1 Multi-ancestry study of the genetics of problematic alcohol use in >1 million individuals

- 2
- Hang Zhou^{1,2,46}, Rachel L. Kember^{3,4,46}, Joseph D. Deak^{1,2}, Heng Xu⁴, Sylvanus Toikumo^{3,4}, Kai Yuan^{5,6}, Penelope A. Lind^{7,8,9}, Leila Farajzadeh^{10,11,12}, Lu Wang^{1,2}, Alexander S. Hatoum¹³, Jessica Johnson^{14,15}, Hyunjoon Lee¹⁶, Travis T. Mallard^{5,16,17}, Jiayi Xu¹, Keira J.A. Johnston¹, 3
- 4
- 5
- Emma C. Johnson¹⁸, Marco Galimberti^{1,2}, Cecilia Dao^{2,19}, Daniel F. Levey^{1,2}, Cassie 6
- 7
- Overstreet^{1,2}, Enda M. Byrne²⁰, Nathan A. Gillespie²¹, Scott Gordon²², Ian B. Hickie²³, John B. Whitfield²², Ke Xu^{1,2}, Hongyu Zhao^{24,25}, Laura M. Huckins¹, Lea K. Davis^{26,27,28}, Sandra Sanchez-Roige^{27,29}, Pamela A. F. Madden¹⁸, Andrew C. Heath¹⁸, Sarah E. Medland^{7,9,30}, Nicholas G. Martin²², Tian Ge^{5,31,32}, Jordan W. Smoller^{5,31,33}, David M. Hougaard^{11,34}, Andres D. 8
- 9
- 10
- Børglum^{10,11,12}, Ditte Demontis^{10,11,12}, John H. Krystal^{1,2,35,36}, J. Michael Gaziano^{37,38,39}, Howard J. Edenberg^{40,41}, Arpana Agrawal¹⁸, Million Veteran Program^{*}, Amy C. Justice^{2,42,43}, Murray B. 11
- 12
- Stein^{29,44,45,} Henry R. Kranzler^{3,4,47}, and Joel Gelernter^{1,2,24,35,47} 13
- 14
- 15 ¹Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- ²Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA 16
- 17 ³Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- ⁴Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 18
- Philadelphia, PA, USA 19
- ⁵Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge. 20
- 21 MA. USA
- ⁶Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General 22
- 23 Hospital, Boston, MA, USA
- ⁷Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia 24
- 25 ⁸School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD,
- 26 Australia
- ⁹Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia 27
- ¹⁰Department of Biomedicine Human Genetics, Aarhus University, Aarhus, Denmark 28
- 29 ¹¹The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- ¹²Center for Genomics and Personalized Medicine, Aarhus, Denmark 30
- ¹³Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint 31 32 Louis, MO, USA
- ¹⁴Pamela Sklar Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of 33
- 34 Medicine at Mount Sinai, New York, NY, USA
- ¹⁵Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 35
- 36 New York, NY, USA
- ¹⁶Psychiatric and Neurodevelopmental Genetics Unit. Center for Genomic Medicine. 37
- Massachusetts General Hospital, Boston, MA, USA 38
- 39 ¹⁷Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 40 MA, USA
- ¹⁸Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA 41
- 42 ¹⁹Department of Chronic Disease Epidemiology, Yale University School of Public Health, New
- Haven, CT, USA 43
- ²⁰Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia 44
- ²¹Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia 45
- Commonwealth University, Richmond, VA, USA 46
- ²²Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia 47
- ²³Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia 48
- 49 ²⁴Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA

- ²⁵Department of Genetics, Yale School of Medicine, New Haven, CT, USA 50
- ²⁶Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA 51
- ²⁷Department of Medicine, Division of Medical Genetics, Vanderbilt University Medical Center, 52 53 Nashville, TN, USA
- ²⁸Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 54
- 55 Nashville, TN, USA
- ²⁹Department of Psychiatry, University of California San Diego, La Jolla, CA, USA 56
- ³⁰School of Psychology, University of Queensland, Brisbane, QLD, Australia 57
- ³¹Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, 58
- Massachusetts General Hospital, Boston, MA, USA 59
- ³²Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA 60
- 61 ³³Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 62 MA, USA
- ³⁴Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, 63
- 64 Copenhagen, Denmark
- ³⁵Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA 65
- ³⁶National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA 66
- ³⁷Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), Boston 67
- Veterans Affairs Healthcare System, Boston, MA, USA 68
- 69 ³⁸Department of Medicine, Divisions of Aging and Preventative Medicine, Brigham and
- 70 Women's Hospital, Boston, MA, USA
- ³⁹Department of Medicine, Harvard Medical School, Boston, MA, USA 71
- 72 ⁴⁰Department of Biochemistry and Molecular Biology, Indiana University School of Medicine,
- 73 Indianapolis, IN, USA
- ⁴¹Department of Medical and Molecular Genetics, Indiana University School of Medicine, 74
- 75 Indianapolis, IN, USA
- ⁴²Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA 76
- ⁴³Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven, CT, 77 78 USA
- 79 ⁴⁴VA San Diego Healthcare System, Psychiatry Service, San Diego, CA, USA
- 80 ⁴⁵Herbert Wertheim School of Public Health and Human Longevity Science, University of
- 81 California San Diego, La Jolla, CA, USA
- ⁴⁶These authors contributed equally 82
- 83 ⁴⁷These authors jointly supervised this work
- ^{*}A list of members and their affiliations appears in the Supplementary Information 84
- 85
- 86 Corresponding Authors:
- 87 Joel Gelernter, Department of Psychiatry, Yale School of Medicine, Veterans Affairs
- Connecticut Healthcare System, 116A2, 950 Campbell Ave, West Haven, CT 06516, USA. 88
- 89 Email: joel.gelernter@yale.edu.
- 90
- 91 Hang Zhou, Department of Psychiatry, Yale School of Medicine; Veterans Affairs Connecticut
- Healthcare System, 43A35, 950 Campbell Ave, West Haven, CT 06516, USA. Email: 92
- 93 hang.zhou@yale.edu

94 Abstract

95 Problematic alcohol use (PAU) is a leading cause of death and disability worldwide. To improve 96 our understanding of the genetics of PAU, we conducted a large cross-ancestry meta-analysis 97 of PAU in 1,079,947 individuals. We observed a high degree of cross-ancestral similarity in the 98 genetic architecture of PAU and identified 110 independent risk variants in within- and cross-99 ancestry analyses. Cross-ancestry fine-mapping improved the identification of likely causal 100 variants. Prioritizing genes through gene expression and/or chromatin interaction in brain 101 tissues identified multiple genes associated with PAU. We identified existing medications for 102 potential pharmacological studies by drug repurposing analysis. Cross-ancestry polygenic risk 103 scores (PRS) showed better performance in independent sample than single-ancestry PRS. 104 Genetic correlations between PAU and other traits were observed in multiple ancestries, with 105 other substance use traits having the highest correlations. The analysis of diverse ancestries 106 contributed significantly to the findings, and fills an important gap in the literature.

107 Introduction

108 Alcohol use disorder (AUD) is a chronic relapsing disease associated with a host of adverse medical, psychiatric, and social consequences¹. Given observed heritability ($h^2 \sim 50\%^2$), 109 there has been substantial progress made in genome-wide association studies (GWAS) of AUD 110 and problematic drinking³⁻⁹, and also for measures of alcohol consumption^{10,11}. A prior GWAS of 111 problematic alcohol use (PAU, a phenotype based on a meta-analysis of highly genetically 112 correlated (genetic correlations >0.7) AUD⁷, alcohol dependence [AD]⁵, and AUDIT-P [Alcohol 113 Use Disorders Identification Test-Problem score, a measure of problematic drinking^{4,12}, 114 115 N=435,563) identified 29 independent risk variants, predominantly in European (EUR) ancestry subjects⁶. Consistent with genetic studies of other complex traits, and the high polygenicity of 116 117 PAU, larger and more ancestrally-representative samples need to be examined to outline the 118 genetic architecture of these alcohol use traits.

119

120 A key finding from recent studies is that both AUD and AUDIT-P differ phenotypically and genetically from typical alcohol consumption^{4,7}. AUD and AUDIT-P index aspects of 121 disordered alcohol intake and correlate with genetic liability to negative psychiatric and 122 psychosocial factors (e.g., higher major depressive disorder [MDD], lower educational 123 124 attainment). An item-level study of the AUDIT questionnaire confirmed a two-factor structure at 125 the genetic level, underscoring unique genetic influences on alcohol consumption and alcoholrelated problems¹³ and noted that the genetics of drinking frequency were confounded by socio-126 economic status. A similar pattern – genetic distinctions between substance use disorder (SUD) 127 vs. non-dependent use – has also been observed for cannabis use disorder and cannabis use¹⁴. 128 129 Furthermore, aggregating across multiple substance use disorders suggests that problematic 130 and disordered substance use has a unique genetic architecture that, while shared across 131 SUDs, does not overlap fully with non-dependent substance use per se¹⁵.

132 Notwithstanding prior discovery of multiple genome-wide significant (GWS) loci for PAU, there are major gaps in our understanding of its genetic underpinnings. First, the estimated 133 single-nucleotide polymorphism (SNP)-based heritability (h^2) of AUD and PAU ranges from 5.6% 134 to 10.0%⁴⁻⁷, reflecting substantial "missing heritability" compared to estimates based on genetic 135 epidemiology, which show ~50% heritability². Second, most of the available samples used in 136 human genetic studies - including for AUD - are of EUR ancestry; lack of ancestral diversity is 137 138 a major problem both for understanding the genetics of these traits, and for potential applications of these genetic discoveries to global populations¹⁶. Our previous study in the 139 Million Veteran Program (MVP) analyzed AUD in multiple ancestral groups⁷. However, non-EUR 140 samples (N=72,387) were far smaller than EUR samples (N=202,004), resulting in inadequate 141 142 statistical power and unbalanced gene discovery across ancestral backgrounds, which limits our 143 understanding of the genetic architecture underlying the trait across populations.

144

To improve our understanding of the biology of PAU in multiple populations, we 145 conducted substantially larger ancestry-specific GWAS of PAU followed by a cross-ancestry 146 147 meta-analysis in 1,079,947 individuals from multiple cohorts. We identified 85 independent risk variants in EUR participants (almost tripling the number identified in previous studies) and 110 148 149 in the within-ancestry and cross-ancestry meta-analyses. We investigated the shared genetic 150 architectures of PAU across different ancestries, performed fine-mapping for causal variants by combining information from multiple ancestries, and tested cross-ancestry polygenic risk score 151 (PRS) associations with AUDIT-P in the UK Biobank (UKB) samples¹⁷. We combined genes 152 153 identified by gene-based association analysis, transcriptome-wide association analysis (TWAS) 154 and brain-chromatin interaction analysis, found dozens of genes linking to brain with convergent 155 evidence. Drug repurposing analysis identified potential medications for further pharmacological 156 studies, bringing forward the hope of novel biologically-directed medications strategies with the

further potential of personalization. We conducted phenome-wide PRS analyses in biobanks from the PsycheMERGE Network¹⁸ in AFR and EUR-ancestry samples. We tested the genetic correlation between PAU and other traits, especially novel with respect to AFR samples where such analyses could not be conducted previously. These findings substantially augment the number of loci that contribute to risk of PAU, increasing power to investigate the causal relationships of PAU with other diseases, and identify novel druggable targets whose therapeutic potential requires empirical evaluation.

164

165 Results

166 Ancestrally diverse data collection. We collected newly genotyped subjects (most from MVP) and previously published data from multiple cohorts (MVP¹⁹, FinnGen²⁰, UKB¹⁷, Psychiatric 167 Genomics Consortium (PGC)⁵, iPSYCH^{21,22}, Queensland Berghofer Medical Research Institute 168 (QIMR) cohorts²³⁻²⁵, Yale-Penn 3²⁶, and East Asian cohorts²⁷) resulting in a total of 1,079,947 169 170 subjects (Table 1). Five ancestral groups were analyzed (Figure 1a): EUR (N=903,147), AFR (N=122,571), Latin American (LA, N=38,962), East Asian (EAS, N=13,551, all published in ref. 171 27), and South Asian (SAS, N=1,716). As in our previous study⁶, we utilized data on 172 International Classification of Diseases (ICD)-diagnosed AUD (N_{case}=136,182; N_{control}=692,594), 173 174 DSM-IV AD (N_{case}=29,770; N_{control}=70,282) and AUDIT-P (N=151,119), together defined as problematic alcohol use (PAU; based on high genetic correlations across these measures). The 175 total number of AUD and AD cases was 165,952, almost double the 85,391 cases in the 176 previously largest study²⁸. 177

178

Figure 1. Genetic architecture of problematic alcohol use (PAU). a, Sample sizes in
 different ancestral groups. b, Relationship between sample size and number of independent

- 182 2020: PAU in EUR. **c**, Lookup for cross-ancestry replication in AFR for the 85 independent
- variants in EUR meta-analysis. Of the 85 variants, 76 could be analyzed in AFR (see Methods).
- 184 Sign test was performed for the number of variants with same direction of effect (64/76,
- $p=1.0\times10^{-9}$). 23 variants were nominally significant in AFR and 6 were significant after multiple
- 186 correction (p < 0.05/76). **d**, Observed-scale and liability-scale SNP-based heritability (h^2) in
- multiple ancestries. **e**, Cross-ancestry genetic-effect correlation (ρ_{ge}) and genetic-impact
- 188 correlation (ρ_{gi}) between EUR, AFR and LA ancestries. Error bar is the 95% confidence interval.
- 189 f, Genome-wide association results for PAU in the cross-ancestry meta-analysis. Red line is
- 190 significance threshold of 5×10⁻⁸. EUR, European; AFR, African; LA, Latin American; EAS, East
- 191 Asian; SAS, South Asian; GWS, genome-wide significant.

the Methods. UKB-EUR1: genetically defined White-British by UK Biobank; UKB-EUR2:

196 genetically defined European non-White-British participants (see Methods); AGDS, the

197 Australian Genetics of Depression Study; TWINS, the Australian twin-family study of alcohol use

disorder; GBP, the Australian Genetics of Bipolar Disorder Study; iPSYCH1, phase 1 of iPSYCH;

iPSYCH2, phase 2 of iPSYCH; YP3, Yale-Penn 3; Neffective, effective sample size; Thai, study of

200 the genetics of methamphetamine dependence in Thailand; GSA, Illumina Global Screening

Array; MEGA, Illumina Multi-Ethnic Global Array; Cyto, Illumina Cyto12 array.

Cohorts	Traits	N _{case}	N _{control}	N total	N _{female} (%)	N _{effective}	Ref ^a
European ancestry (EUR)							
MVP	AUD	80,028	368,113	448,141	33,345 (7.4)	262,947	[6] and new
FinnGen	AUD	8,866	209,926	218,792	123,579 (56.5)	34,027	New
UKB-EUR1	AUDIT-P	-	-	132,001	74,113 (56.1)	132,001	[6] and new
UKB-EUR2	AUDIT-P	-	-	17,898	10,529 (58.5)	17,898	New
PGC	AD	9,938	30,992	40,930	20,933 (51.1)	23,075	[5] ^d
QIMR_AGDS	AD	6,726	4,467	11,193	8,605 (76.9)	10,737	New
QIMR_TWINS	AD	2,772	5,630	8,402	4,922 (58.6)	7,430	[5] and new
QIMR_GBP	AD	1,287	751	2,038	1,435 (70.4)	1,897	New
iPSYCH1	AD	2,117	13,238	15,355	8,077 (52.6)	7,301	New
iPSYCH2	AD	1,024	5,732	6,756	3,607 (53.4)	3,475	New
YP3	AD	567	1,074	1,641	854 (52.0)	1,484	New
Sub_total	PAU	113,325	639,923	903,147	289,999 (32.1)	502,272	
			African and	cestry (AFR)			
MVP	AUD	36,330	79,100	115,430	16,084 (13.9)	99,583	[7] and new
PGC	AD	3,335	2,945	6,280	3,124 (49.7)	4,991	[5]
YP3	AD	451	410	861	430 (50.0)	959	New
Sub_total	AUD	40,116	82,455	122,571	19,638 (16.0)	105,433	
		Lat	in America	n ancestry (l	LA)		
MVP	AUD	10,150	28,812	38,962	3,731 (9.6)	30,023	[7] and new
		Ea	st Asianª a	ncestry (EA	S)		
MVP	AUD	701	6,254	6,955	747 (10.7)	2,521	[27]
Han Chinese–GSA	AD	533	2,848	3,381	1,012 (29.9)	1,796	
Thai METH–MEGA	AD	794	1,576	2,370	1,008 (42.5)	2,112	
Thai METH–GSA	AD	127	405	532	263 (49.4)	387	
Han Chinese–Cyto	AD	99	214	313	0 (0)	271	
Sub_total	AUD	2,254	11,297	13,551	3,030 (22.4)	7,087	
	South Asian ancestry (SAS)						
MVP	AUD	107	389	496	67 (13.5)	336	[7] and new
UKB-SAS	AUDIT-P	-	-	1,220	535 (43.9)	1,220	New
Sub_total	PAU	107	389	1,716	602 (35.1)	1,556	
Total	PAU	165,952	762,876	1,079,947	317,000 (29.4)	646,371	

202 Note: ^adata either published in previous alcohol GWAS or newly included for this project.

²⁰³ ^bFinnGen summary statistics were downloaded from FinnGen data freeze v5

204 (https://r5.finngen.fi/). ^cIncluded related subjects from UKB. ^dReran the PGC AD GWAS in EUR

205 excluding two Australian cohorts.

206

207	Genome-wide association results for PAU. We performed GWAS and within-ancestry meta-
208	analyses for PAU in five ancestral groups and then completed a cross-ancestry meta-analysis.
209	In the EUR meta-analysis, 113,325 cases of AUD/AD, 639,923 controls and 149,899
210	participants with AUDIT-P scores were analyzed (Supplementary Figure 1a). After conditional
211	analysis, 85 independent variants at 75 loci reached GWS (Methods, Supplementary Table 1)
212	(see also Figure 1b). Of these variants, 41 are in protein-coding genes; of these, 5 are missense
213	variants (GCKR*rs1260326; ADH1B*rs75967634; ADH1B*rs1229984; SCL39A8*rs13107325;

214 *BDNF**rs6265).

215

216	Due to the smaller sample numbers, the non-EUR GWAS yielded fewer variants
217	associated with PAU than did the EUR GWAS (Supplementary Table 1). The AFR meta-
218	analysis found two independent ADH1B missense variants (rs1229984 and rs2066702)
219	associated with AUD (Figure 1b, Supplementary Figure 1b); these were reported previously ^{7,26} .
220	In the LA samples from MVP, only ADH1B*rs1229984 (lead SNP) was identified
221	(Supplementary Figure 1c). Two independent risk variants, ADH1B*rs1229984 and
222	BRAP*rs3782886, were reported in EAS previously ^{27,29} . In the small SAS meta-analysis, one
223	intergenic variant (rs12677811) was associated with AUD; however, this SNP was present only
224	in the UKB (Supplementary Figure 1d).

225

226 Of the 85 lead variants identified in the EUR GWAS, 76 were either directly analyzed or 227 had proxy variants in AFR (Methods, Supplementary Table 2, Figure 1c), 64 of which had the

228	same direction of effect (sign test $p=1.00\times10^{-9}$). Of these, 23 were nominally associated ($p<0.05$)
229	and 6 were significantly associated with AUD after multiple-testing correction (p <6.58×10 ⁻⁴). In
230	LA, 15 of the EUR GWS variants were nominally significant (p <0.05) and 2 were significantly
231	associated with AUD (rs12048727 and rs1229984). In EAS, 5 variants were nominally
232	significant and two were significantly associated with AUD (rs1229984 and rs10032906). Only
233	two variants were nominally associated with PAU in SAS (rs1229984 was not present in SAS).
234	
235	We estimated the SNP-based heritability (h^2) for PAU and AUD (excluding AUDIT-P
236	from UKB) in EUR, AFR and LA; significant h^2 estimates (range from 0.066 to 0.127) were
237	observed (Figure 1d, Supplementary Table 3).
238	
239	High genetic correlations were observed across the EUR, AFR, and LA ancestries
240	(Figure 1e, Supplementary Table 4). The genetic-effect correlation (ρ_{ge}) is 0.71 (SE=0.09,
241	$p=6.16 \times 10^{-17}$) between EUR and AFR, 0.85 (SE=0.09, $p=3.14 \times 10^{-22}$) between EUR and LA, and
242	0.88 (SE=0.18, $p=1.58\times10^{-6}$) between AFR and LA. The genetic-impact correlation (ρ_{gi}) is 0.67
243	(SE=0.07, <i>p</i> =2.78×10 ⁻²¹) between EUR and AFR, 0.86 (SE=0.09, <i>p</i> =3.52×10 ⁻²⁰) between EUR
244	and LA, and 0.72 (SE=0.16, $p=9.63\times10^{-6}$) between AFR and LA. The estimates involving
245	smaller study populations were not robust (Bonferroni <i>p</i> >0.05).
246	
247	In the cross-ancestry meta-analysis of all available datasets, we identified 100
248	independent variants at 90 loci (Figure 1f, Supplementary Table 1); 80 are novel findings for
249	PAU. Of these, 53 variants were located in protein-coding genes, of which 9 are missense
250	variants: GCKR*rs1260326; ADH1B*rs75967634, rs1229984, and rs2066702;
251	SCL39A8*rs13107325; OPRM1*rs1799971; SLC25A37*rs2942194; BDNF*rs6265; and

252	BRAP*rs3782886. The cross-ancestry meta-analysis identified 24 more risk variants than the
253	EUR meta-analysis, but 9 EUR variants fell below GWS (p-values ranging from 5.26×10^{-6} to
254	9.84×10^{-8}). In total, 110 unique variants were associated with PAU in either the within-ancestry
255	or cross-ancestry analyses (Figure 1b, Supplementary Table 1).

256

257 Within- and cross-ancestry causal variant fine-mapping. We performed within-ancestry fine-258 mapping for the 85 clumped regions with independent lead variants in EUR (Supplementary 259 Tables 5 and 6). A median number of 115 SNPs were included in each region to estimate the 260 credible sets with 99% posterior inclusion probability (PIP) of causal variants. After fine-mapping, 261 the median number of SNPs constituting the credible sets was reduced to 20. Among the 85 262 regions, there were 5 credible sets that include only a single variant with PIP ≥99% (presumably 263 indicating successful identification of specific causal variants): rs1260326 in GCKR, rs472140 264 and rs1229984 in ADH1B, rs2699453 (intergenic), and rs2098112 (intergenic). Another 19 265 credible sets contained ≤ 5 variants (Figure 2a).

266

Figure 2. Fine-mapping for PAU. a, Fine-mapping of causal variants in 85 regions in EUR. b, 92 regions in cross-ancestry analysis were fine-mapped and a direct comparison was done for these regions in EUR. c, Comparison for the highest PIPs from cross-ancestry and EUR-only fine-mapping in the 92 regions. Red dots are the regions fine-mapped across EUR, AFR, and LA; blue dots are the regions fine-mapped across EUR and AFR; green dots are the regions fine-mapped across EUR and LA; black dots are the regions only fine-mapped in EUR. FM, finemapping.

We performed cross-ancestry fine-mapping to identify credible sets with 99% PIP for 276 causal variants proximate to 92 independent lead variants in the cross-ancestry meta-analysis 277 (Supplementary Tables 7 and 8). The median number of SNPs in the credible sets was 9.13 278 credible sets contain only a single variant with PIP ≥99%; 47 credible sets contain ≤5 variants 279 (Figure 2b). For example, fine-mapping the region proximate to lead SNP rs12354219 (which 280 281 maps to DYPD on chromosome 1) identified rs7531138 as the most likely potential causal variant (PIP=48%), although this variant and rs12354219 (PIP=11%) are in high linkage 282 disequilibrium (LD) in different populations (r^2 ranges from 0.76 to 0.99). In a cross-ancestry 283 284 meta-analysis rs7531138 showed significant association with schizophrenia ($p=1.04 \times 10^{-8}$), but rs12354219 ($p=6.18 \times 10^{-8}$) did not³⁰ (although the two p-values were very similar), rs7531138 is 285 also a lead SNP associated with educational attainment ($p=1.74 \times 10^{-11}$), unlike rs12354219 286

287 $(p>5\times10^{-8})^{31}$.

288

289	To compare within- and cross-ancestry fine-mapping, we performed fine-mapping for the
290	above 92 regions using the same SNP sets and EUR-only LD information (Figure 2b & 2c). The
291	median number of SNPs in the credible sets is 13, with 7 credible sets containing a single
292	variant and 26 containing \leq 5 variants, indicating that cross-ancestry fine-mapping improved
293	causal variant identification, consistent with other studies reporting improved fine-mapping by
294	including other ancestries ¹¹ .

295

Gene-based association analysis. We used MAGMA^{32,33} to perform gene-based association
analyses. 130 genes in EUR, 9 in AFR and 6 in LA (for AFR and LA populations, all mapped to
the ADH gene cluster), and 7 in EAS (mapped to either the ADH gene cluster or the *ALDH2*region²⁷) were associated with PAU or AUD (Supplementary Table 9). There were no significant
findings in SAS.

301

Transcriptome-wide association analyses (TWAS). We used S-PrediXcan³⁴ to identify 302 predicted gene expression associations with PAU in 13 brain tissues³⁵, 426 significant gene-303 tissue associations were identified, representing 89 unique genes (Supplementary Table 10). 304 Five genes showed associations with PAU in all available brain tissues, including AMT 305 306 (Aminomethyltransferase), YPEL3 (Yippee Like 3), EVI2A (Ecotropic Viral Integration Site 2A), 307 EVI2B (Ecotropic Viral Integration Site 2B), and CTA-223H9.9 (IncRNA). We also observed 308 associations between PAU and the expression of alcohol dehydrogenase genes (ADH1B in the putamen (basal ganglia), ADH1C in 10 brain tissues, and ADH5 in cerebellar hemisphere and 309 310 cerebellum). Among the brain tissues, caudate (basal ganglia) had the most genes whose 311 expression was associated with PAU (42 genes), followed by the putamen (basal ganglia) (39

genes). TWAS that integrated evidence across 13 brain tissues using S-MultiXcan³⁶ to test joint
 effects of gene expression variation identified 121 genes (81 shared with S-PrediXcan) whose
 expression was associated with PAU (Supplementary Table 11).

315

Linking risk genes to brain chromatin interaction. We used H-MAGMA³⁷ to implicate risk genes associated with PAU by incorporating brain chromatin interaction profiles. 1,030 genechromatin associations were identified in 6 brain Hi-C annotations, representing 401 unique genes (Supplementary Table 12). 58 genes showed association with chromatin interaction in all 6 annotations, including *ADH1B*, *ADH1C*, *DRD2*, *EVI2A* and others that also showed evidence by TWAS in brain tissues.

322

Convergent evidence linking association to brain. We examined overlapped genes by both
gene-based association analysis and TWAS in brain tissues and/or H-MAGMA analysis using
Hi-C brain annotations. Among the 130 genes associated with PAU in EUR, 60 were also
implicated by TWAS findings either by single brain tissue (S-PrediXcan) or across brain tissues
(S-MultiXcan), 82 have evidence of brain chromatin interaction, and 38 have evidence from both
TWAS and Hi-C annotations including *ADH1B*, *DRD2*, *KLB* and others (Supplementary Table 9).

329

Probabilistic fine-mapping of TWAS. We performed fine-mapping for TWAS using FOCUS³⁸,
a method that estimates credible gene sets predicted to include the causal gene that can be
prioritized for functional assays. We detected 53 credible sets at a nominal confidence level (set
at 90% PIP). These contained 145 gene-tissue associations with an average PIP of 32%
(Supplementary Table 13). For the 19 gene-tissue associations having PIP >90%, 9 are from
brain tissues (e.g., *ZNF184* expression in hypothalamus (PIP=0.94%), *MTCH2* expression in

nucleus accumbens (basal ganglia) (PIP=99%), *SLC4A8* expression in dorsolateral prefrontal
 cortex (PIP=98%), *YPEL3* expression in cerebellum (PIP=100%), and *CHD9* expression in
 dorsolateral prefrontal cortex (PIP=100%).

339

Drug repurposing. Independent genetic signals from the cross-ancestry meta-analysis were
 searched in OpenTargets.org³⁹ for druggability and medication target status based on nearest
 genes. Among them, *OPRM1* implicated naltrexone and *GABRA4* implicated acamprosate, both
 current treatments for AUD. Additionally, the genes *DRD2*, *CACNA1C*, *DPYD*, *PDE4B*, *KLB*,
 BRD3, *NCAM1*, *FTOP*, and *MAPT*, were identified as druggable genes.

345

From the drug repurposing analysis using S-PrediXcan results, 287 compounds were significantly correlated with the transcriptional pattern associated with risk for PAU (Supplementary Table 14). Of these 287, 141 medications were anti-correlated with the transcriptional pattern. Of those, trichostatin-a (p=3.29×10⁻³⁵), melperone (p=6.88×10⁻¹¹), triflupromazine (p=7.37×10⁻¹⁰), spironolactone (p=2.45×10⁻⁹), amlodipine (p=1.42×10⁻⁶) and clomethiazole (p=1.30×10⁻⁵) reversed the transcriptional profile associated with increased PAU risk, targeted a gene near an independent significant locus in the cross-ancestry GWAS.

353

Cross-ancestry polygenic risk score association. We tested the cross-ancestry PRS association with AUDIT-P in UKB using AUD summary data from EUR (leaving out the UKB AUDIT-P data), AFR, and LA. PRS-CSx was applied to calculate the posterior effect sizes for each SNP by leveraging LD diversity across discovery samples⁴⁰. We validated the PRS associations with AUDIT-P in UKB-EUR2 and tested them in UKB-EUR1 (see Table 1). In the UKB-EUR1 samples, EUR-based AUD PRS is significantly associated with AUDIT-P (*Z*-

score=11.6, $p=3.14\times10^{-31}$, $\Delta R^2=0.11\%$). By incorporating GWAS data from multiple ancestries, the AUD PRS is more significantly associated with AUDIT-P and explains more variance (Zscore=13.6, $p=2.44\times10^{-42}$, $\Delta R^2=0.15\%$) than the single ancestry AUD PRS.

363

364	Genetic correlations. We confirmed significant positive genetic correlations (r_g) in EUR
365	between PAU and substance use and psychiatric traits ^{6} (Supplementary Table 15). AD ^{5} showed
366	the highest correlation with PAU (r_g =0.85, SE=0.07, p =4.49×10 ⁻³⁴), followed by maximum
367	habitual alcohol intake ⁹ (r_{g} =0.79, SE=0.03, p =1.24×10 ⁻¹⁹¹), opioid use disorder ⁴¹ (r_{g} =0.78,
368	SE=0.04, $p=1.20 \times 10^{-111}$), drinks per week ¹¹ ($r_g=0.76$, SE=0.02, $p<1 \times 10^{-200}$), smoking trajectory ⁴²
369	$(r_{\rm g}=0.63, \text{SE}=0.02, p=2.47\times10^{-176})$, and cannabis use disorder ¹⁴ $(r_{\rm g}=0.61, \text{SE}=0.04, p=4.85\times10^{-176})$
370	63). We next tested r_{g} between AUD and 13 published traits with large GWAS in AFR (Figure 3,
371	Supplementary Table 16). As in EUR, the traits with the strongest correlations were substance
372	use traits. Maximum habitual alcohol intake ⁹ (r_g =0.67, SE=0.15, p =8.13×10 ⁻⁶) showed the
373	highest correlation with AUD, followed by opioid use disorder ⁴¹ (r_g =0.62, SE=0.10, p =6.70×10 ⁻¹⁰).
374	and smoking trajectory ⁴² (r_g =0.57, SE=0.08, p =3.64×10 ⁻⁴). Major depressive disorder ⁴³ and
375	smoking initiation ¹¹ showed nominally significant (p <0.05) positive correlation with AUD and type
376	2 diabetes ⁴⁴ showed a nominally significant negative correlation.

377

Figure 3. Genetic correlations between AUD and traits in AFR. totalPCL, total index of recent symptom severity by PTSD checklist for DSM-IV. Traits labeled in bold font are genetically correlated with AUD after Bonferroni correction (p<3.83×10⁻³). Error bar is 95% confidence interval.

Traits	Study	Ν	р	
Maximum habitual alcohol intake	Deak, 2022	29,132	8.13x10 ⁻⁶	
Opioid use disorder	Kember, 2022	88,497	6.70x10 ⁻¹⁰	
Smoking trajectory	Xu, 2020	54,867	3.64x10 ⁻¹³	
Post-traumatic stress disorder	Stein, 2021	51,036	0.45	
avoidance		25,414	0.27	
totalPCL		25,318	0.24	
reexperiencing		25,414	0.18	
hyperarousal		25,521	0.45	
Cigarettes per day	Saunders, 2022	20,157	0.40	
Smoking initiation	Saunders, 2022	119,589	0.02	
Major depressi∨e disorder	Levey, 2021	85,083	0.02	
Type II diabetes	Vujkovic, 2020	76,750	0.01	-
				-0.5 0 0.5 1 1.5
				Genetic correlation

383

384 PRS for phenome-wide associations. We calculated PRS for PAU (based on the metaanalysis of PAU in EUR) in 131,500 individuals of European ancestry, PRS for AUD (based on 385 386 the meta-analysis of AUD in AFR) in 27,494 individuals of African ancestry in 4 biobanks 387 (Vanderbilt University Medical Center BioVU, Penn Medicine BioBank, Mount Sinai Icahn School of Medicine BioMerm, and Mass General Brigham Biobank) from the PsycheMERGE 388 389 Network, and conducted phenome-wide association studies (PheWAS), After Bonferroni 390 correction, 58 of the 1,493 tested phenotypes were significantly associated with the PAU PRS in 391 EUR, including 26 mental disorders, 8 respiratory traits, 5 neurological conditions, 4 infectious 392 diseases, and 4 neoplasms (Supplementary Table 17, Supplementary Figure 2). For the 793 phenotypes tested in AFR, alcoholism (OR=1.25, SE=0.04, $p=2.62 \times 10^{-7}$), alcohol-related 393 disorders (OR=1.21, SE=0.04, $p=4.11\times10^{-7}$), and tobacco use disorder (OR=1.09, SE=0.02, 394 $p=6.98 \times 10^{-6}$) showed significant association with AUD PRS (Supplementary Table 18, 395 396 Supplementary Figure 3). 397

We also conducted PheWAS in Yale-Penn, a deeply phenotyped cohort with
 comprehensive psychiatric assessments (substance use disorders [SUDs] and psychiatric
 disorders) and assessments for physical and psychosocial traits^{26,45}. In EUR, the PRS of PAU

401	was associated with 123 traits, including 26 in alcohol, 39 in opioid, 24 in cocaine and 17 in
402	tobacco categories (Supplementary Table 19, Supplementary Figure 4), indicating high
403	comorbidity and shared genetic components across SUDs. In AFR, the AUD PRS was
404	associated with the DSM-5 AUD criterion count, alcohol-induced blackouts, frequency of alcohol
405	use, and 3 individual AUD criteria: unsuccessful effort to decrease use, used more than
406	intended, and continued use despite social/interpersonal problems (Supplementary Table 20,
407	Supplementary Figure 5).

408

409 Discussion

We report here the largest multi-ancestry GWAS for PAU to date, comprising over 1 million individuals and including 165,952 AUD/AD cases, more than double the largest previous study²⁸. Considering the results from this study and previous GWAS, in all ancestral populations, we observed a nearly linear relationship between sample size and the number of risk variants discovered.

415 Convergent evidence supports substantial shared genetic architecture for PAU across 416 multiple ancestries. First, of the 76 independent risk variants detected in EUR and represented 417 in other populations, the majority have the same direction of effect in AFR (84.2%) and LA (81.6%). Twenty-three variants (30.3%) in AFR and 15 (19.7%) in LA were nominally replicated 418 419 (p <= 0.05), which is considerable given the appreciably lower sample size of these ancestral 420 groups. Second, there are high cross-ancestry genetic correlations among EUR, AFR, and LA, 421 ranging from 0.71 (between EUR and AFR) to 0.88 (between AFR and LA). Third, crossancestry meta-analysis substantially improved the power for gene discovery and resulted in the 422 423 identification of 24 additional variants beyond the EUR-only results.

424

425 A total of 110 variants were associated with PAU in either within-ancestry or cross-426 ancestry analyses; of these, 9 are missense variants. These include rs1799971 in OPRM1 which encodes the μ opioid receptor, which plays roles in regulating pain, reward, and addictive 427 428 behaviors. This variant was also associated with opioid use disorder (OUD) in multiple large GWAS^{41,46,47}. Previously, there were inconsistent candidate gene association results for 429 430 OPRM1*rs1799971 and AUD (reviewed in ref. 48). This is the first GWAS to confirm the 431 association of rs1799971 in PAU; the risk allele is the same as for OUD. In contrast to an apparent EUR-specific effect of rs1799971 on OUD, the OPRM1 association with PAU 432 $(p=6.16\times10^{-9})$ was detected in the cross-ancestry meta-analysis. Further investigation in larger 433 434 non-EUR samples is needed to assess the association of this SNP with SUDs in different 435 population groups. Rs6265 in BDNF (brain-derived neurotrophic factor) encodes a member of 436 the nerve growth factor family of proteins and has been investigated intensively in the past decades⁴⁹; studies showed that this variant is associated with smoking traits¹⁰ and externalizing 437 behavior⁵⁰. Rs13107325 in SLC39A8 (Solute Carrier Family 39 Member 8) has been associated 438 with schizophrenia⁵¹, substance uses^{6,7,10} and many glycemic traits, and is critical for 439 glycosylation pathways^{52,53}. 440

441

442 Previous studies have shown that PAU is a brain-related trait with evidence of functional 443 and heritability enrichment in multiple brain regions^{6,7}. We performed gene-based association, 444 TWAS in brain tissues, and H-MAGMA analysis in brain annotations. We identified 38 genes 445 that were supported across multiple levels of analysis. For example, ADH1B expression in 446 putamen was associated with PAU by TWAS, and with chromatin interaction in all 6 brain 447 annotations by H-MAGMA, indicating additional potential biological mechanisms for the 448 association of ADH1B with PAU risk through gene expression and/or chromatin interactions in 449 brain, potentially independent of the well-known hepatic effect on alcohol metabolism. DRD2

expression in cerebellar hemisphere and chromatin interaction in all brain annotations were also
associated with PAU risk. Alcohol metabolism, as is well-reported, has affects that modulate
alcohol's aversive and reinforcing effects⁵⁴, but also contributes to brain histone acetylation,
gene expression and alcohol-related associative learning in mice⁵⁵. The detailed molecular
pathways and mechanisms involving changes in human brain need to be elucidated.

455

456 Independent genetic signals supported the two main AUD pharmacological treatments acamprosate and naltrexone: GABRA4 is a target of acamprosate while OPRM1 is a target for 457 458 naltrexone. We identified genes known to be druggable; our multivariate analysis also provided 459 evidence for several repurposable drugs. Trichostatin-a, a histone deacetylase inhibitor, showed 460 effects on H3 and H4 acetylation and neuropeptide Y expression in the amygdala and prevented the development of alcohol withdrawal-related anxiety in rats⁵⁶. Clinical trials showed 461 that melperone, a dopamine and serotonin receptor antagonist, has inconsistent effects on 462 alcoholic craving^{57,58}. Spironolactone, a mineralocorticoid receptor antagonist, reduced alcohol 463 use in both rats and humans in a recent study⁵⁹. Clomethiazole, a GABA receptor antagonist, 464 also showed effect of treatment for alcohol withdrawal syndrome⁶⁰. Future clinical trials may use 465 466 the evidence from this drug-repurposing analysis to prioritize drugs for further study.

467

PAU was positively genetically correlated with many psychiatric and substance use disorders and negatively with cognitive performance. Most of our genetic correlations with PAU, and all those in previous studies, were restricted to EUR populations, presumably because of insufficient statistical power in other populations. The PheWAS PRS also identified associations with medical phenotypes in EUR. With increasing number of AFR GWAS now published, mainly from MVP, we were able to estimate genetic correlations between AUD and a limited set of

traits in AFR. As in EUR, AUD in AFR was genetically correlated with substance use traits
including OUD, smoking trajectory (which identifies groups of individuals that follow a similar
progression of smoking behavior), and maximum habitual alcohol intake. PheWAS of PRS in
AFR from PsycheMERGE and Yale-Penn confirmed that AUD is genetically correlated with
substance use traits. The lack of a wider set of phenotypes for comparison by ancestry is a
continuing limitation.

480

Additional limitations include that the differences in ascertainment and phenotypic 481 482 heterogeneity across cohorts might bias the results. Despite the high genetic correlation between AUD and AUDIT-P, they are not identical traits. Also, differences in ascertainment 483 484 amongst the cohorts may have introduced additional biases; for example, considering the QIMR 485 AGDS and GBP cohorts, the former have high major depression comorbidity, and the latter 486 have high bipolar disorder comorbidity. (This heterogeneity would, however, have been more likely to limit discovery than to create false-positives.) Additionally, while we set out to include all 487 488 available samples for problematic drinking in multiple ancestries, the sample sizes in the non-489 EUR ancestries were still small for gene discoveries and downstream analyses. The collection 490 of substantial numbers of non-European subjects is a critical next step in this field.

491

In summary, we report here a large multi-ancestry GWAS and meta-analysis for PAU, in which we focused our analyses in three main directions. First, we demonstrated that there is substantial shared genetic architecture of PAU across multiple populations. Second, we analyzed gene prioritization for PAU using multiple approaches, including cross-ancestry finemapping, gene-based association, brain-tissue TWAS and fine-mapping, and H-MAGMA for chromatin interaction. We identified many genes associated with PAU with biological support,

498 extending our understanding of the brain biology that substantially modifies PAU risk and 499 expands opportunities for investigation using in vitro methods and animal models. These genes 500 are potential actionable targets for downstream functional studies and possible targets of 501 pharmacological intervention based on the drug repurposing results. Third, we investigated the 502 genetic relationship between PAU and many traits, which for the first time was possible in AFR 503 populations. Future increases in sample size will doubtless yield additional gains; this is 504 particularly needed in non-EUR populations both for primary GWAS analyses and the analysis 505 of other traits for comparison and to estimate pleiotropy.

506

507 Methods

Study design. In the previous PAU study⁶, the r_g between MVP AUD and PGC alcohol dependence (AD) was 0.98, which justified the meta-analysis of AUD (includes AUD and AD) across the two datasets; and the r_g between AUD and UKB AUDIT-P was 0.71, which justified the proxy-phenotype meta-analysis of PAU (including AUD, AD and AUDIT-P) across all datasets. In this study, we use the same definitions, defining AUD by meta-analyzing AUD and AD across all datasets, and defining PAU by meta-analyzing AUD, AD and AUDIT-P (Table 1).

514

515 **MVP dataset.** MVP enrollment and genotyping have been described previously^{19,61}. MVP is a 516 biobank supported by the US Department of Veterans Affairs (VA) with rich phenotypic data 517 collected using questionnaires and the VA electronic health record system (EHR). The Central 518 VA Institutional Review Board (IRB) and site-specific IRBs approved the MVP study. All relevant 519 ethical regulations for work with human subjects were followed in the conduct of the study and 520 informed consent was obtained from all participants.

521

MVP genotype data were processed by the MVP Release 4 (R4) Data Team. 729,324 522 523 samples were genotyped using Affymetrix Axiom Biobank Array. Rigorous sample-level quality control (QC) served to remove samples with duplicates, call rates <98.5%, sex mismatches, >7 524 525 relatives, or excess heterozygosity. After QC, MVP R4 data contains 658,582 participants and 526 667,995 variants (pre-imputation). Pre-imputation QC removed variants with high missingness (>1.5%), that were monomorphic, or with Hardy-Weinberg Equilibrium (HWE) p-value $\leq 1 \times 10^{-6}$. 527 528 leaving 590,511 variants for imputation. As in our previous work⁷, we ran principal component analysis (PCA)^{62,63} for the R4 data and 1000 Genome phase3 reference panels⁶⁴. The 529 530 Euclidean distances between each MVP participant and the centers of the five reference 531 ancestral groups were calculated using the first 10 PCs, with each participant assigned to the 532 nearest reference ancestry. A second round PCA within each assigned ancestral group was 533 performed and outliers with PC scores >6 standard deviations from the mean of any of the 10 534 PCs were removed. This two-stage approach resulted in the assignment of 468,869 European 535 ancestry (EUR), 122,024 African ancestry (AFR), 41,662 Latin American (LA), 7,364 East Asian 536 (EAS) and 536 South Asian (SAS) individuals for analysis.

537

Imputation was done by the MVP R4 Data Team. The entire cohort was pre-phased using SHAPEIT4 (v4.1.3)⁶⁵, then imputed using Minimac4⁶⁶ with African Genome Resources reference panel by Sanger Institute and 1000 Genomes Project phase3 as reference. Single nucleotide variants with imputation score <0.8, or HWE p-value $\leq 1 \times 10^{-6}$, or minor allele frequency (MAF) lower than the threshold set in each ancestral group based upon their sample size (EA, 0.0005; AA, 0.001; LA, 0.005; EAA, 0.01; SAA, 0.01) were removed before association analysis.

545

Participants with at least one inpatient or two outpatient International Classification of Diseases (ICD)-9/10 codes for AUD were assigned as AUD cases, while participants with zero ICD codes for AUD were controls. Those with one outpatient diagnosis were excluded from the analysis. In total, 80,028; 36,330; 10,150; 701; and 107 cases were included in EUR, AFR, LA, EAS, and SAS, respectively; 368,113; 79,100; 28,812; 6,254; and 389 controls were included in EUR, AFR, LA, EAS, and SAS, respectively. BOLT-LMM⁶⁷ was used to correct for relatedness, with age, sex, and the first 10 PCs as covariates.

553

554 UK Biobank (UKB). UKB released genotype and imputed data for ~500,000 individuals from across the United Kingdom¹⁷ which were accessed through application 41910. UKB defined 555 556 White-British (WB) participants genetically. For the non-WB individuals, we used PCA to classify them into different genetic groups as for MVP. Subjects with available AUDIT-P score were 557 558 included in this study. The final sample included 132,001 WB (hereafter called UKB-EUR1) and 17,898 non-WB Europeans (hereafter called UKB-EUR2), and 1,220 SAS. SNPs with genotype 559 call rate >0.95, HWE p-value >1×10⁻⁶, imputation score ≥0.8 and MAF ≥0.001 in EUR1 and 560 561 EUR2 and ≥0.01 in SAS were kept for GWAS, BOLT-LMM was used for association correcting for relatedness, age, sex, and the first 10 PCs. 562

563

FinnGen. Summary statistics for AUD from FinnGen data freeze 5 were downloaded from the FinnGen website (http://r5.finngen.fi/). Details of the genotyping, imputation and quality control for FinnGen data were described previously²⁰. There were 8,866 AUD cases defined by ICD-8/9/10 codes and 209,926 controls. Association analysis was performed using SAIGE⁶⁸ mixedmodel with age, sex and 10 PCs as covariates. Positions of the variants were lifted over to build 37 (GRCh37/hg19) for meta-analysis.

570

iPSYCH: The iPSYCH^{21,22} samples were selected from a baseline birth cohort comprising all
singletons born in Denmark between May 1, 1981, and December 31, 2008. The iPSYCH study
was approved by the Scientific Ethics Committee in the Central Denmark Region (Case No 110-72-287-12) and the Danish Data Protection Agency.

575

576 AUD was diagnosed according to the ICD-10 criteria (F10.1 – F10.9 diagnosis codes). 577 The iPSYCH cohort was established to investigate genetic risk for major psychiatric disorders (i.e., attention-deficit/hyperactivity disorder, schizophrenia, bipolar disorder, major depressive 578 579 disorder, autism spectrum disorder) but not AUD (or PAU), so comorbidity of psychiatric disorders among these AUD cases is higher than expected for cases selected randomly from 580 581 the population. Therefore, we generated a control group around five times as large as the case 582 groups, and to correct for the bias introduced by high comorbidity of psychiatric disorders 583 among cases, we included within the control group individuals with the above listed psychiatric disorders (without comorbid AUD) at a proportion equal to what was observed among the cases. 584

585

The samples were genotyped in two genotyping rounds referred to as iPSYCH1 and 586 iPSYCH2. iPSYCH1 samples were genotyped using Illumina's PsychChip array and iPSYCH2 587 588 samples using Illumina's GSA v.2 (Illumina, San Diego, CA, USA). Quality control and GWAS were performed using the Ricopili pipeline⁶⁹. More details can be found in ref. 70. GWAS were 589 590 performed separately for iPSYCH1 (2,117 cases and 13,238 controls) and iPSYCH2 (1,024 cases and 5.732 controls) using dosages for imputed genotypes and additive logistic regression 591 592 with the first 5 PCs (from the final PCAs) as covariates using PLINK v1.9⁷¹. Only variants with a 593 MAF >0.01 and imputation score >0.8 were included in the final summary statistics.

594

595	Queensland Berghofer Medical Research Institute (QIMR) cohorts. The Australian Genetics
596	of Depression Study (AGDS) recruited >20,000 participants with major depression between
597	2017 and 2020. Recruitment and subject characteristics have been reported ²⁴ : Participants
598	completed an online self-report questionnaire. Lifetime AUD was assessed on DSM-5 criteria
599	using the Composite International Diagnostic Interview (CIDI). A total of 6,726 subjects with and
600	4,467 without AUD were included in the present study.

601

The Australian twin-family study of alcohol use disorder (TWINS, including Australian 602 603 Alcohol and Nicotine Studies) participants were recruited from adult twins and their relatives who had participated in questionnaire- and interview-based studies on alcohol and nicotine use 604 and alcohol-related events or symptoms (as described in Heath et al.⁷²). They were 605 606 predominantly of EUR ancestry. Young adult twins and their non-twin siblings were participants in the Nineteen and Up study (19Up)²⁵. 2,772 cases and 5,630 controls were defined using 607 608 DSM-III-R and DSM-IV criteria. Most alcohol-dependent cases were mild, with 70% of those 609 meeting alcohol dependence criteria reporting only three or four dependence symptoms and <5% 610 reporting seven dependence symptoms.

611

The Australian Genetics of Bipolar Disorder Study (GBP) recruited >5,000 participants living with bipolar disorder between 2018 and 2021. The sample's recruitment and characteristics have been reported²³: Participants completed an online self-report questionnaire. Lifetime DSM-5 AUD was assessed using the CIDI.

616

610	Pro-imputation OC removed variants with ConTrain score < 0.6 MAE < 0.01 SNP call rate $< 0.5\%$
010	
619	and Hardy-Weinberg equilibrium deviation ($p < 1 \times 10^{\circ}$). Variants were then imputed using the
620	Michigan Imputation Server with the Haplotype Reference Consortium reference panel ⁶⁶ .
621	Association analysis was performed using SAIGE and the LOCO=TRUE flag with age, sex, 10
622	PCs and two imputation variables as covariates. Participants of non-EUR ancestry (defined
623	as >6 standard deviations from the PC1 and PC2 centroids) were excluded. Association
624	analyses were limited to variants with a MAF \geq 0.0001, MAC \geq 5, and an R ² \geq 0.1.
625	
626	Psychiatric Genomics Consortium (PGC). Lifetime DSM-IV diagnosis of AD in both EUR and

AFR ancestries were analyzed by PGC, with details reported previously⁵. This included 5,638 individuals from Australia. To avoid overlap with the new QIMR cohorts, we re-analyzed the PGC data without two Australian cohorts: Australian Alcohol and Nicotine Studies and Brisbane Longitudinal Twin Study. This yielded 9,938 cases and 30,992 controls of EUR ancestry and 3,335 cases and 2,945 controls of AFR ancestry.

632

Yale-Penn 3. There are 3 phases of the Yale-Penn study defined by genotyping epoch; the first 633 634 two were incorporated in the PGC study, thus they are included in the meta-analyses. Here, we 635 included Yale-Penn 3 subjects as a separate sample. Lifetime AD was diagnosed based on DSM-IV criteria. Genotyping was performed in the Gelernter laboratory at Yale using the 636 637 Illumina Multi-Ethnic Global Array, then imputed using Michigan Imputation Server with Haplotype Reference Consortium reference. We did PCA analyses to classify EAs (567 cases 638 and 1.074 controls) and AAs (451 cases and 410 controls). Variants with MAF >0.01, HWE p-639 value >1×10⁻⁶ and imputation INFO score \ge 0.8 were retained for association analyses using 640

641 linear mixed models implemented in GEMMA⁷³ and corrected for age, sex and 10 PCs.

642

- East Asian cohorts. Summary statistics for AUD/AD GWAS from 5 EAS cohorts (MVP EAS,
- Han Chinese–GSA, Thai METH–MEGA, Thai METH–GSA and Han Chinese–Cyto) were
- 645 included in the cross-ancestry meta-analysis. Analyses of these five cohorts were previously
- 646 published and the detailed QC can be found in ref. 27.

647

648 **Meta-analyses.** Meta-analyses were performed using METAL⁷⁴ with effective sample size 649 weighting. For all the case-control samples, we calculated effective sample size as:

650
$$n_{effective} = \frac{4}{\frac{1}{n_{case}} + \frac{1}{n_{control}}}$$

For AUDIT-P in UKB, a continuous trait, we used actual sample sizes for meta-analysis. For all meta-analyses within or across ancestries, variants with a heterogeneity test p-value $<5 \times 10^{-8}$ and variants with effective sample size <15% of the total effective sample size were removed. For the cross-ancestry and EUR within-ancestry meta-analyses, we required that variants were present in at least two cohorts. For the AFR and SAS within-ancestry meta-analyses, which are small samples, this was not required.

657

Independent variants and conditional analyses. We identified the lead variants using PLINK with parameters of clumping region 500 kb and LD r^2 0.1. We then ran conditional analyses using GCTA-COJO⁷⁵ to define conditionally independent variants among the lead variants using the 1000 Genomes Project phase3 as the LD reference panel. Any two independent variants <1 Mb apart whose clumped regions overlapped were merged into one locus.

663

664 **Cross-ancestry lookup.** For the 85 independent variants associated in EUR, we looked up the 665 associations in non-EUR groups. If the variants were not observed in another ancestry, we 666 substituted proxy SNPs defined as associated with PAU ($p < 5 \times 10^{-8}$) and in high LD with the EUR 667 lead SNP ($r^2 \ge 0.8$).

668

SNP-based heritability (h^2). SNP-based h^2 for common SNPs mapped to HapMap3⁷⁶ was 669 estimated in EUR, AFR and LA ancestries using LDSC⁷⁷; corresponding populations in the 1000 670 Genomes Project phase3 were used as LD reference panels. For PAU in EUR, we only 671 estimated the observed-scale h^2 . For AUD, both observed-scale h^2 and liability-scale h^2 were 672 estimated, using population lifetime prevalence estimates of 0.326, 0.220, and 0.229 in EUR, 673 AFR, and LA, respectively¹. These prevalence estimates were for lifetime DSM-5 AUD in the 674 675 United States, which could introduce bias given the different definitions and prevalence in different cohorts. By default, LDSC removes SNPs with sample size <90th percentile N/2. Here 676 677 we skipped this filtering and kept all SNPs for analyses because we did basic filtering based on the number of cohorts and sample size. The final number of SNPs in the analyses range from 678 527,994 to 1.17 M. 679

680

Cross-ancestry genetic correlation. We estimated the genetic correlations between different ancestries using Popcorn⁷⁸, which can estimate both the genetic-effect correlation (ρ_{ge}) as correlation coefficient of the per-allele SNP effect sizes and the genetic-impact correlation (ρ_{gi}) as correlation coefficient of the ancestry-specific allele-variance-normalized SNP effect sizes. Populations in 1000 Genomes were used as reference for their corresponding population. A large sample size and number of SNPs are required for accurate estimation⁷⁸, which explains

the non-robust estimates for EAS and SAS samples.

688

Within- and cross-ancestry fine-mapping. We did fine-mapping using MsCAVIAR⁷⁹, which 689 690 can leverage LD information from multiple ancestries to improve fine-mapping of causal variants. 691 To reduce bias introduced by populations with small sample size, here we performed fine-692 mapping using summary statistics from the EUR. AFR and LA populations. Three sets of 693 analyses were conducted. The first is within-ancestry fine-mapping for the 85 regions with independent variants in EUR using EUR summary data and 1000 Genomes Project phase3 694 695 EUR LD reference data. For each region, we selected SNPs which clumped (within 500 kb and 696 LD r^2 > 0.1) with the lead SNP and with p<0.05 for fine-mapping. We then calculated the pairwise LD among the selected SNPs. If two SNPs were in perfect LD ($r^2=1$, indicating that they 697 698 are likely to be inherited together), we randomly removed one from the analysis. The second is 699 cross-ancestry fine-mapping for the 100 regions with independent variants identified in cross-700 ancestry meta-analyses. For each region, we performed clumping (within 500 kb and LD r^2 >0.1) 701 in EUR, AFR, and LA summary data for the lead SNP separately, to select 3 sets of SNPs 702 (p<0.05) for fine-mapping, corresponding LD reference panels from 1000 Genomes Project 703 were used. For each set of SNPs, we calculated the pair-wise LD and randomly removed one 704 SNP if $r^2=1$. If the lead SNP was not presented in the EUR SNP set, we did not perform fine-705 mapping for this region. Loci with limited numbers of variants cannot have convergent results, 706 so they are not included in the results. After that, this cross-ancestry analysis included 92 707 regions. For the 10 regions in which the lead SNPs are missing in both AFR and LA populations, we did within-ancestry fine-mapping in EUR instead to keep the lead SNP (cross-ancestry fine-708 709 mapping will only analyze the SNPs common in analyzed ancestries). Third, because the 710 credible set length identified is related to the number of variants in the input, to provide a more 711 direct comparison between the cross-ancestry fine-mapping and the fine-mapping using

information only from EUR, we used the same lists of SNPs from the above 92 regions in the cross-ancestry fine-mapping as for the EUR-only fine-mapping. "Credible set" was defined as plausible causal variants with accumulated posterior inclusion probability (PIP) > 99%. For each credible set, we report the variant with the highest PIP. We assumed that each locus contains only one causal variant by default, and increased to three at maximum if the analysis unable to converge.

718

Gene-based association analyses. We performed gene-based association analysis for PAU
 or AUD in multiple ancestries using MAGMA implemented in FUMA^{32,33}. Default settings were
 applied. Bonferroni corrections for the number of genes tested (range from 18,390 to 19,002 in
 different ancestries) were used to determine genome-wide significant genes.

723

724 Transcriptome-wide association study (TWAS). For PAU in EUR, we performed TWAS using 725 S-PrediXcan to integrate transcriptomic data from GTEx. With prior knowledge that PAU is a 726 brain-related disorder (evidenced by significant enrichment of gene expression in several brain tissues)⁶, 13 brain tissues were analyzed. The transcriptome prediction model database and the 727 728 covariance matrices of the SNPs within each gene model were downloaded from the PredictDB 729 repository (http://predictdb.org/). Significance of the gene-tissue association was determined 730 following Bonferroni correction for the total number of gene-tissue pairs $(p<0.05/166.064=3.01\times10^{-7})$. We also used S-MultiXcan³⁶ to integrate evidence across the 13 731 brain tissues using multivariate regression to improve association detection. In total, 18,383 732 genes were tested in S-MultiXcan, leading to a significance p-value threshold of 2.72×10⁻⁶. 733 734

735 **Association with chromatin interactions in brain.** We used H-MAGMA³⁷, a computational

tool that incorporates brain chromatin interaction profiles from Hi-C, to identify risk genes associated with PAU based on EUR inputs. Six brain annotations were used: fetal brain, adult brain, adult midbrain dopaminergic, iPSC-derived astrocyte, iPSC-derived neuron and cortical neuron. In total, 319,903 gene-chromatin associations were analyzed across the six brain annotations. Significant genes were those with a p-value below the Bonferroni corrected value for the total number of tests (p<0.05/319,903=1.56×10⁻⁷).

742

Probabilistic fine-mapping of TWAS. We did fine-mapping for TWAS in EUR using FOCUS³⁸, 743 744 a method that models correlation among TWAS signals to assign a PIP for every gene in the 745 risk region to explain the observed association signal. The estimated credible set containing the 746 causal gene can be prioritized for functional assays. FOCUS used 1000 Genomes Project EUR samples as the LD reference and multiple eQTL reference panel weights that include 747 GTEx v7⁸⁰, The Metabolic Syndrome in Men⁸¹, Netherlands Twin Register⁸², Young Finns 748 Study⁸³, and CommonMind Consortium⁸⁴. Under the model of PAU as substantially a brain 749 750 disorder, we did fine-mapping while prioritizing predictive models using a brain tissue-prioritized 751 approach.

752

Drug repurposing. To match inferred transcriptional patterns of PAU with transcriptional
 patterns induced by perturbagens, we related our S-PrediXcan results to signatures from the
 Library of Integrated Network-based Cellular Signatures (LINCs) L1000 database⁸⁵. This
 database catalogues *in vitro* gene expression profiles (signatures) from thousands of
 compounds >80 human cell lines (level 5 data from phase I: GSE92742 and phase II:
 GSE70138). Our analyses included signatures of 829 chemical compounds in five neuronal cell lines (NEU, NPC, MNEU.E, NPC.CAS9 and NPC.TAK). To test significance of the association

between PAU signatures and LINCs perturbagen signatures we followed the procedure from So et al⁸⁶. Briefly, we computed weighted (by proportion of heritability explained) Pearson correlations between transcriptome-wide brain associations and *in vitro* L1000 compound signatures using the *metafor* package⁸⁷ in R. We treated each L1000 compound as a fixed effect incorporating the effect size ($r_{weighted}$) and sampling variability (se²) from all signatures of a compound (e.g., across all time points and doses). We only report those perturbagens that were associated after Bonferroni correction (p<0.05/829=6.03×10⁻⁵).

767

768 **Cross-ancestry polygenic risk score.** We used PRS-CSx⁴⁰, a method that couples genetic 769 effects and LD across ancestries via a shared continuous shrinkage prior, to calculate the 770 posterior effect sizes for SNPs mapped to HapMap3. Three sets of AUD GWAS summary data 771 were use as input and corresponding posterior effect sizes in each ancestry were generated: 772 EUR (without AUDIT-P from UKB, Neffective=352,373), AFR (Neffective=105,433), and LA (N_{effective}=30,023). Three sets of AUD PRS based on the posterior effect sizes were calculated 773 774 for UKB-EUR1 and UKB-EUR2 individuals using PLINK, following standardization (zero mean and unit variance) for each PRS. For each related pair ($\geq 3^{rd}$ -degree, kinship coefficient ≥ 0.0442 775 as calculated by UKB), we removed the subject with the lower AUDIT-P score, or randomly if 776 777 they had the same score, leaving 123,565 individuals in UKB-EUR1 and 17,401 in UKB-EUR2. 778 Then we ran linear regression for AUDIT-P in UKB-EUR2 as a validation dataset using PRS_{EUR}, 779 PRSAFR and PRSIA as independent variables. The corresponding regression coefficients were used as weights in the test dataset (UKB-EUR1) to calculate the final PRS: PRS_{final} = 780 781 ω_{EUR} *PRS_{EUR} + ω_{AFR} *PRS_{AFR} + ω_{LA} *PRS_{LA}. We used linear regression to test the association 782 between AUDIT-P and PRS_{final} after standardization, correcting for age, sex, and the first 10 PCs. We also ran a null model of association between AUDIT-P and covariates only, to 783 calculate the variance explained (R²) by PRS_{final}. For comparison, we also calculated PRS in 784

785 UKB-EUR1 using only the AUD summary data in EUR using PRS-CS⁸⁸, then calculated the 786 variance explained by PRS_{single}. The improved PRS association was measured as the difference 787 of the variance explained (ΔR^2).

788

789	Genetic correlation. Genetic correlations (r_g) between PAU or AUD and traits of interest were
790	estimated using LDSC ⁸⁹ . For EUR, we tested r_{g} between PAU and 49 traits using published
791	summary data and the EUR LD reference from the 1000 Genomes Project. r_{g} s with p-value
792	<1.02×10 ⁻³ were considered significant. For AFR, we tested r_g between AUD and 13 published
793	traits in AFR using MVP in-sample LD (most of the analyzed AFR were from MVP) built from
794	1000 randomly-selected AFR subjects by cov-LDSC ⁹⁰ . r_{g} s with p-value <3.85×10 ⁻³ (0.05/13) in
795	AFR were considered as significant. For comparison, we also tested r_{g} s using 1000 Genomes
796	AFR as LD reference, which showed similar estimates.

797

798 **PAU PRS for phenome-wide associations.**

799 We calculated PRS using PRS-continuous shrinkage (PRS-CS) for PAU (in EUR) and AUD (in

AFR) in four independent datasets [Vanderbilt University Medical Center's Biobank (BioVU),

801 Mount Sinai (Bio*Me*TM), Mass General Brigham Biobank (MGBB)⁹¹ and Penn Medicine Biobank

802 (PMBB)⁹²] from the PsycheMERGE Network, followed by phenome-wide association studies.

803 Details for each dataset are described below.

804

BioVU: Genotyping of individuals was performed using the Illumina MEGEX array. Genotypes
 were filtered for SNP and individual call rates, sex discrepancies, and excessive heterozygosity
 using PLINK. Imputation was conducted using the Michigan Imputation Server based on the

Haplotype Reference Consortium reference panel. PCA using FlashPCA2⁹³ combined with CEU,
YRI and CHB reference sets from the 1000 Genomes Project Phase 3 was conducted to
determine participants of AFR and EUR ancestry. One individual from each pair of related
individuals was removed (pi-hat>0.2). This resulted in 12,384 AFR and 66,903 EUR individuals
for analysis.

813

814 BioMeTM: The BioMeTM Biobank: The Illumina Global Screening Array was used to genotype the 815 Bio*Me*TM samples. The SNP-level quality control (QC) removed SNPs with (1) MAF < 0.0001 (2) HWE p-value $\leq 1 \times 10^{-6}$ and (3) call rate <98%. The individual-level QC removed participants with 816 817 (1) sample call rate <98% and (2) heterozygosity F coefficient \geq 3 standard deviations. In 818 addition, one individual from each pair of related samples with a genomic relatedness 819 (proportion IBD) >0.125 was removed (--rel-cutoff=0.125 in PLINK). Imputation was 820 performed using 1000 Genomes Phase 3 data. Each ancestry was confirmed by the genetic PC 821 plot. A final sample size of 4,727 AFR and 9,544 EUR individuals were included for this study. 822 **MGBB:** Individuals in the Mass General Brigham Biobank (MGBB) were genotyped using the 823 824 Illumina Multi-Ethnic Global array with hg19 coordinates. Variant-level guality control filters 825 removed variants with a call rate <98% and those that were duplicated across batches, monomorphic, not confidently mapped to a genomic location, or associated with genotyping 826 827 batch. Sample-level quality control filters removed individuals with a call rate less than 98%, 828 excessive autosomal heterozygosity (±3 standard deviations from the mean), or discrepant self-829 reported and genetically inferred sex. PCs of ancestry were calculated in the 1000 Genomes Phase 3 reference panel and subsequently projected onto the MGBB dataset, where a Random 830 Forest classifier was used to assign ancestral group membership for individuals with a 831

832 prediction probability >90%. The Michigan Imputation Server was then used to impute missing 833 genotypes with the Haplotype Reference Consortium dataset serving as the reference panel. 834 Imputed genotype dosages were converted to hard-call format and subjected to further quality 835 control, where SNPs were removed if they exhibited poor imputation quality (INFO<0.8), low minor allele frequency (<1%), deviations from Hardy-Weinberg equilibrium (p<1×10⁻¹⁰), or 836 missingness (variant call rate <98%). Only unrelated individuals (pi-hat<0.2) of EUR ancestry 837 838 were included in the present study. These procedures yielded a final analytic sample of 25,698 839 individuals in the MGBB.

840

PMBB: Genotyping of individuals was performed using the Illumina Global Screening Array.
Quality control removed SNPs with marker call rate <95% and sample call rate <90%, and</p>
individuals with sex discrepancies. Imputation was performed using Eagle2⁹⁴ and Minimac4 on
the TOPMed Imputation Server. One individual from each pair of related individuals (pi-hat
threshold of 0.25) were removed from analysis. PCA was conducted using smartpca^{62,63} and the
Hapmap3 dataset to determine genetic ancestry. This resulted in 10,383 AFR and 29,355 EUR
individuals for analysis.

848

PheWAS: The AFR AUD PRS and EUR PAU PRS scores in each dataset were standardized for the PheWAS analyses. International Classification of Diseases (ICD)-9 and -10 codes were extracted from the electronic health record and mapped to phecodes. Individuals were considered cases if they had two instances of the phecode. We conducted PheWAS by fitting a logistic regression for each phecode within each biobank. Covariates included sex, age and the top 10 PCs. PheWAS results were meta-analyzed within each ancestral group across biobanks (AFR=27,494, EUR=131,500) using the PheWAS package⁹⁵ in R.

856

864	Data Availability: The full summary-level association data from the meta-analysis are available
863	
862	covariates. We applied a Bonferroni correction to control for multiple comparisons.
861	models for continuous traits. We used sex, age at recruitment, and the top 10 genetic PCs as
860	conducted PheWAS by fitting logistic regression models for binary traits and linear regression
859	that leave out the Yale-Penn 3 and PGC sample which includes Yale-Penn 1 and 2). We
858	previously ⁴⁵ . We calculated PRS for PAU in EUR and AUD in AFR (using summary statistics
857	Yale-Penn: Quality control and creation of the PheWAS dataset have been described

upon request to the corresponding authors and through dbGaP (accession number phs001672).

866

867 Acknowledgements

868 This research used data from the Million Veteran Program and was supported by funding from 869 the Department of Veterans Affairs Office of Research and Development, Million Veteran 870 Program Grant #I01CX001849, #I01BX004820, #I01BX003341, and the VA Cooperative Studies Program (CSP) study #575B, MVP004, and MVP025. This publication does not 871 872 represent the views of the Department of Veterans Affairs or the United States Government. 873 Supported also by NIH (NIAAA) P50 AA12870 (J.H.K.) and K01 AA028292 (R.L.K.), a NARSAD Young Investigator Grant 27835 from the Brain & Behavior Research Foundation (H.Z.), NCI 874 875 R21 CA252916 (H.Z.), R01 AA026364 (J.G.), NIAAA T32 AA028259 (J.D.D.), NIMH R01 MH124839 (L.M.H.), NIAAA K01 AA030083 (A.S.H.), NIDA K01 DA051759 (E.C.J.), TRDRP 876 877 (T29KT0526, T32IR5226, S.S.R.) and NIDA DP1 DA054394 (S.S.R.). This research used data from UK Biobank (project ID: 41910), a population-based sample of participants whose 878 879 contributions we gratefully acknowledge. The data access is supported by Yale SCORE pilot

880 grant (U54AA027989). We want to acknowledge the participants and investigators of the 881 FinnGen study. D.D. was supported by the Novo Nordisk Foundation (NNF20OC0065561), the 882 Lundbeck Foundation (R344-2020-1060). The iPSYCH team was supported by grants from the 883 Lundbeck Foundation (R102-A9118, R155-2014-1724, and R248-2017-2003), NIH/NIMH 884 (1U01MH109514-01 and 1R01MH124851-01 to A.D.B.) and the Universities and University 885 Hospitals of Aarhus and Copenhagen. The Danish National Biobank resource was supported by 886 the Novo Nordisk Foundation. High-performance computer capacity for handling and statistical 887 analysis of iPSYCH data on the GenomeDK HPC facility was provided by the Center for 888 Genomics and Personalized Medicine and the Centre for Integrative Sequencing, iSEQ, Aarhus 889 University, Denmark (grant to A.D.B.). The Australian Genetics of Depression Study (AGDS) 890 was primarily funded by the National Health and Medical Research Council (NHMRC) of 891 Australia Grant No. 1086683 to N.G.M. N.G.M is supported by a NHMRC Investigator Grant (No. 892 APP 1172990). We are indebted to all of the participants for giving their time to contribute to this 893 study. We wish to thank all the people who helped in the conception, implementation, media 894 campaign and data cleaning. We thank Richard Parker, Simone Cross, and Lenore Sullivan for 895 their valuable work coordinating all the administrative and operational aspects of the AGDS 896 project. We would also like to thank the research participants for making this work possible. The 897 Australian Genetics of Bipolar Disorder Study (GBP) data collection was funded and data 898 analysis was supported by the Australian NHMRC (No. APP1138514) to S.E.M. S.E.M. is supported by a NHMRC Investigator Grant (No. APP1172917). We thank the participants for 899 900 giving their time and support for this project. We acknowledge and thank M. Steffens for her generous donations and fundraising support. The NHMRC (APP10499110) and the NIH 901 (K99R00, R00DA023549) funded the 19Up study. Genotyping was funded by the NHMRC 902 903 (389891). We thank the twins and their families for their willing participation in our studies. 904 Funding for the Australian adult twin studies in which information on alcohol use and smoking status was obtained came from the US NIH (AA07535, AA07728, AA11998, AA13320, 905

906 AA13321, AA14041, AA17688, DA012854 and DA019951); the Australian NHMRC (241944, 907 339462, 389927, 389875, 389891, 389892, 389938, 442915, 442981, 496739, 552485 and 908 552498); and the Australian Research Council (A7960034, A79906588, A79801419, 909 DP0770096, DP0212016 and DP0343921). We acknowledge the work over many years of staff 910 of the Genetic Epidemiology group at QIMR Berghofer Medical Research Institute (formerly the 911 Queensland Institute of Medical Research) in managing the studies which generated the data 912 used in this analysis. We also acknowledge and appreciate the willingness of study participants 913 to complete multiple, and sometimes lengthy, questionnaires and interviews. Many of the 914 participants were contacted originally through the Australian Twin Registry. This research also used summary data from the Psychiatric Genomics Consortium (PGC) Substance Use 915 916 Disorders (SUD) working group. The PGC-SUD is supported by NIH grant R01DA054869. 917 PGC-SUD gratefully acknowledges its contributing studies and the participants in those studies, 918 without whom this effort would not be possible. We acknowledge the Penn Medicine BioBank 919 (PMBB) for providing data and thank the patient-participants of Penn Medicine who consented 920 to participate in this research program. We would also like to thank the PMBB team and 921 Regeneron Genetics Center for providing genetic variant data for analysis. The PMBB is 922 approved under IRB protocol# 813913 and supported by Perelman School of Medicine at 923 University of Pennsylvania, a gift from the Smilow family, and the National Center for Advancing 924 Translational Sciences of the NIH under CTSA award number UL1TR001878. This study was 925 supported in part through the resources and staff expertise provided by the Charles Bronfman 926 Institute for Personalized Medicine and The BioMeTM Biobank Program at the Icahn School of 927 Medicine at Mount Sinai. Research reported in this paper was supported by the Office of 928 Research Infrastructure of the NIH under award numbers S10OD018522 and S10OD026880. 929 The content is solely the responsibility of the authors and does not necessarily represent the 930 official views of the NIH.

931

932	Disclosure: H.R.K. is a member of advisory boards for Dicerna Pharmaceuticals, Sophrosyne
933	Pharmaceuticals, and Enthion Pharmaceuticals; a consultant to Sobrera Pharmaceuticals; the
934	recipient of research funding and medication supplies for an investigator-initiated study from
935	Alkermes; and a member of the American Society of Clinical Psychopharmacology's Alcohol
936	Clinical Trials Initiative, which was supported in the past 3 years by Alkermes, Dicerna,
937	Ethypharm, Lundbeck, Mitsubishi, Otsuka, and Pear Therapeutics. M.B.S. has in the past
938	3 years been a consultant for Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel
939	Therapeutics, Clexio, EmpowerPharm, Epivario, GW Pharmaceuticals, Janssen, Jazz
940	Pharmaceuticals, Roche/Genentech and Oxeia Biopharmaceuticals. M.B.S. has stock options in
941	Oxeia Biopharmaceuticals and Epivario. He also receives payment from the following entities for
942	editorial work: Biological Psychiatry (published by Elsevier), Depression and Anxiety (published
943	by Wiley) and UpToDate. J.G. and H.R.K. hold US patent 10,900,082 titled: "Genotype-guided
944	dosing of opioid agonists," issued January 26, 2021. J.G. is paid for his editorial work on the
945	journal Complex Psychiatry. J.H.K. has consulting agreements (less than US\$10,000 per year)
946	with the following: AstraZeneca Pharmaceuticals, Biogen, Idec, MA, Biomedisyn Corporation,
947	Bionomics, Limited (Australia), Boehringer Ingelheim International, COMPASS Pathways,
948	Limited, United Kingdom, Concert Pharmaceuticals, Inc., Epiodyne, Inc., EpiVario, Inc.,
949	Heptares Therapeutics, Limited (UK), Janssen Research & Development, Otsuka America,
950	Pharmaceutical, Inc., Perception Neuroscience Holdings, Inc., Spring Care, Inc., Sunovion
951	Pharmaceuticals, Inc., Takeda Industries and Taisho Pharmaceutical Co., Ltd. J.H.K. serves on
952	the scientific advisory boards of Bioasis Technologies, Inc., Biohaven Pharmaceuticals, BioXcel
953	Therapeutics, Inc. (Clinical Advisory Board), BlackThorn Therapeutics, Inc., Cadent
954	Therapeutics (Clinical Advisory Board), Cerevel Therapeutics, LLC., EpiVario, Inc., Lohocla
955	Research Corporation, PsychoGenics, Inc.; is on the board of directors of Inheris Biopharma,

956 Inc.: has stock options with Biohaven Pharmaceuticals Medical Sciences, BlackThorn Therapeutics, Inc., EpiVario, Inc. and Terran Life Sciences; and is editor of Biological Psychiatry 957 958 with income greater than \$10,000. I.B.H. is the Co-Director of Health and Policy at the Brain and 959 Mind Centre (BMC) University of Sydney. The BMC operates an early-intervention youth 960 services at Camperdown under contract to Headspace. He is the Chief Scientific Advisor to, and 961 a 3.2% equity shareholder in, InnoWell Pty Ltd. InnoWell was formed by the University of 962 Sydney (45% equity) and PwC (Australia; 45% equity) to deliver the \$30 M Australian Government-funded Project Synergy (2017-20; a three-year program for the transformation of 963 mental health services) and to lead transformation of mental health services internationally 964 through the use of innovative technologies. J.W.S. is a member of the Leon Levy Foundation 965 966 Neuroscience Advisory Board, the Scientific Advisory Board of Sensorium Therapeutics (with 967 equity), and has received grant support from Biogen, Inc. He is PI of a collaborative study of the 968 genetics of depression and bipolar disorder sponsored by 23andMe for which 23andMe 969 provides analysis time as in-kind support but no payments. All other authors report no 970 biomedical financial interests or potential conflicts of interest.

971 References

972	1.	Grant, B.F. <i>, et al.</i> Epidemiology of DSM-5 Alcohol Use Disorder: Results From the National
973		Epidemiologic Survey on Alcohol and Related Conditions III. JAMA Psychiatry 72, 757-766 (2015).
974	2.	Verhulst, B., Neale, M.C. & Kendler, K.S. The heritability of alcohol use disorders: a meta-analysis
975		of twin and adoption studies. <i>Psychol Med</i> 45 , 1061-1072 (2015).
976	3.	Gelernter, J. & Polimanti, R. Genetics of substance use disorders in the era of big data. Nat Rev
977		Genet 22 , 712-729 (2021).
978	4.	Sanchez-Roige, S., et al. Genome-Wide Association Study Meta-Analysis of the Alcohol Use
979		Disorders Identification Test (AUDIT) in Two Population-Based Cohorts. Am J Psychiatry 176,
980		107-118 (2019).
981	5.	Walters, R.K., et al. Transancestral GWAS of alcohol dependence reveals common genetic
982		underpinnings with psychiatric disorders. <i>Nat Neurosci</i> 21 , 1656-1669 (2018).
983	6.	Zhou, H., et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals
984		yields insights into biology and relationships with other traits. <i>Nat Neurosci</i> 23, 809-818 (2020).
985	7.	Kranzler, H.R., et al. Genome-wide association study of alcohol consumption and use disorder in
986		274,424 individuals from multiple populations. <i>Nat Commun</i> 10 , 1499 (2019).
987	8.	Gelernter, J., et al. Genome-wide Association Study of Maximum Habitual Alcohol Intake
988		in >140,000 U.S. European and African American Veterans Yields Novel Risk Loci. Biol Psychiatry
989		86 , 365-376 (2019).
990	9.	Deak, J.D., et al. Genome-Wide Investigation of Maximum Habitual Alcohol Intake in US
991		Veterans in Relation to Alcohol Consumption Traits and Alcohol Use Disorder. JAMA Netw Open
992		5 , e2238880 (2022).
993	10.	Liu, M., et al. Association studies of up to 1.2 million individuals yield new insights into the
994		genetic etiology of tobacco and alcohol use. <i>Nat Genet</i> 51 , 237-244 (2019).
995	11.	Saunders, G.R.B., et al. Genetic diversity fuels gene discovery for tobacco and alcohol use.
996		Nature (2022).
997	12.	Saunders, J.B., Aasland, O.G., Babor, T.F., de la Fuente, J.R. & Grant, M. Development of the
998		Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection
999		of Persons with Harmful Alcohol ConsumptionII. Addiction 88 , 791-804 (1993).
1000	13.	Mallard, T.T., et al. Item-Level Genome-Wide Association Study of the Alcohol Use Disorders
1001		Identification Test in Three Population-Based Cohorts. Am J Psychiatry 179 , 58-70 (2022).
1002	14.	Johnson, E.C., et al. A large-scale genome-wide association study meta-analysis of cannabis use
1003		disorder. <i>Lancet Psychiatry</i> 7 , 1032-1045 (2020).
1004	15.	Hatoum, A.S., et al. The addiction risk factor: A unitary genetic vulnerability characterizes
1005		substance use disorders and their associations with common correlates.
1006		Neuropsychopharmacology 47 , 1739-1745 (2022).
1007	16.	Peterson, R.E., et al. Genome-wide Association Studies in Ancestrally Diverse Populations:
1008		Opportunities, Methods, Pitfalls, and Recommendations. <i>Cell</i> 179 , 589-603 (2019).
1009	17.	Bycroft, C. <i>, et al.</i> The UK Biobank resource with deep phenotyping and genomic data. <i>Nature</i>
1010		562 , 203-209 (2018).
1011	18.	Zheutlin, A.B., et al. Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia in
1012		106,160 Patients Across Four Health Care Systems. Am J Psychiatry 176 , 846-855 (2019).
1013	19.	Gaziano, J.M., et al. Million Veteran Program: A mega-biobank to study genetic influences on
1014		health and disease. <i>J Clin Epidemiol</i> 70 , 214-223 (2016).

1015	20.	Kurki, M.I., et al. FinnGen: Unique genetic insights from combining isolated population and
1016		national health register data. <i>medRxiv</i> doi:
1017		https://doi.org/10.1101/2022.03.03.22271360(2022).
1018	21.	Pedersen, C.B., et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic
1019		and environmental architectures of severe mental disorders. <i>Mol Psychiatry</i> 23, 6-14 (2018).
1020	22.	Bybjerg-Grauholm, J., et al. The iPSYCH2015 Case-Cohort sample: updated directions for
1021		unravelling genetic and environmental architectures of severe mental disorders. <i>medRxiv</i> doi:
1022		https://doi.org/10.1101/2020.11.30.20237768(2020).
1023	23.	Lind, P., et al. Preliminary results from the Australian Genetics of Bipolar Disorder Study: A
1024		nation-wide cohort. <i>Psyarxive</i> 10.31234/osf.io/yd3sx(2022).
1025	24.	Byrne, E.M., et al. Cohort profile: the Australian genetics of depression study. BMJ Open 10,
1026		e032580 (2020).
1027	25.	Couvy-Duchesne, B., et al. Nineteen and Up study (19Up): understanding pathways to mental
1028		health disorders in young Australian twins. <i>BMJ Open</i> 8 , e018959 (2018).
1029	26.	Gelernter, J., et al. Genome-wide association study of alcohol dependence significant findings in
1030		African- and European-Americans including novel risk loci. <i>Mol Psychiatry</i> 19 , 41-49 (2014).
1031	27.	Zhou, H., <i>et al.</i> Genome-wide meta-analysis of alcohol use disorder in East Asians.
1032		Neuropsychopharmacology 47 , 1791-1797 (2022).
1033	28.	Kember, R.L., et al. Genetic underpinnings of the transition from alcohol consumption to alcohol
1034		use disorder: shared and unique genetic architectures in a cross-ancestry sample. <i>medRxiv</i>
1035		https://doi.org/10.1101/2021.09.08.21263302(2021)
1036	29.	Gelernter, J., <i>et al.</i> Genomewide Association Study of Alcohol Dependence and Related Traits in
1037		a Thai Population. Alcohol Clin Exp Res 42, 861-868 (2018).
1038	30.	Trubetskoy, V., et al. Mapping genomic loci implicates genes and synaptic biology in
1039		schizophrenia. <i>Nature</i> 604 , 502-508 (2022).
1040	31.	Okbay, A., et al. Polygenic prediction of educational attainment within and between families
1041		from genome-wide association analyses in 3 million individuals. <i>Nat Genet</i> 54, 437-449 (2022).
1042	32.	de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of
1043		GWAS data. <i>PLoS Comput Biol</i> 11 , e1004219 (2015).
1044	33.	Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and
1045		annotation of genetic associations with FUMA. <i>Nat Commun</i> 8 , 1826 (2017).
1046	34.	Barbeira, A.N., et al. Exploring the phenotypic consequences of tissue specific gene expression
1047		variation inferred from GWAS summary statistics. <i>Nat Commun</i> 9 , 1825 (2018).
1048	35.	GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues.
1049		Science 369 , 1318-1330 (2020).
1050	36.	Barbeira, A.N., et al. Integrating predicted transcriptome from multiple tissues improves
1051		association detection. <i>PLoS genetics</i> 15 , e1007889 (2019).
1052	37.	Sey, N.Y.A., et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder
1053		risk genes by incorporating brain chromatin interaction profiles. <i>Nat Neurosci</i> 23, 583-593
1054		(2020).
1055	38.	Mancuso, N., et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat
1056		Genet 51 , 675-682 (2019).
1057	39.	Ochoa, D., et al. The next-generation Open Targets Platform: reimagined, redesigned, rebuilt.
1058		Nucleic Acids Res 51 , D1353-D1359 (2023).
1059	40.	Ruan, Y., et al. Improving polygenic prediction in ancestrally diverse populations. Nat Genet 54,
1060		573-580 (2022).

1061	41.	Kember, R.L., et al. Cross-ancestry meta-analysis of opioid use disorder uncovers novel loci with
1062		predominant effects in brain regions associated with addiction. Nat Neurosci 25, 1279-1287
1063		(2022).
1064	42.	Xu, K., et al. Genome-wide association study of smoking trajectory and meta-analysis of smoking
1065		status in 842,000 individuals. <i>Nat Commun 11,</i> 5302 (2020).
1066	43.	Levey, D.F., et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-
1067		analysis in >1.2 million individuals highlight new therapeutic directions. <i>Nat Neurosci</i> 24 , 954-
1068		963 (2021).
1069	44.	Vujkovic, M., et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular
1070		outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet 52, 680-
1071		691 (2020).
1072	45.	Kember, R.L., et al. Phenome-wide Association Analysis of Substance Use Disorders in a Deeply
1073		Phenotyped Sample. <i>Biol Psychiatry</i> , Aug 18:S0006-3223(0022)01515-01513. doi:
1074		01510.01016/j.biopsych.02022.01508.01010. Epub ahead of print. PMID: 36273948. (2022).
1075	46.	Zhou, H., et al. Association of OPRM1 Functional Coding Variant With Opioid Use Disorder: A
1076		Genome-Wide Association Study. JAMA Psychiatry 77 , 1072-1080 (2020).
1077	47.	Deak, J.D., et al. Genome-wide association study in individuals of European and African ancestry
1078		and multi-trait analysis of opioid use disorder identifies 19 independent genome-wide significant
1079		risk loci. <i>Mol Psychiatry</i> 27 , 3970-3979 (2022).
1080	48.	Schwantes-An, T.H., et al. Association of the OPRM1 Variant rs1799971 (A118G) with Non-
1081		Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of
1082		European-Ancestry Cohorts. <i>Behav Genet 46,</i> 151-169 (2016).
1083	49.	Notaras, M., Hill, R. & van den Buuse, M. The BDNF gene Val66Met polymorphism as a modifier
1084		of psychiatric disorder susceptibility: progress and controversy. <i>Mol Psychiatry</i> 20, 916-930
1085		(2015).
1086	50.	Karlsson Linner, R., et al. Multivariate analysis of 1.5 million people identifies genetic
1087		associations with traits related to self-regulation and addiction. Nat Neurosci 24, 1367-1376
1088		(2021).
1089	51.	Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108
1090		schizophrenia-associated genetic loci. Nature 511 , 421-427 (2014).
1091	52.	Mealer, R.G., et al. The schizophrenia risk locus in SLC39A8 alters brain metal transport and
1092		plasma glycosylation. Sci Rep 10, 13162 (2020).
1093	53.	Mealer, R.G., et al. Glycobiology and schizophrenia: a biological hypothesis emerging from
1094		genomic research. <i>Mol Psychiatry</i> 25 , 3129-3139 (2020).
1095	54.	Amit, Z. & Smith, B.R. A multi-dimensional examination of the positive reinforcing properties of
1096		acetaldehyde. <i>Alcohol</i> 2 , 367-370 (1985).
1097	55.	Mews, P., et al. Alcohol metabolism contributes to brain histone acetylation. Nature 574, 717-
1098		721 (2019).
1099	56.	Pandey, S.C., Ugale, R., Zhang, H., Tang, L. & Prakash, A. Brain chromatin remodeling: a novel
1100		mechanism of alcoholism. <i>J Neurosci</i> 28 , 3729-3737 (2008).
1101	57.	Carlsson, C. & Gullberg, B. A double blind study with melperone and placebo in the treatment of
1102		chronic alcoholics. <i>Int J Clin Pharmacol Biopharm</i> 16 , 331-332 (1978).
1103	58.	Carlsson, C., Gullberg, B., Hostery, U. & Christensson, E. A double-blind study of melperone and
1104		placebo in hospitalized chronic alcoholics in postintoxication phase. Int J Clin Pharmacol
1105		Biopharm 17 , 341-345 (1979).
1106	59.	Farokhnia, M. <i>, et al.</i> Spironolactone as a potential new pharmacotherapy for alcohol use
1107		disorder: convergent evidence from rodent and human studies. <i>Mol Psychiatry</i> 27, 4642-4652
1108		(2022).

1109	60.	Sychla, H., Grunder, G. & Lammertz, S.E. Comparison of Clomethiazole and Diazepam in the
1110		Treatment of Alcohol Withdrawal Syndrome in Clinical Practice. <i>Eur Addict Res</i> 23, 211-218
1111		(2017).
1112	61.	Hunter-Zinck, H., et al. Genotyping Array Design and Data Quality Control in the Million Veteran
1113		Program. <i>Am J Hum Genet</i> 106 , 535-548 (2020).
1114	62.	Price, A.L., et al. Principal components analysis corrects for stratification in genome-wide
1115		association studies. <i>Nat Genet</i> 38 , 904-909 (2006).
1116	63.	Galinsky, K.J., et al. Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B
1117		in Europe and East Asia. <i>Am J Hum Genet 98,</i> 456-472 (2016).
1118	64.	1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526,
1119		68-74 (2015).
1120	65.	Delaneau, O., Zagury, J.F., Robinson, M.R., Marchini, J.L. & Dermitzakis, E.T. Accurate, scalable
1121		and integrative haplotype estimation. <i>Nat Commun</i> 10 , 5436 (2019).
1122	66.	Das, S., et al. Next-generation genotype imputation service and methods. Nat Genet 48, 1284-
1123		1287 (2016).
1124	67.	Loh, P.R., Kichaev, G., Gazal, S., Schoech, A.P. & Price, A.L. Mixed-model association for biobank-
1125		scale datasets. <i>Nat Genet 50,</i> 906-908 (2018).
1126	68.	Zhou, W., et al. Efficiently controlling for case-control imbalance and sample relatedness in
1127		large-scale genetic association studies. <i>Nat Genet</i> 50 , 1335-1341 (2018).
1128	69.	Lam, M., et al. RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics 36, 930-933
1129		(2020).
1130	70.	Demontis, D., et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic
1131		architecture and implicate several cognitive domains. <i>medRxiv</i>
1132		https://doi.org/10.1101/2022.02.14.22270780, 2022.2002.2014.22270780 (2022).
1133	71.	Chang, C.C., et al. Second-generation PLINK: rising to the challenge of larger and richer datasets.
1134		Gigascience 4 , 7 (2015).
1135	72.	Heath, A.C., et al. A quantitative-trait genome-wide association study of alcoholism risk in the
1136		community: findings and implications. <i>Biol Psychiatry</i> 70 , 513-518 (2011).
1137	73.	Zhou, X. & Stephens, M. Efficient multivariate linear mixed model algorithms for genome-wide
1138		association studies. <i>Nat Methods</i> 11 , 407-409 (2014).
1139	74.	Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide
1140		association scans. Bioinformatics 26, 2190-2191 (2010).
1141	75.	Yang, J., et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies
1142		additional variants influencing complex traits. <i>Nat Genet</i> 44 , 369-375, S361-363 (2012).
1143	76.	International HapMap Consortium, et al. Integrating common and rare genetic variation in
1144		diverse human populations. <i>Nature 467,</i> 52-58 (2010).
1145	77.	Bulik-Sullivan, B.K., et al. LD Score regression distinguishes confounding from polygenicity in
1146		genome-wide association studies. Nat Genet 47 , 291-295 (2015).
1147	78.	Brown, B.C., Asian Genetic Epidemiology Network Type 2 Diabetes, C., Ye, C.J., Price, A.L. &
1148		Zaitlen, N. Transethnic Genetic-Correlation Estimates from Summary Statistics. Am J Hum Genet
1149		99 , 76-88 (2016).
1150	79.	LaPierre, N., et al. Identifying causal variants by fine mapping across multiple studies. PLoS
1151		genetics 17 , e1009733 (2021).
1152	80.	GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204-
1153		213 (2017).
1154	81.	Laakso, M., et al. The Metabolic Syndrome in Men study: a resource for studies of metabolic and
1155		cardiovascular diseases. <i>J Lipid Res</i> 58 , 481-493 (2017).

1156	82.	Ligthart, L., et al. The Netherlands Twin Register: Longitudinal Research Based on Twin and
1157		Twin-Family Designs. <i>Twin Res Hum Genet</i> 22 , 623-636 (2019).
1158	83.	Turpeinen, H., et al. A genome-wide expression quantitative trait loci analysis of proprotein
1159		convertase subtilisin/kexin enzymes identifies a novel regulatory gene variant for FURIN
1160		expression and blood pressure. <i>Hum Genet</i> 134 , 627-636 (2015).
1161	84.	Hoffman, G.E., et al. CommonMind Consortium provides transcriptomic and epigenomic data for
1162		Schizophrenia and Bipolar Disorder. <i>Sci Data</i> 6 , 180 (2019).
1163	85.	Subramanian, A., et al. A Next Generation Connectivity Map: L1000 Platform and the First
1164		1,000,000 Profiles. <i>Cell</i> 171 , 1437-1452 e1417 (2017).
1165	86.	So, H.C., et al. Analysis of genome-wide association data highlights candidates for drug
1166		repositioning in psychiatry. Nat Neurosci 20 , 1342-1349 (2017).
1167	87.	Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical
1168		Software 36(3), 1–48 (2010).
1169	88.	Ge, T., Chen, C.Y., Ni, Y., Feng, Y.A. & Smoller, J.W. Polygenic prediction via Bayesian regression
1170		and continuous shrinkage priors. <i>Nat Commun</i> 10 , 1776 (2019).
1171	89.	Bulik-Sullivan, B., et al. An atlas of genetic correlations across human diseases and traits. Nat
1172		Genet 47 , 1236-1241 (2015).
1173	90.	Luo, Y., et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed
1174		populations. <i>Hum Mol Genet</i> 30 , 1521-1534 (2021).
1175	91.	Boutin, N.T., et al. The Evolution of a Large Biobank at Mass General Brigham. J Pers Med
1176		12 (2022).
1177	92.	Verma, A., et al. The Penn Medicine BioBank: Towards a Genomics-Enabled Learning Healthcare
1178		System to Accelerate Precision Medicine in a Diverse Population. <i>J Pers Med</i> 12 (2022).
1179	93.	Abraham, G., Qiu, Y. & Inouye, M. FlashPCA2: principal component analysis of Biobank-scale
1180		genotype datasets. <i>Bioinformatics</i> 33 , 2776-2778 (2017).
1181	94.	Loh, P.R., et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat
1182		Genet 48 , 1443-1448 (2016).
1183	95.	Denny, J.C., et al. Systematic comparison of phenome-wide association study of electronic
1184		medical record data and genome-wide association study data. Nature biotechnology 31 , 1102-
1185		1110 (2013).