four approaches are commonly used in a model-based

framework.

Until recently, the approach of choice to estimating divergence

times was to assume the molecular clock [1], i.e. that rates are

constant over the entire history of the genes under study. Under

this hypothesis, branch lengths are directly proportional to time,

and the common evolutionary rate is determined by the placement

of at least one fossil calibration point on the phylogeny. However,

the development of specific hypothesis tests (e.g., ref. [2]) showed

that the molecular clock is too often untenable [3].

A second approach to estimating times while relaxing the above

assumption of the clock is to posit several local clocks. The

incentive here is that the clock hypothesis is likely to hold for

closely related species [4–6]. Local clock models were recently

extended to incorporate multiple calibration points and multiple

genes [7]. However, one important shortcoming of this approach

is that the placement of the different local molecular clocks on the

tree is left to the user’s discretion. I show below how this can affect

inference.

A third and alternative approach, pioneered by Sanderson, is to

consider that rates of evolution evolve from ancestral rates. This

implies that rates of evolution are (auto-) correlated [8]. More

recently, Sanderson [9] proposed to use an approach that

maximizes a penalized likelihood p(X|r.t)–l W(r), where X is the

data alignment and r.t represents the branch lengths, i.e. the

product of rates r and times t. The penalty function W(r) is chosen

in such a way that it is large when rates vary rapidly over small

regions of the tree; the smoothing parameter l is estimated by

cross-validation [10].

Expanding on this idea, Thorne and coworkers [11] proposed

a Bayesian approach for estimating divergence times. This fourth

approach relies on prior models of speciation and of autocorre-

lated rate change. These prior models are in fact equivalent to

a particular penalty function in Sanderson’s approach [10], so that

both of these approaches are often referred to as ‘‘regularization

methods’’ in the literature of supervised learning. Although prior

distributions and implementation details vary, the Bayesian

approach and penalized likelihood both have in common to

smooth or minimize rate variation over evolutionary time by

means of an autocorrelated process. Because this can lead to

inaccurate dates when rates vary extensively [12], a class of prior

models of uncorrelated rate change were recently described [13].

A different Bayesian approach has also been described [14], where

rate change events are modeled as point processes on a phylogeny.

This approach does have the potential of accommodating rapid

rate variation, but the specific model used in that study was shown

to be overparameterized [15]. Another potential issue, this time

common to all Bayesian approaches, is the need to specify prior

assumptions: some, such as prior distributions on the speciation

process, are potentially overly informative [16,17], while others,

such as the root rate, can be difficult to set [18]. Bayesian

approaches can also be computationally demanding.

An alternative to regularization methods is to reconsider local

clocks. These models are expected to be able to accommodate

high levels of rate heterogeneity, and therefore to perform better.
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However, as noted above, there are two difficulties with local clock

models. First, the number of local clocks has to be chosen and

second, local molecular clocks must be placed on a given

phylogeny. Yang [19] suggested a clever hybrid algorithm to

address the second difficulty. This approach, called ad hoc rate-

smoothing (AHRS), involves three steps: (i) branch lengths are

estimated for each gene on a pre-specified common gene tree

without the restriction of the clock; (ii) first, initial branch-specific

rates of evolution are approximated based on a parametric

smoothing approach that minimizes rate variation; then, an ad hoc

clustering algorithm is used to group these branch-specific rates

into clusters that constitute the local clocks; (iii) divergence times

are finally estimated by maximum likelihood following [7]. Note

that step (ii) actually consists of two distinct stages. Confidence

intervals can be obtained following standard asymptotic methods

either based on a normal approximation of the likelihood surface

or on the support curve [20]. While the AHRS algorithm makes it

possible to place the local molecular clocks on a phylogeny, the

number of clocks is still left to users’ discretion–the first ‘‘difficulty’’

highlighted above.

Here I present four new ad hoc methods that improve on

Yang’s AHRS algorithm. The methods described below essentially

modify one or both stages of step (ii) of the original AHRS

algorithm. The four new methods borrow from recent advance-

ments in the field of statistical analysis of microarray data. As these

new methods all rely on maximum likelihood estimation, they are

apparently immune to the common criticisms that Bayesian

approaches occasionally draw in particular with respect to the

choice of a prior [2,21], and that they are computationally

efficient. I compare these methods with penalized likelihood [9]

and with a Bayesian model of uncorrelated rate change [13],

suggest a way to integrate phylogenetic uncertainty, and evaluate

the performance and accuracy of these methods on three

previously published data sets. The source code and precompiled

binaries for common 64-bit architectures (x86, ultra-sparc and

PPC) are available at http://aix1.uottawa.ca/,sarisbro.

METHODS

First improvements with k-means and k-medoids
In the original AHRS algorithm, branch lengths are first estimated

by maximum likelihood (ML) without assuming the clock–see step

(i) above. The likelihood surface is then approximated by

a multivariate normal distribution N (B,S) centered on the ML

estimates (MLEs) B of the branch lengths. The variance-covariace

matrix S is approximated by the diagonal variance matrix of the

estimates of the branch lengths–note that these variances were

previously estimated during the optimization in step (i). This

approximation of S assumes that there is no correlation between

these MLEs, which is computationally faster than the approxima-

tion based on the full Hessian matrix as e.g. in [11,19,22]. A

Brownian motion model [11,22] is then used to estimate by ML

the initial branch-specific rates at beginning of step (ii) as in [19].

Following this, the AHRS algorithm uses an ad hoc clustering

scheme to group similar rates into local clocks. Briefly, the interval

bounded by the smallest (m) and the largest (M) initial rate

estimates is divided up into k groups; the coordinates of the cutoff

points are solely a function of m, M and k. Here, I reused all these

steps and modified the source code of PAML ver. 3.14 [23] to

incorporate two true clustering schemes: the k-means algorithm

[24] and the k-medoids algorithm [25]. The k-means algorithm

was run with 1,000 random starts to find the solution with lowest

within-cluster sums of squared dissimilarities. Unlike k-means, k-

medoids minimizes a sum of dissimilarities and is therefore

expected to be more robust. Both algorithms were used as

implemented in R (cran.r-project.org, in the stat and cluster

packages). R was called externally from PAML.

The estimation of the number of clocks in a standard likelihood

framework is not easy, as the models are generally not nested and

are typically derived from the data. Instead, the number of clocks

was in a first approach selected using an idea based on the gap

statistic [26]: if there were actually k* clocks on the tree, then for

k,k*, each partition calculated by the algorithm would contain

a subset of the actual groups of branches, and the algorithm would

not assign branches as it ‘‘should’’. Therefore, the likelihood should

increase substantially each time k is increased. Now for k.k*, one of

the calculated clusters would partition one or more of the actual

groups, which should tend to provide smaller likelihood increases.

Indeed, splitting a genuine group is not expected to increase the

likelihood more than partitioning the union of two clearly separated

groups. As a result, when the log-likelihood is plotted as a function of

k, there should be a kink in the plot. A natural estimate of k* can be

taken at this value, that is, at the largest gap in likelihood values

between two consecutive values of k.

Automatic estimation of the number of clocks with

silhouettes and HOPACH
Our loose implementation of the gap statistic does not allow for

a rigorous estimation of the number of local clocks. However, the

k-medoids algorithm offers the possibility to select the number of

clusters according to the Median Split Silhouette or MSS [27].

Based on normalized differences of dissimilarities, silhouettes

measure the homogeneity of each element when grouped in

a cluster compared to the situation where this element is left out.

The median of these measures taken over all elements and over all

clusters is a measure of the homogeneity of each cluster, and

therefore constitutes an objective function to find the most

appropriate number of clusters.

In cases where branch-specific rates of evolution vary rapidly,

MSS may not be aggressive enough to find small clusters. A more

recent method, the Hierarchical Ordered Partitioning and

Collapsing Hybrid or HOPACH [28] aims at finding such small

clusters. Although HOPACH makes use of a partitioning method

based on k-medoids, it is actually a hierarchical method. As such,

it involves the construction of a tree of clusters where the ‘‘root’’ of

the hierarchy contains all the elements (here, all the branch-

specific rates) and where each leaf contains one single element.

HOPACH is an iterative algorithm that starts with all the elements

at the root node of the hierarchy, and that cycles through

partitioning, ordering and collapsing as follows. At each level of

the hierarchy, the partitioning step uses k-medoids and silhouettes

to determine the clusters, which are then ordered according to the

dissimilarity between their medoids or centers. Below root-level,

pairs of clusters are collapsed if and only if doing so improves the

median split silhouette. The algorithm stops when each node

contains at most two elements, or when a maximum number of

levels is reached, whichever comes first. Because the elements

contained at each level of the hierarchy are labeled with integers,

this upper bound is set to 16 levels in the current implementation

of the R package hopach (ver. 1.4.0) to avoid overflows.

However, for identifiability reasons, we cannot afford as many

local clocks as there are branches in the tree. Under the multiple

gene models used here, where branch-specific rates are estimated

separately and independently for each of the g genes [7], there is

a total of kg rate parameters when k local clocks are used. With n

sequences and c calibration points, we want to estimate n–1–c

divergence times, so that there is a total of n–1–c+kg parameters to

Hybrid Ad Hoc Dating
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estimate. The total number of identifiable parameters is (2n–3) g,

so that k, the number of local clocks, should not exceed U = 2n–3–

(n–1–c)/g. For this reason, the maximum number of clusters

returned by MSS and HOPACH was limited to int(U), the integer

part of U. Yet, even when k,U, certain placements of the local

clocks make it impossible to identify all model parameters–see [6]

for a practical example. To help guarantee against this serious

issue, convergence of our procedures was checked by running each

likelihood analysis a thousand times starting from random initial

parameters.

Improved initial branch-specific rates
Like the original AHRS algorithm, the new ad hoc methods

presented here all critically rely on the initial ML estimation of the

branch-specific rates of evolution (step (i) of AHRS). These rates

are the starting point of the clustering procedures used to

determine both the placement and the number of local clocks

over the tree. Instead of estimating these initial branch-specific

rates with Brownian motion model, these initial rates were also

obtained with a Bayesian procedure, before being clustered into

local clocks. Here I used the Bayesian approach detailed below to

determine these rates under an uncorrelated lognormal model of

rate change [13].

Ad hoc integration of phylogenetic uncertainty
The objective here is not to implement a Bayesian version of local

clock models, one that would integrate over tree topologies.

However, I indicate two approximations for dealing with

phylogenetic uncertainty with these models. The most appropriate

ad hoc procedure would follow two steps. First, draw samples from

the posterior distribution p(t | X) = #H p(t, h | X) dh , where X

represents the aligned data, t is the tree topology and h is a vector

of nuisance parameters, typically the branch lengths and the

parameters of the substitution model. The model should not

enforce the clock. If the sampled trees are not rooted they should

be rooted before moving on to the next step. Second, evaluate

divergence times for all the samples drawn during the previous

step. The ‘‘posterior’’ estimate of the divergence time at a given

bipartition is then estimated as the average time estimated for each

of the sampled trees, when this bipartition exists. The last

restriction is equivalent to enforcing a number of monophyletic

relationships. This second step is the most computationally

demanding as it requires performing ML optimizations for each

sample drawn from the Markov chain in step one. A similar two-

step approach was previously used to infer the ancestral state of

morphological characters in the presence of phylogenetic un-

certainty [29]–see [30] for a recent application.

Rather than following this direction here, I used an even more

ad hoc but faster procedure. Trees were sampled from their

posterior distribution with MrBayes ver. 3.1.2 [31] with tempering

(four chains). Four such independent samplers were run for five

million steps with thinning of 1,000 and a burn-in of a million.

Divergence times were then estimated with the local clock models

described above for each of the topologies contained in the 95%

credibility set: the original AHRS, the k-means and the k-medoids

algorithms (the number of clocks was estimated with the gap

method for all these three), MSS and HOPACH. As above, the

ML optimization procedures were repeated (only 20 times here) to

check convergence and identifiability.

Data sets and models of evolution
I evaluated the performance of the new methods on three

previously published data sets. The first one is a mouse lemur data

set repeatedly used when developing dating methods [7,19]. This

data set contains the concatenated sequences of two mitochondrial

genes, COX-II and CYT-b, sampled over a total of 35

mammalian species. The objective of the original study [7] was

to estimate divergence times of mouse lemurs (genus: Microcebus),

the world’s smallest primates, endemic to Madagascar. The data

contained 604 codons and the analyses assumed the one-ratio

model [32]. All model parameters were estimated by ML, except

equilibrium frequencies, calculated assuming the F364 model.

Seven calibration points were used to estimate divergence times as

in [19]–see Supporting Information Figure S1. This data set was

used here to test whether the new clustering methods can improve

on some of the shortcomings of the original AHRS method.

The accuracy of the new methods was then evaluated by

reanalyzing a sea urchin data set for which the fossil record is

considered excellent [33]. This data set consists of three rRNA

genes, one mitochondrial (16S large subunit) and two nuclear (18S

small subunit and 28S large subunit) genes. I used the

unpartitioned alignment of 3,331bp for 28 species as the original

authors (see Table 2 in [33]). Because the GTR+c6+I substitution

model [34,35] used in [33] is not available in PAML’s local clock

implementation, I used HKY+c5 [36]; five rate categories were

used for computational reasons. Unlike the quite unfavorable

calibrating situation represented by the mouse lemur data, the four

calibration points used by [33] and here are quite evenly

distributed over the tree, and vary from 55 to 210 MY of age.

A third data set was used to assess the impact of uncertainty

over tree topologies when estimating species divergence times. I

reused the alignment originally assembled by [37] and reanalyzed

by [13]. The alignment contains five protein-coding genes (APOB,

RAG1, IRBP, vWF, and BRCA1) for 24 taxa. All 3,772 positions

were analyzed as one single partition. Four calibration points were

used as in [13]. The Bayesian model placed normal priors of

variance 5 MY on the three internal nodes and constrained the

root node around 145 MY with an exponential prior as in [13].

The substitution model was again set to HKY+c5. This sub-

stitution model is slightly simpler than the one used by [13], as the

dating approaches described here do not allow for invariant sites

or more complicated models such as GTR.

Comparison with other dating approaches
The methods described above were compared with two existing

dating methods: penalized likelihood and an uncorrelated

Bayesian model of rate change. Simulations are often considered

as an important step in checking the validity of a method, as they

permit to check that a method returns the correct answer, at least

under simple scenarios. However, because real sequence data

rarely evolve following simple models and because a given

simulation model can bias the results towards a particular

direction [38,39], I resorted to a different approach here, and

used the data set from [33] for which the actual fossil record is

unusually complete. For this specific data set, it was found [33]

that the penalized likelihood approach [9] seemed to perform

better than both nonparametric rate smoothing [8] and a Bayesian

approach [11]. As the objective here was not to reevaluate all

existing dating methods against the ones presented here, I focused

on the ‘‘best’’ method identified by [33], namely, penalized

likelihood (PL). I recalculated date estimates using PL with r8s

ver.1.70 [40] following two approaches: PL(CV) and PL(SSD), where

CV and SSD stand for cross-validation and sum of the squared

distances, respectively. The first, PL(CV), used cross-validation [9];

this is usually the only method that can be used when the actual

dates are unknown. The accuracy of PL(CV) was determined with

the second approach: PL(SSD). When the actual divergence times

Hybrid Ad Hoc Dating
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are known for all the nodes on the tree, as with the sea urchin data

set, it is possible to select the smoothing parameter l that best fits

the actual fossil dates. To this effect, l was varied from 0 to 105 by

increments of 10. The ‘‘best fit’’ was quantitatively measured by

the sum of the squared distances (SSD) between each time estimate

and its corresponding fossil age. The minimum SSD corresponds

to the set of ages that is closest to the actual fossil dates. Note that

by taking the square of these distances, this criterion penalizes

methods that have large discrepancies between time estimates and

fossil ages. This SSD criterion made it possible to assess the

performance of PL and of the new ad hoc methods. The number

of clocks k under k-medoids was optimized in a similar way.

The uncorrelated Bayesian model of rate change implemented

in BEAST ver. 1.4.4 [13] was used to estimate divergence times

and to determine rates. The substitution models matched those

used for the ML analyses. I assumed the uncorrelated lognormal

(UCLN) prior model of rate change, and a Yule or ‘‘pure-birth’’

prior process to model speciation. For each data set, two samplers

were run independently with BEAST, each for 50 million steps

with a thinning of 1,000. Five million steps were discarded as

burn-in. Convergence of the Bayesian analyses, including the

MrBayes runs for the ad hoc integration of phylogeny, was

checked with Tracer (tree.bio.ed.ac.uk /software/tracer).

RESULTS

Mouse lemur data: the benchmark data
The first important question is to what extent the number k of local

clocks can affect the estimation of divergence times. The

divergence time of some nodes can be relatively insensitive to k.

For instance, with the k-means clustering algorithm, the estimated

dates for the hominoid divergence (node 59 in Table 1) vary from

13.5 million years (MY) to 13 MY when the number of local clocks

k is varied from one, which is the molecular clock assumption, to

six. But the age of some other nodes can be more difficult to

estimate. Such is the case with Microcebus diversification (node 45

in Table 1). Figure 1 shows that irrespective of the clustering

algorithm used, the age of this diversification varies between about

8 MY with two clocks, to an age less than half this figure with more

than 15 clocks. It is therefore quite important to have a means of

estimating the most appropriate number of clocks.

A second point should be made here. Figure 1 also shows that

local molecular clocks can experience some identifiability issues for

some placements of the clocks (e.g., at k = 9) and further difficulties

when the number of clocks becomes too large (over 17 clocks in

the case of this data set). A careful examination revealed that when

the number of clocks increases, the ad hoc clustering algorithm

used in AHRS eventually returns a number of empty clusters. This

is because once the lower and upper bounds of the initial rates are

estimated (during step (i) of AHRS), cluster boundaries are set

deterministically, disregarding the distribution of these initial rates.

Standard clustering algorithms such as k-means appear to resolve

this problem (Figure 1), at least in this specific example.

With a proper clustering algorithm, how difficult is it to find the

appropriate number of clocks? Another important observation

from Figure 1 is that implementing two or three local clocks affects

age estimates quite dramatically. These estimates range from

10.93 MY under a global clock to 7.5 MY with three local clocks.

With more than three clocks, age estimates change less rapidly.

Figure 2 plots the log-likelihood under a codon model as a function

of k. The application of the idea behind the gap statistic to this

figure suggests that the appropriate number of clocks is three for

this data set. As a more rigorous approach than our implementa-

tion of the gap statistic, HOPACH finds the same number of local

clocks (k* = 3) and distributes them similarly to k-medoids over the

phylogeny (Supporting Information Figure S1). The likelihood

scores obtained under the codon model (Table 1) are slightly

smaller than in [19] as our procedures consistently selected three

local clocks instead of four [19]. Both k-medoids and HOPACH

suggest similar age estimates (Table 1), with most notably a recent

diversification (,5 MY) of the genus Microcebus. MSS on the

other hand suggests one additional clock, with a fragmented

partition scheme over the phylogeny (Supporting Information

Figure S1) and a dramatically different picture of the diversifica-

tion of mouse lemurs, suggesting that these would date back to 12

MY ago (Table 1). Because of a recently found 38–42 MY fossil for

the ancestor of loris and galago [41], Yang suggested that an age of

5 MY is too young for the mouse lemur divergence, and found an

age of 11.4 MY only after including the additional information

about this extra fossil in the analysis [19]. Our MSS results under

a codon model (divergence at 12.0 MY) may suggest that sufficient

Table 1. Maximum likelihood estimates of divergence times for the mouse lemur data under nucleotide and codon models.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

node # split original kmeans kmedoids HOPACH MSS

38 Strepsirrhine 56.3 50.1 50.3 50.6 62.0

39 lemuriform 47.3 43.8 44.2 44.5 55.0

43 Cheirogaleidae 17.7 14.9 12.9 13.8 29.8

45 mouse lemurs 7.6 5.2 4.5 4.9 12.0

46 northern clade 6.0 4.1 3.5 3.9 9.6

52 southern clade 5.3 3.7 3.1 3.4 8.9

53 Lemuridae 21.4 18.9 19.1 19.2 24.1

56 lorisiform 31.6 25.9 25.9 26.0 33.3

57 anthropoid 58.8 59.6 59.6 59.6 60.7

59 hominoid 13.2 13.9 13.9 13.9 15.8

61 human/chimp 7.0 7.3 7.3 7.3 7.0

64 dog/bear 40.9 45.4 45.4 45.4 41.4

lnL 225053.27 225060.11 225060.35 225060.54 224869.79

Times are in million years ago.
Notes–lnL: log-likelihood.
doi:10.1371/journal.pone.0000879.t001..
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information exists in the data without this additional calibration

point. However, this result is not confirmed by the use of MSS

under a nucleotide model (F84+c5: divergence at 6.6 MY). This

difference is likely to be due to the relative number of clocks

estimated under each model for a given data set: under a codon

substitution model, MSS has here the largest number of clocks

(Supporting Information Figure S1), while under a nucleotide

substitution model, it is HOPACH that has the largest k*

(Supporting Information Figure S2). This raises the important

question about the accuracy of these approaches.

Figure 1. Effect of the number of local clocks on the age of a node far from all calibration points. Times were estimated using either the original
AHRS algorithm or k-means and are given in million years ago (MYA). The focal node is the split at the origin of the mouse lemurs (genus Microcebus).
doi:10.1371/journal.pone.0000879.g001

Figure 2. Maximum likelihood score as a function of the number of clocks.
doi:10.1371/journal.pone.0000879.g002
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Sea urchin data: accuracy against the fossil record
When only four calibration points are used, MSS had the second

best accuracy (smallest SSD in Table 2; disregarding the last column

for now). However, when all the fossil dates are considered, PL(SSD)

and k-medoids optimized for k show that even MSS tends to

underestimate rate change, and hence the number of clocks. This

suggests that it might be difficult to accommodate in a statistically

sound manner actual amounts of rate variation in real data with

these maximum likelihood methods.

One potential reason why rate change is underestimated might

be because of the way initial branch-specific rates are estimated.

Recall that these initial estimates come from an autocorrelated

Brownian motion model (see above) that minimizes rate change

over the tree. To test the impact of such a procedure on our hybrid

local clock procedures, I first obtained branch-specific rates under

an uncorrelated model of rate change, and then fed these rates to

the hybrid methods. These initial rates were estimated with BEAST

under the UCLN model by running two MCMC samplers

independently. The two BEAST runs proved very similar, so their

results were combined. The effective size of the samples taken from

the target distribution was 51,300. The posterior mean rates over

the maximum a posteriori tree were used as starting point under

MSS (MSS+UCLN in Table 2). Posterior point estimates of

divergence times (mean of the marginal distributions) are also

reported in the last column of Table 2.

SSD results show that for this data set, the use of Bayesian

estimates of rates improves our MSS hybrid procedure. As expected,

the SSD score obtained under MSS+UCLN (16,036) shows that this

latter procedure still underestimates rate change, as k-medoids had

a higher score (15,615) with k = 12. Finally, the UCLN results show

that, quite as expected again, uncorrelated models of rate change

performed better than any other approaches considered here.

Marsupial data: ad hoc dating with uncertain

phylogenies
The analyses with the hybrid ML local clock models all assumed

that the tree topology is known, which is not always a realistic

Table 2. Comparison of divergence times from fossils with those estimated from molecular data and four calibration points for the
sea urchin data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Smith
nodes" Fossil age { PL(CV) ¥ PL(SSD) (l = 100) k-med¥ k = 3 k-med k = 12 HOPACH¥ MSS¥ MSS+UCLN¥ UCLN¥

root 255 255 255 255 255 255 255 255 255

1 220 189 190 255 225 255 255 255 233

2 210 187 189 245 210 239 241 225 246

3 210 163 171 245 210 239 241 225 216

4{ 210 135 150 210 210 210 210 210 210

5 200 175 179 160 173 160 160 160 213

6 185 164 173 131 173 129 125 147 188

7 175 148 161 131 173 129 125 147 172

8 105 124 136 117 156 107 111 121 137

9 105 97 105 94 119 89 90 90 106

10 85 38 73 71 119 43 73 36 41

11{ 55 86 90 55 55 55 55 55 89

12 55 37 35 36 39 38 33 38 40

13 30 74 75 51 46 51 50 51 68

14 170 144 157 119 173 129 125 147 168

15{ 95 95 95 95 95 95 95 95 94

16 80 68 78 33 68 47 50 58 67

17 55 50 61 21 50 30 32 39 60

18 45 29 39 0 0 0 0 0 32

19 40 33 41 11 29 16 17 21 36

20 195 168 170 160 160 160 160 160 179

21{ 160 160 160 160 160 160 160 160 159

22 100 104 111 113 157 92 97 116 129

25 100 93 98 99 120 77 85 98 128

26 20 25 29 32 35 24 26 36 30

23 30 62 75 46 65 45 36 55 44

24 25 58 70 46 65 45 36 55 59

SSD na 21056 17125 22458 15615 20968 19796 16036 11192

For k-medoids (k-med), the optimal number of local clock is at k* = 3; the minimum sum of squared distance (SSD) is at k = 12.
Notes–From Smith et al. (2006): Fig. 5 (") and Table 2 ({). ¥ Naı̈ve approaches, for which knowledge of the actual fossil dates is not taken into account to estimate
divergence dates. { Calibration points (set as minimum ages for PL); root age is fixed. na: not applicable. PL(CV) contains age estimates obtained by penalized likelihood
with cross-validation; with PL(SSD), the penalty is selected by minimizing SSD.
doi:10.1371/journal.pone.0000879.t002..
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assumption. To evaluate the impact of this assumption on date

estimates, I reanalyzed the recently published marsupial data set.

Date estimates were first obtained with BEAST. The effective size

sampled from the target distribution of UCLN was 29,580. Point

estimates of divergence times (mean of the marginal distributions)

are reported in the first column of Table 3.

I compared this uncorrelated Bayesian model with the local

clock procedures with ad hoc integration of phylogenetic un-

certainty. With MrBayes, the maximum a posteriori (MAP) tree

had a posterior probability of .43, and the 95% credibility set

included a total of nine tree topologies. The time estimates

presented in Table 3 represent average estimates, weighted by the

posterior probability of the tree topologies. Credibility intervals for

time estimates can easily be obtained when times are estimated for

each sample drawn from the Markov chain, but not under this

latter ad hoc implementation of integrated local clocks. For this

reason, no standard errors can be reported in Table 3.

How do these Bayesian time estimates compare with those

based on ML local clock? Two conclusions can be drawn from

Table 3. First, averaging over phylogenetic uncertainty had little

impact on the estimates of divergence times, at least in this

example: under a given method, only minor differences were

found between estimates based on the MAP tree and ad

hoc integration over the 95% credibility set of topologies. Second,

the largest differences occur between MSS and HOPACH,

the uncorrelated Bayesian approach giving somewhat inter-

mediate results. This is in particular true for two splits,

Dendrolagus/Phalanger and Phalanger/Vombatus, which can

exhibit an age difference of up to 10 MY between the two

methods. These two nodes have a posterior probability of one, so

that phylogenetic uncertainty is not responsible for this difference

in age estimates. SSD suggests that MSS give results that are the

closest to UCLN.

DISCUSSION
As always, it is advisable to use several methods to estimate

a parameter of interest, such as divergence times between different

species. Compared to regularization methods [9,11], local

molecular clocks potentially have the advantage of accommodat-

ing rapid rate variation along lineages, without incurring the

computational overhead of Bayesian uncorrelated methods [13].

The methods presented here constitute a significant improvement

of the AHRS algorithm for the automatic placement of local

molecular clocks by providing researchers with a means to

determine how many clocks should be used to analyze their data.

The results presented here show that these ML local clocks, based

on hybrid statistical approaches, constitute a computationally

quick alternative to Bayesian methods, without requiring the

setting of reasonable prior distributions. Our results also

demonstrate that the choice of a specific algorithm can have

a dramatic impact on date estimates.

These hybrid methods however appear to present four potential

limitations. The first one, common to both the original AHRS

algorithm and these new hybrid methods, is the reliance on the

initial estimation of approximate rates by ML in step (i) of the

procedure [19]. I showed here that better initial estimates of these

rates can help improve the accuracy of the divergence dates

estimated. But because these improved estimates were based on an

MCMC sampler, the speed advantage of the hybrid methods

disappears. A second important limitation of these hybrid methods

is their underestimating rate change. The underestimation of rate

change is not a surprise, since this is precisely the idea driving the

use of local clocks: reducing the extent of rate variation. Third, all

possible placements of local clocks on a tree do not lead to

identifiable parameters [6]. In our implementation, this is still an

important issue as no rigorous identifiability check is currently

implemented. Finally, confidence intervals, not estimated here, are

Table 3. Effect of neglecting phylogenetic uncertainty on estimates of divergence times under local clock models for the marsupial
data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

split MSS: MAP tree MSS: 95% CS HOPACH: MAP tree HOPACH: 95% CS UCLN (BEAST)

Sminthopsis/Phascogale 24.76 24.77 23.55 23.71 23.96

Sminthopsis/Echymipera 57.92 57.87 55.55 55.49 56.06

Echymipera/Perameles 12.39 12.39 11.09 11.16 13.09

Notoryctes/Sminthopsis 61.05 60.96 59.07 59.10 59.72

Dendrolagus/Pseudocheiridae 35.07 35.26 45.12 44.19 33.26

Dendrolagus/Phalanger 37.92 37.92 48.52 47.73 39.58

Phalanger/Vombatus 40.46 40.61 50.67 50.09 46.25

Vombatus/Phascolarctos 26.27 26.35 33.77 33.01 31.29

Vombatus/Dromiciops 55.80 56.52 62.54 62.43 61.46

Dasyurus/Rhyncholestes 73.23 72.20 76.74 74.30 77.67

Caenolestes/Rhyncholestes 10.66 10.49 13.88 11.75 13.71

Equus/Ceratomorpha 46.29 46.29 43.65 43.44 43.20

Cynocephalus/Leporidae 67.24 67.27 63.71 64.40 64.74

Cynocephalus/Ceratomorpha 80.23 80.25 76.66 76.81 77.54

Ceratomorpha/Bradypus 90.88 90.88 92.15 92.05 87.94

Bradypus/Sirenia 87.07 87.05 88.94 88.81 80.87

SSD 202.28 203.75 338.07 304.87 0.00

Results for local clock models, MSS and HOPACH, are given both for the maximum a posteriori (MAP) tree and as a posterior probability weighted average over the 95%
credibility set (CS) of topologies sampled from the appropriate target distribution. The uncorrelated models from BEAST (UCLN: uncorrelated lognormal) integrate over
tree topologies, branch lengths and parameters of the substitution model. Times are in million years ago. SSD are computed with respect to UCLN (baseline).
doi:10.1371/journal.pone.0000879.t003..
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expected to be underestimated as uncertainty about model

parameters is disregarded. Confidence intervals will also be

difficult to obtain when the topology is integrated following the

ad hoc procedure outlined above. Bayes empirical Bayes strategies,

as recently employed to detect sites under adaptive evolution [42],

could prove valuable for these ad hoc dating methods. As noted in

[20], other limitations of the likelihood methods exist, in particular

with respect to the incorporation of uncertainties about calibration

points into an analysis; these limitations are however naturally

dealt within a Bayesian framework [20].

SUPPORTING INFORMATION

Figure S1 Maximum likelihood estimates of divergence times for

the codon data partitioned according to the estimated local clock

models. Times were estimated using (A) k-medoids with the gap

statistic, (B) Median Silhouette Splits (MSS) and (C) Hierarchical

Ordered Partitioning and Collapsing Hybrid (HOPACH) and are

given in million years ago (MYA). Filled circles indicate the seven

calibration points on the trees scaled to time (A–C); the other trees

(D–F) are scaled to the expected number of substitutions per codon.

Found at: doi:10.1371/journal.pone.0000879.s001 (0.45 MB

PDF)

Figure S2 Maximum likelihood estimates of divergence times

for the nucleotide data partitioned according to the three codon

positions and the estimated local clock models. Times were

estimated using k-medoids with the gap statistic, Median

Silhouette Splits (MSS) and Hierarchical Ordered Partitioning

and Collapsing Hybrid (HOPACH) and are given in million years

ago (MYA). Filled circles indicate the seven calibration points on

the trees scaled to time (leftmost column); the other trees are scaled

to the expected number of substitutions per nucleotide site for the

partitions over the three codon positions.

Found at: doi:10.1371/journal.pone.0000879.s002 (0.38 MB

PDF)
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