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Abstract 94 

Problematic alcohol use (PAU) is a leading cause of death and disability worldwide. To improve 95 

our understanding of the genetics of PAU, we conducted a large cross-ancestry meta-analysis 96 

of PAU in 1,079,947 individuals. We observed a high degree of cross-ancestral similarity in the 97 

genetic architecture of PAU and identified 110 independent risk variants in within- and cross-98 

ancestry analyses. Cross-ancestry fine-mapping improved the identification of likely causal 99 

variants. Prioritizing genes through gene expression and/or chromatin interaction in brain 100 

tissues identified multiple genes associated with PAU. We identified existing medications for 101 

potential pharmacological studies by drug repurposing analysis. Cross-ancestry polygenic risk 102 

scores (PRS) showed better performance in independent sample than single-ancestry PRS. 103 

Genetic correlations between PAU and other traits were observed in multiple ancestries, with 104 

other substance use traits having the highest correlations. The analysis of diverse ancestries 105 

contributed significantly to the findings, and fills an important gap in the literature. 106 
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Introduction 107 

 Alcohol use disorder (AUD) is a chronic relapsing disease associated with a host of 108 

adverse medical, psychiatric, and social consequences1. Given observed heritability (h2~50%2), 109 

there has been substantial progress made in genome-wide association studies (GWAS) of AUD 110 

and problematic drinking3-9, and also for measures of alcohol consumption10,11. A prior GWAS of 111 

problematic alcohol use (PAU, a phenotype based on a meta-analysis of highly genetically 112 

correlated (genetic correlations >0.7) AUD7, alcohol dependence [AD]5, and AUDIT-P [Alcohol 113 

Use Disorders Identification Test-Problem score, a measure of problematic drinking]4,12, 114 

N=435,563) identified 29�independent risk variants, predominantly in European (EUR) ancestry 115 

subjects6. Consistent with genetic studies of other complex traits, and the high polygenicity of 116 

PAU, larger and more ancestrally-representative samples need to be examined to outline the 117 

genetic architecture of these alcohol use traits. 118 

 119 

A key finding from recent studies is that both AUD and AUDIT-P differ phenotypically 120 

and genetically from typical alcohol consumption4,7. AUD and AUDIT-P index aspects of 121 

disordered alcohol intake and correlate with genetic liability to negative psychiatric and 122 

psychosocial factors (e.g., higher major depressive disorder [MDD], lower educational 123 

attainment). An item-level study of the AUDIT questionnaire confirmed a two-factor structure at 124 

the genetic level, underscoring unique genetic influences on alcohol consumption and alcohol-125 

related problems13 and noted that the genetics of drinking frequency were confounded by socio-126 

economic status. A similar pattern – genetic distinctions between substance use disorder (SUD) 127 

vs. non-dependent use – has also been observed for cannabis use disorder and cannabis use14. 128 

Furthermore, aggregating across multiple substance use disorders suggests that problematic 129 

and disordered substance use has a unique genetic architecture that, while shared across 130 

SUDs, does not overlap fully with non-dependent substance use per se15. 131 
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Notwithstanding prior discovery of multiple genome-wide significant (GWS) loci for PAU, 132 

there are major gaps in our understanding of its genetic underpinnings. First, the estimated 133 

single-nucleotide polymorphism (SNP)-based heritability (h2) of AUD and PAU ranges from 5.6% 134 

to 10.0%4-7, reflecting substantial “missing heritability” compared to estimates based on genetic 135 

epidemiology, which show ~50% heritability2. Second, most of the available samples used in 136 

human genetic studies – including for AUD – are of EUR ancestry; lack of ancestral diversity is 137 

a major problem both for understanding the genetics of these traits, and for potential 138 

applications of these genetic discoveries to global populations16. Our previous study in the 139 

Million Veteran Program (MVP) analyzed AUD in multiple ancestral groups7. However, non-EUR 140 

samples (N=72,387) were far smaller than EUR samples (N=202,004), resulting in inadequate 141 

statistical power and unbalanced gene discovery across ancestral backgrounds, which limits our 142 

understanding of the genetic architecture underlying the trait across populations. 143 

 144 

To improve our understanding of the biology of PAU in multiple populations, we 145 

conducted substantially larger ancestry-specific GWAS of PAU followed by a cross-ancestry 146 

meta-analysis in 1,079,947 individuals from multiple cohorts. We identified 85 independent risk 147 

variants in EUR participants (almost tripling the number identified in previous studies) and 110 148 

in the within-ancestry and cross-ancestry meta-analyses. We investigated the shared genetic 149 

architectures of PAU across different ancestries, performed fine-mapping for causal variants by 150 

combining information from multiple ancestries, and tested cross-ancestry polygenic risk score 151 

(PRS) associations with AUDIT-P in the UK Biobank (UKB) samples17. We combined genes 152 

identified by gene-based association analysis, transcriptome-wide association analysis (TWAS) 153 

and brain-chromatin interaction analysis, found dozens of genes linking to brain with convergent 154 

evidence. Drug repurposing analysis identified potential medications for further pharmacological 155 

studies, bringing forward the hope of novel biologically-directed medications strategies with the 156 
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further potential of personalization. We conducted phenome-wide PRS analyses in biobanks 157 

from the PsycheMERGE Network18 in AFR and EUR-ancestry samples. We tested the genetic 158 

correlation between PAU and other traits, especially novel with respect to AFR samples where 159 

such analyses could not be conducted previously. These findings substantially augment the 160 

number of loci that contribute to risk of PAU, increasing power to investigate the causal 161 

relationships of PAU with other diseases, and identify novel druggable targets whose 162 

therapeutic potential requires empirical evaluation. 163 

 164 

Results 165 

Ancestrally diverse data collection. We collected newly genotyped subjects (most from MVP) 166 

and previously published data from multiple cohorts (MVP19, FinnGen20, UKB17, Psychiatric 167 

Genomics Consortium (PGC)5, iPSYCH21,22, Queensland Berghofer Medical Research Institute 168 

(QIMR) cohorts23-25, Yale-Penn 326, and East Asian cohorts27) resulting in a total of 1,079,947 169 

subjects (Table 1). Five ancestral groups were analyzed (Figure 1a): EUR (N=903,147), AFR 170 

(N=122,571), Latin American (LA, N=38,962), East Asian (EAS, N=13,551, all published in ref. 171 

27), and South Asian (SAS, N=1,716). As in our previous study6, we utilized data on 172 

International Classification of Diseases (ICD)-diagnosed AUD (Ncase=136,182; Ncontrol=692,594), 173 

DSM-IV AD (Ncase=29,770; Ncontrol=70,282) and AUDIT-P (N=151,119), together defined as 174 

problematic alcohol use (PAU; based on high genetic correlations across these measures). The 175 

total number of AUD and AD cases was 165,952, almost double the 85,391 cases in the 176 

previously largest study28. 177 

 178 

Figure 1. Genetic architecture of problematic alcohol use (PAU). a, Sample sizes in 179 

different ancestral groups. b, Relationship between sample size and number of independent 180 
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variants identified. Kranzler et al., 2019: cross-ancestry meta-analysis for AUD; Zhou et al., 181 

2020: PAU in EUR. c, Lookup for cross-ancestry replication in AFR for the 85 independent 182 

variants in EUR meta-analysis. Of the 85 variants, 76 could be analyzed in AFR (see Methods). 183 

Sign test was performed for the number of variants with same direction of effect (64/76, 184 

p=1.0×10-9). 23 variants were nominally significant in AFR and 6 were significant after multiple 185 

correction (p<0.05/76). d, Observed-scale and liability-scale SNP-based heritability (h2) in 186 

multiple ancestries. e, Cross-ancestry genetic-effect correlation (ρge) and genetic-impact 187 

correlation (ρgi) between EUR, AFR and LA ancestries. Error bar is the 95% confidence interval. 188 

f, Genome-wide association results for PAU in the cross-ancestry meta-analysis. Red line is 189 

significance threshold of 5×10-8. EUR, European; AFR, African; LA, Latin American; EAS, East 190 

Asian; SAS, South Asian; GWS, genome-wide significant. 191 

 192 

 193 

Table 1. Demographics for cohorts in the meta-analysis of PAU. Cohorts are described in 194 
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the Methods. UKB-EUR1: genetically defined White-British by UK Biobank; UKB-EUR2: 195 

genetically defined European non-White-British participants (see Methods); AGDS, the 196 

Australian Genetics of Depression Study; TWINS, the Australian twin-family study of alcohol use 197 

disorder; GBP, the Australian Genetics of Bipolar Disorder Study; iPSYCH1, phase 1 of iPSYCH; 198 

iPSYCH2, phase 2 of iPSYCH; YP3, Yale-Penn 3; Neffective, effective sample size; Thai, study of 199 

the genetics of methamphetamine dependence in Thailand; GSA, Illumina Global Screening 200 

Array; MEGA, Illumina Multi-Ethnic Global Array; Cyto, Illumina Cyto12 array. 201 

Cohorts Traits Ncase Ncontrol Ntotal Nfemale (%) Neffective Refa 

European ancestry (EUR) 
MVP AUD 80,028 368,113 448,141 33,345 (7.4) 262,947 [6] and new 
FinnGen AUD 8,866 209,926 218,792 123,579 (56.5) 34,027 Newb 

UKB-EUR1 AUDIT-P - - 132,001 74,113 (56.1) 132,001 [6] and new 
UKB-EUR2 AUDIT-P - - 17,898 10,529 (58.5) 17,898 New 
PGC AD 9,938 30,992 40,930 20,933 (51.1) 23,075 [5]d 

QIMR_AGDS AD 6,726 4,467 11,193 8,605 (76.9) 10,737 New 
QIMR_TWINS AD 2,772 5,630 8,402 4,922 (58.6) 7,430 [5] and new 
QIMR_GBP AD 1,287 751 2,038 1,435 (70.4) 1,897 New 
iPSYCH1 AD 2,117 13,238 15,355 8,077 (52.6) 7,301 New 
iPSYCH2 AD 1,024 5,732 6,756 3,607 (53.4) 3,475 New 
YP3 AD 567 1,074 1,641 854 (52.0) 1,484 New 
Sub_total PAU 113,325 639,923 903,147 289,999 (32.1) 502,272  

African ancestry (AFR) 

MVP AUD 36,330 79,100 115,430 16,084 (13.9) 99,583 [7] and new 
PGC AD 3,335 2,945 6,280 3,124 (49.7) 4,991 [5] 
YP3 AD 451 410 861 430 (50.0) 959 New 
Sub_total AUD 40,116 82,455 122,571 19,638 (16.0) 105,433  

Latin American ancestry (LA) 
MVP AUD 10,150 28,812 38,962 3,731 (9.6) 30,023 [7] and new 

East Asiana ancestry (EAS) 

MVP AUD 701 6,254 6,955 747 (10.7) 2,521 [27] 
Han Chinese–GSA AD 533 2,848 3,381 1,012 (29.9) 1,796 
Thai METH–MEGA AD 794 1,576 2,370 1,008 (42.5) 2,112 
Thai METH–GSA AD 127 405 532 263 (49.4) 387 
Han Chinese–Cyto AD 99 214 313 0 (0) 271 
Sub_total AUD 2,254 11,297 13,551 3,030 (22.4) 7,087 

South Asian ancestry (SAS) 
MVP AUD 107 389 496 67 (13.5) 336 [7] and new 
UKB-SAS AUDIT-P - - 1,220 535 (43.9) 1,220 New 
Sub_total PAU 107 389 1,716 602 (35.1) 1,556  

  
Total PAU 165,952 762,876 1,079,947 317,000 (29.4) 646,371  
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Note: adata either published in previous alcohol GWAS or newly included for this project. 202 
bFinnGen summary statistics were downloaded from FinnGen data freeze v5 203 

(https://r5.finngen.fi/). cIncluded related subjects from UKB. dReran the PGC AD GWAS in EUR 204 

excluding two Australian cohorts. 205 

 206 

Genome-wide association results for PAU. We performed GWAS and within-ancestry meta-207 

analyses for PAU in five ancestral groups and then completed a cross-ancestry meta-analysis. 208 

In the EUR meta-analysis, 113,325 cases of AUD/AD, 639,923 controls and 149,899 209 

participants with AUDIT-P scores were analyzed (Supplementary Figure 1a). After conditional 210 

analysis, 85 independent variants at 75 loci reached GWS (Methods, Supplementary Table 1) 211 

(see also Figure 1b). Of these variants, 41 are in protein-coding genes; of these, 5 are missense 212 

variants (GCKR*rs1260326; ADH1B*rs75967634; ADH1B*rs1229984; SCL39A8*rs13107325; 213 

BDNF*rs6265). 214 

 215 

 Due to the smaller sample numbers, the non-EUR GWAS yielded fewer variants 216 

associated with PAU than did the EUR GWAS (Supplementary Table 1). The AFR meta-217 

analysis found two independent ADH1B missense variants (rs1229984 and rs2066702) 218 

associated with AUD (Figure 1b, Supplementary Figure 1b); these were reported previously7,26. 219 

In the LA samples from MVP, only ADH1B*rs1229984 (lead SNP) was identified 220 

(Supplementary Figure 1c). Two independent risk variants, ADH1B*rs1229984 and 221 

BRAP*rs3782886, were reported in EAS previously27,29. In the small SAS meta-analysis, one 222 

intergenic variant (rs12677811) was associated with AUD; however, this SNP was present only 223 

in the UKB (Supplementary Figure 1d). 224 

 225 

 Of the 85 lead variants identified in the EUR GWAS, 76 were either directly analyzed or 226 

had proxy variants in AFR (Methods, Supplementary Table 2, Figure 1c), 64 of which had the 227 
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same direction of effect (sign test p=1.00×10-9). Of these, 23 were nominally associated (p<0.05) 228 

and 6 were significantly associated with AUD after multiple-testing correction (p<6.58×10-4). In 229 

LA, 15 of the EUR GWS variants were nominally significant (p<0.05) and 2 were significantly 230 

associated with AUD (rs12048727 and rs1229984). In EAS, 5 variants were nominally 231 

significant and two were significantly associated with AUD (rs1229984 and rs10032906). Only 232 

two variants were nominally associated with PAU in SAS (rs1229984 was not present in SAS). 233 

 234 

 We estimated the SNP-based heritability (h2) for PAU and AUD (excluding AUDIT-P 235 

from UKB) in EUR, AFR and LA; significant h2 estimates (range from 0.066 to 0.127) were 236 

observed (Figure 1d, Supplementary Table 3). 237 

 238 

 High genetic correlations were observed across the EUR, AFR, and LA ancestries 239 

(Figure 1e, Supplementary Table 4). The genetic-effect correlation (ρge) is 0.71 (SE=0.09, 240 

p=6.16×10-17) between EUR and AFR, 0.85 (SE=0.09, p=3.14×10-22) between EUR and LA, and 241 

0.88 (SE=0.18, p=1.58×10-6) between AFR and LA. The genetic-impact correlation (ρgi) is 0.67 242 

(SE=0.07, p=2.78×10-21) between EUR and AFR, 0.86 (SE=0.09, p=3.52×10-20) between EUR 243 

and LA, and 0.72 (SE=0.16, p=9.63×10-6) between AFR and LA. The estimates involving 244 

smaller study populations were not robust (Bonferroni p>0.05). 245 

 246 

 In the cross-ancestry meta-analysis of all available datasets, we identified 100 247 

independent variants at 90 loci (Figure 1f, Supplementary Table 1); 80 are novel findings for 248 

PAU. Of these, 53 variants were located in protein-coding genes, of which 9 are missense 249 

variants: GCKR*rs1260326; ADH1B*rs75967634, rs1229984, and rs2066702; 250 

SCL39A8*rs13107325; OPRM1*rs1799971; SLC25A37*rs2942194; BDNF*rs6265; and 251 
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BRAP*rs3782886. The cross-ancestry meta-analysis identified 24 more risk variants than the 252 

EUR meta-analysis, but 9 EUR variants fell below GWS (p-values ranging from 5.26×10-6 to 253 

9.84×10-8). In total, 110 unique variants were associated with PAU in either the within-ancestry 254 

or cross-ancestry analyses (Figure 1b, Supplementary Table 1). 255 

 256 

Within- and cross-ancestry causal variant fine-mapping. We performed within-ancestry fine-257 

mapping for the 85 clumped regions with independent lead variants in EUR (Supplementary 258 

Tables 5 and 6). A median number of 115 SNPs were included in each region to estimate the 259 

credible sets with 99% posterior inclusion probability (PIP) of causal variants. After fine-mapping, 260 

the median number of SNPs constituting the credible sets was reduced to 20. Among the 85 261 

regions, there were 5 credible sets that include only a single variant with PIP ≥99% (presumably 262 

indicating successful identification of specific causal variants): rs1260326 in GCKR, rs472140 263 

and rs1229984 in ADH1B, rs2699453 (intergenic), and rs2098112 (intergenic). Another 19 264 

credible sets contained ≤5 variants (Figure 2a). 265 

 266 

Figure 2. Fine-mapping for PAU. a, Fine-mapping of causal variants in 85 regions in EUR. b, 267 

92 regions in cross-ancestry analysis were fine-mapped and a direct comparison was done for 268 

these regions in EUR. c, Comparison for the highest PIPs from cross-ancestry and EUR-only 269 

fine-mapping in the 92 regions. Red dots are the regions fine-mapped across EUR, AFR, and 270 

LA; blue dots are the regions fine-mapped across EUR and AFR; green dots are the regions 271 

fine-mapped across EUR and LA; black dots are the regions only fine-mapped in EUR. FM, fine-272 

mapping. 273 
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 274 

 275 

We performed cross-ancestry fine-mapping to identify credible sets with 99% PIP for 276 

causal variants proximate to 92 independent lead variants in the cross-ancestry meta-analysis 277 

(Supplementary Tables 7 and 8). The median number of SNPs in the credible sets was 9. 13 278 

credible sets contain only a single variant with PIP ≥99%; 47 credible sets contain ≤5 variants 279 

(Figure 2b). For example, fine-mapping the region proximate to lead SNP rs12354219 (which 280 

maps to DYPD on chromosome 1) identified rs7531138 as the most likely potential causal 281 

variant (PIP=48%), although this variant and rs12354219 (PIP=11%) are in high linkage 282 

disequilibrium (LD) in different populations (r2 ranges from 0.76 to 0.99). In a cross-ancestry 283 

meta-analysis rs7531138 showed significant association with schizophrenia (p=1.04×10-8), but 284 

rs12354219 (p=6.18×10-8) did not30 (although the two p-values were very similar). rs7531138 is 285 

also a lead SNP associated with educational attainment (p=1.74×10-11), unlike rs12354219 286 

(p>5×10-8)31. 287 
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 288 

To compare within- and cross-ancestry fine-mapping, we performed fine-mapping for the 289 

above 92 regions using the same SNP sets and EUR-only LD information (Figure 2b & 2c). The 290 

median number of SNPs in the credible sets is 13, with 7 credible sets containing a single 291 

variant and 26 containing ≤5 variants, indicating that cross-ancestry fine-mapping improved 292 

causal variant identification, consistent with other studies reporting improved fine-mapping by 293 

including other ancestries11. 294 

 295 

Gene-based association analysis. We used MAGMA32,33 to perform gene-based association 296 

analyses. 130 genes in EUR, 9 in AFR and 6 in LA (for AFR and LA populations, all mapped to 297 

the ADH gene cluster), and 7 in EAS (mapped to either the ADH gene cluster or the ALDH2 298 

region27) were associated with PAU or AUD (Supplementary Table 9). There were no significant 299 

findings in SAS. 300 

 301 

Transcriptome-wide association analyses (TWAS). We used S-PrediXcan34 to identify 302 

predicted gene expression associations with PAU in 13 brain tissues35. 426 significant gene-303 

tissue associations were identified, representing 89 unique genes (Supplementary Table 10). 304 

Five genes showed associations with PAU in all available brain tissues, including AMT 305 

(Aminomethyltransferase), YPEL3 (Yippee Like 3), EVI2A (Ecotropic Viral Integration Site 2A), 306 

EVI2B (Ecotropic Viral Integration Site 2B), and CTA-223H9.9 (lncRNA). We also observed 307 

associations between PAU and the expression of alcohol dehydrogenase genes (ADH1B in the 308 

putamen (basal ganglia), ADH1C in 10 brain tissues, and ADH5 in cerebellar hemisphere and 309 

cerebellum). Among the brain tissues, caudate (basal ganglia) had the most genes whose 310 

expression was associated with PAU (42 genes), followed by the putamen (basal ganglia) (39 311 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

genes). TWAS that integrated evidence across 13 brain tissues using S-MultiXcan36 to test joint 312 

effects of gene expression variation identified 121 genes (81 shared with S-PrediXcan) whose 313 

expression was associated with PAU (Supplementary Table 11). 314 

 315 

Linking risk genes to brain chromatin interaction. We used H-MAGMA37 to implicate risk 316 

genes associated with PAU by incorporating brain chromatin interaction profiles. 1,030 gene-317 

chromatin associations were identified in 6 brain Hi-C annotations, representing 401 unique 318 

genes (Supplementary Table 12). 58 genes showed association with chromatin interaction in all 319 

6 annotations, including ADH1B, ADH1C, DRD2, EVI2A and others that also showed evidence 320 

by TWAS in brain tissues. 321 

 322 

Convergent evidence linking association to brain. We examined overlapped genes by both 323 

gene-based association analysis and TWAS in brain tissues and/or H-MAGMA analysis using 324 

Hi-C brain annotations. Among the 130 genes associated with PAU in EUR, 60 were also 325 

implicated by TWAS findings either by single brain tissue (S-PrediXcan) or across brain tissues 326 

(S-MultiXcan), 82 have evidence of brain chromatin interaction, and 38 have evidence from both 327 

TWAS and Hi-C annotations including ADH1B, DRD2, KLB and others (Supplementary Table 9). 328 

 329 

Probabilistic fine-mapping of TWAS. We performed fine-mapping for TWAS using FOCUS38, 330 

a method that estimates credible gene sets predicted to include the causal gene that can be 331 

prioritized for functional assays. We detected 53 credible sets at a nominal confidence level (set 332 

at 90% PIP). These contained 145 gene-tissue associations with an average PIP of 32% 333 

(Supplementary Table 13). For the 19 gene-tissue associations having PIP >90%, 9 are from 334 

brain tissues (e.g., ZNF184 expression in hypothalamus (PIP=0.94%), MTCH2 expression in 335 
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nucleus accumbens (basal ganglia) (PIP=99%), SLC4A8 expression in dorsolateral prefrontal 336 

cortex (PIP=98%), YPEL3 expression in cerebellum (PIP=100%), and CHD9 expression in 337 

dorsolateral prefrontal cortex (PIP=100%). 338 

 339 

Drug repurposing. Independent genetic signals from the cross-ancestry meta-analysis were 340 

searched in OpenTargets.org39 for druggability and medication target status based on nearest 341 

genes. Among them, OPRM1 implicated naltrexone and GABRA4 implicated acamprosate, both 342 

current treatments for AUD. Additionally, the genes DRD2, CACNA1C, DPYD, PDE4B, KLB, 343 

BRD3, NCAM1, FTOP, and MAPT, were identified as druggable genes. 344 

 345 

From the drug repurposing analysis using S-PrediXcan results, 287 compounds were 346 

significantly correlated with the transcriptional pattern associated with risk for PAU 347 

(Supplementary Table 14). Of these 287, 141 medications were anti-correlated with the 348 

transcriptional pattern. Of those, trichostatin-a (p=3.29×10-35), melperone (p=6.88×10-11), 349 

triflupromazine (p=7.37×10-10), spironolactone (p=2.45×10-9), amlodipine (p=1.42×10-6) and 350 

clomethiazole (p=1.30×10-5) reversed the transcriptional profile associated with increased PAU 351 

risk, targeted a gene near an independent significant locus in the cross-ancestry GWAS. 352 

 353 

Cross-ancestry polygenic risk score association. We tested the cross-ancestry PRS 354 

association with AUDIT-P in UKB using AUD summary data from EUR (leaving out the UKB 355 

AUDIT-P data), AFR, and LA. PRS-CSx was applied to calculate the posterior effect sizes for 356 

each SNP by leveraging LD diversity across discovery samples40. We validated the PRS 357 

associations with AUDIT-P in UKB-EUR2 and tested them in UKB-EUR1 (see Table 1). In the 358 

UKB-EUR1 samples, EUR-based AUD PRS is significantly associated with AUDIT-P (Z-359 
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score=11.6, p=3.14×10-31, ΔR2=0.11%). By incorporating GWAS data from multiple ancestries, 360 

the AUD PRS is more significantly associated with AUDIT-P and explains more variance (Z-361 

score=13.6, p=2.44×10-42, ΔR2=0.15%) than the single ancestry AUD PRS. 362 

 363 

Genetic correlations. We confirmed significant positive genetic correlations (rg) in EUR 364 

between PAU and substance use and psychiatric traits6 (Supplementary Table 15). AD5 showed 365 

the highest correlation with PAU (rg=0.85, SE=0.07, p=4.49×10-34), followed by maximum 366 

habitual alcohol intake9 (rg=0.79, SE=0.03, p=1.24×10-191), opioid use disorder41 (rg=0.78, 367 

SE=0.04, p=1.20×10-111), drinks per week11 (rg=0.76, SE=0.02, p<1×10-200), smoking trajectory42 368 

(rg=0.63, SE=0.02, p=2.47×10-176), and cannabis use disorder14 (rg=0.61, SE=0.04, p=4.85×10-
369 

63). We next tested rg between AUD and 13 published traits with large GWAS in AFR (Figure 3, 370 

Supplementary Table 16). As in EUR, the traits with the strongest correlations were substance 371 

use traits. Maximum habitual alcohol intake9 (rg=0.67, SE=0.15, p=8.13×10-6) showed the 372 

highest correlation with AUD, followed by opioid use disorder41 (rg=0.62, SE=0.10, p=6.70×10-10), 373 

and smoking trajectory42 (rg=0.57, SE=0.08, p=3.64×10-4). Major depressive disorder43 and 374 

smoking initiation11 showed nominally significant (p<0.05) positive correlation with AUD and type 375 

2 diabetes44 showed a nominally significant negative correlation. 376 

 377 

Figure 3. Genetic correlations between AUD and traits in AFR. totalPCL, total index of 378 

recent symptom severity by PTSD checklist for DSM-IV. Traits labeled in bold font are 379 

genetically correlated with AUD after Bonferroni correction (p<3.83×10-3). Error bar is 95% 380 

confidence interval. 381 
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 382 

 383 

PRS for phenome-wide associations. We calculated PRS for PAU (based on the meta-384 

analysis of PAU in EUR) in 131,500 individuals of European ancestry, PRS for AUD (based on 385 

the meta-analysis of AUD in AFR) in 27,494 individuals of African ancestry in 4 biobanks 386 

(Vanderbilt University Medical Center BioVU, Penn Medicine BioBank, Mount Sinai Icahn 387 

School of Medicine BioMe™, and Mass General Brigham Biobank) from the PsycheMERGE 388 

Network, and conducted phenome-wide association studies (PheWAS). After Bonferroni 389 

correction, 58 of the 1,493 tested phenotypes were significantly associated with the PAU PRS in 390 

EUR, including 26 mental disorders, 8 respiratory traits, 5 neurological conditions, 4 infectious 391 

diseases, and 4 neoplasms (Supplementary Table 17, Supplementary Figure 2). For the 793 392 

phenotypes tested in AFR, alcoholism (OR=1.25, SE=0.04, p=2.62×10-7), alcohol-related 393 

disorders (OR=1.21, SE=0.04, p=4.11×10-7), and tobacco use disorder (OR=1.09, SE=0.02, 394 

p=6.98×10-6) showed significant association with AUD PRS (Supplementary Table 18, 395 

Supplementary Figure 3). 396 

 397 

 We also conducted PheWAS in Yale-Penn, a deeply phenotyped cohort with 398 

comprehensive psychiatric assessments (substance use disorders [SUDs] and psychiatric 399 

disorders) and assessments for physical and psychosocial traits26,45. In EUR, the PRS of PAU 400 
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was associated with 123 traits, including 26 in alcohol, 39 in opioid, 24 in cocaine and 17 in 401 

tobacco categories (Supplementary Table 19, Supplementary Figure 4), indicating high 402 

comorbidity and shared genetic components across SUDs. In AFR, the AUD PRS was 403 

associated with the DSM-5 AUD criterion count, alcohol-induced blackouts, frequency of alcohol 404 

use, and 3 individual AUD criteria: unsuccessful effort to decrease use, used more than 405 

intended, and continued use despite social/interpersonal problems (Supplementary Table 20, 406 

Supplementary Figure 5). 407 

 408 

Discussion 409 

We report here the largest multi-ancestry GWAS for PAU to date, comprising over 1 410 

million individuals and including 165,952 AUD/AD cases, more than double the largest previous 411 

study28. Considering the results from this study and previous GWAS, in all ancestral populations, 412 

we observed a nearly linear relationship between sample size and the number of risk variants 413 

discovered. 414 

Convergent evidence supports substantial shared genetic architecture for PAU across 415 

multiple ancestries. First, of the 76 independent risk variants detected in EUR and represented 416 

in other populations, the majority have the same direction of effect in AFR (84.2%) and LA 417 

(81.6%). Twenty-three variants (30.3%) in AFR and 15 (19.7%) in LA were nominally replicated 418 

(p<=0.05), which is considerable given the appreciably lower sample size of these ancestral 419 

groups. Second, there are high cross-ancestry genetic correlations among EUR, AFR, and LA, 420 

ranging from 0.71 (between EUR and AFR) to 0.88 (between AFR and LA). Third, cross-421 

ancestry meta-analysis substantially improved the power for gene discovery and resulted in the 422 

identification of 24 additional variants beyond the EUR-only results. 423 

 424 
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A total of 110 variants were associated with PAU in either within-ancestry or cross-425 

ancestry analyses; of these, 9 are missense variants. These include rs1799971 in OPRM1 426 

which encodes the μ opioid receptor, which plays roles in regulating pain, reward, and addictive 427 

behaviors. This variant was also associated with opioid use disorder (OUD) in multiple large 428 

GWAS41,46,47. Previously, there were inconsistent candidate gene association results for 429 

OPRM1*rs1799971 and AUD (reviewed in ref. 48). This is the first GWAS to confirm the 430 

association of rs1799971 in PAU; the risk allele is the same as for OUD. In contrast to an 431 

apparent EUR-specific effect of rs1799971 on OUD, the OPRM1 association with PAU 432 

(p=6.16×10-9) was detected in the cross-ancestry meta-analysis. Further investigation in larger 433 

non-EUR samples is needed to assess the association of this SNP with SUDs in different 434 

population groups. Rs6265 in BDNF (brain-derived neurotrophic factor) encodes a member of 435 

the nerve growth factor family of proteins and has been investigated intensively in the past 436 

decades49; studies showed that this variant is associated with smoking traits10 and externalizing 437 

behavior50. Rs13107325 in SLC39A8 (Solute Carrier Family 39 Member 8) has been associated 438 

with schizophrenia51, substance uses6,7,10 and many glycemic traits, and is critical for 439 

glycosylation pathways52,53. 440 

 441 

 Previous studies have shown that PAU is a brain-related trait with evidence of functional 442 

and heritability enrichment in multiple brain regions6,7. We performed gene-based association, 443 

TWAS in brain tissues, and H-MAGMA analysis in brain annotations. We identified 38 genes 444 

that were supported across multiple levels of analysis. For example, ADH1B expression in 445 

putamen was associated with PAU by TWAS, and with chromatin interaction in all 6 brain 446 

annotations by H-MAGMA, indicating additional potential biological mechanisms for the 447 

association of ADH1B with PAU risk through gene expression and/or chromatin interactions in 448 

brain, potentially independent of the well-known hepatic effect on alcohol metabolism. DRD2 449 
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expression in cerebellar hemisphere and chromatin interaction in all brain annotations were also 450 

associated with PAU risk. Alcohol metabolism, as is well-reported, has affects that modulate 451 

alcohol’s aversive and reinforcing effects54, but also contributes to brain histone acetylation, 452 

gene expression and alcohol-related associative learning in mice55. The detailed molecular 453 

pathways and mechanisms involving changes in human brain need to be elucidated. 454 

 455 

 Independent genetic signals supported the two main AUD pharmacological treatments 456 

acamprosate and naltrexone: GABRA4 is a target of acamprosate while OPRM1 is a target for 457 

naltrexone. We identified genes known to be druggable; our multivariate analysis also provided 458 

evidence for several repurposable drugs. Trichostatin-a, a histone deacetylase inhibitor, showed 459 

effects on H3 and H4 acetylation and neuropeptide Y expression in the amygdala and 460 

prevented the development of alcohol withdrawal-related anxiety in rats56. Clinical trials showed 461 

that melperone, a dopamine and serotonin receptor antagonist, has inconsistent effects on 462 

alcoholic craving57,58. Spironolactone, a mineralocorticoid receptor antagonist, reduced alcohol 463 

use in both rats and humans in a recent study59. Clomethiazole, a GABA receptor antagonist, 464 

also showed effect of treatment for alcohol withdrawal syndrome60. Future clinical trials may use 465 

the evidence from this drug-repurposing analysis to prioritize drugs for further study. 466 

 467 

 PAU was positively genetically correlated with many psychiatric and substance use 468 

disorders and negatively with cognitive performance. Most of our genetic correlations with PAU, 469 

and all those in previous studies, were restricted to EUR populations, presumably because of 470 

insufficient statistical power in other populations. The PheWAS PRS also identified associations 471 

with medical phenotypes in EUR. With increasing number of AFR GWAS now published, mainly 472 

from MVP, we were able to estimate genetic correlations between AUD and a limited set of 473 
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traits in AFR. As in EUR, AUD in AFR was genetically correlated with substance use traits 474 

including OUD, smoking trajectory (which identifies groups of individuals that follow a similar 475 

progression of smoking behavior), and maximum habitual alcohol intake. PheWAS of PRS in 476 

AFR from PsycheMERGE and Yale-Penn confirmed that AUD is genetically correlated with 477 

substance use traits. The lack of a wider set of phenotypes for comparison by ancestry is a 478 

continuing limitation. 479 

 480 

 Additional limitations include that the differences in ascertainment and phenotypic 481 

heterogeneity across cohorts might bias the results. Despite the high genetic correlation 482 

between AUD and AUDIT-P, they are not identical traits. Also, differences in ascertainment 483 

amongst the cohorts may have introduced additional biases; for example, considering the QIMR 484 

AGDS and GBP cohorts, the former have high major depression comorbidity, and the latter 485 

have high bipolar disorder comorbidity. (This heterogeneity would, however, have been more 486 

likely to limit discovery than to create false-positives.) Additionally, while we set out to include all 487 

available samples for problematic drinking in multiple ancestries, the sample sizes in the non-488 

EUR ancestries were still small for gene discoveries and downstream analyses. The collection 489 

of substantial numbers of non-European subjects is a critical next step in this field. 490 

 491 

 In summary, we report here a large multi-ancestry GWAS and meta-analysis for PAU, in 492 

which we focused our analyses in three main directions. First, we demonstrated that there is 493 

substantial shared genetic architecture of PAU across multiple populations. Second, we 494 

analyzed gene prioritization for PAU using multiple approaches, including cross-ancestry fine-495 

mapping, gene-based association, brain-tissue TWAS and fine-mapping, and H-MAGMA for 496 

chromatin interaction. We identified many genes associated with PAU with biological support, 497 
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extending our understanding of the brain biology that substantially modifies PAU risk and 498 

expands opportunities for investigation using in vitro methods and animal models. These genes 499 

are potential actionable targets for downstream functional studies and possible targets of 500 

pharmacological intervention based on the drug repurposing results. Third, we investigated the 501 

genetic relationship between PAU and many traits, which for the first time was possible in AFR 502 

populations. Future increases in sample size will doubtless yield additional gains; this is 503 

particularly needed in non-EUR populations both for primary GWAS analyses and the analysis 504 

of other traits for comparison and to estimate pleiotropy. 505 

 506 

Methods 507 

Study design. In the previous PAU study6, the rg between MVP AUD and PGC alcohol 508 

dependence (AD) was 0.98, which justified the meta-analysis of AUD (includes AUD and AD) 509 

across the two datasets; and the rg between AUD and UKB AUDIT-P was 0.71, which justified 510 

the proxy-phenotype meta-analysis of PAU (including AUD, AD and AUDIT-P) across all 511 

datasets. In this study, we use the same definitions, defining AUD by meta-analyzing AUD and 512 

AD across all datasets, and defining PAU by meta-analyzing AUD, AD and AUDIT-P (Table 1). 513 

 514 

MVP dataset. MVP enrollment and genotyping have been described previously19,61. MVP is a 515 

biobank supported by the US Department of Veterans Affairs (VA) with rich phenotypic data 516 

collected using questionnaires and the VA electronic health record system (EHR). The Central 517 

VA Institutional Review Board (IRB) and site-specific IRBs approved the MVP study. All relevant 518 

ethical regulations for work with human subjects were followed in the conduct of the study and 519 

informed consent was obtained from all participants. 520 

 521 
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 MVP genotype data were processed by the MVP Release 4 (R4) Data Team. 729,324 522 

samples were genotyped using Affymetrix Axiom Biobank Array. Rigorous sample-level quality 523 

control (QC) served to remove samples with duplicates, call rates <98.5%, sex mismatches, >7 524 

relatives, or excess heterozygosity. After QC, MVP R4 data contains 658,582 participants and 525 

667,995 variants (pre-imputation). Pre-imputation QC removed variants with high missingness 526 

(>1.5%), that were monomorphic, or with Hardy-Weinberg Equilibrium (HWE) p-value ≤1×10-6, 527 

leaving 590,511 variants for imputation. As in our previous work7, we ran principal component 528 

analysis (PCA)62,63 for the R4 data and 1000 Genome phase3 reference panels64. The 529 

Euclidean distances between each MVP participant and the centers of the five reference 530 

ancestral groups were calculated using the first 10 PCs, with each participant assigned to the 531 

nearest reference ancestry. A second round PCA within each assigned ancestral group was 532 

performed and outliers with PC scores >6 standard deviations from the mean of any of the 10 533 

PCs were removed. This two-stage approach resulted in the assignment of 468,869 European 534 

ancestry (EUR), 122,024 African ancestry (AFR), 41,662 Latin American (LA), 7,364 East Asian 535 

(EAS) and 536 South Asian (SAS) individuals for analysis. 536 

 537 

 Imputation was done by the MVP R4 Data Team. The entire cohort was pre-phased 538 

using SHAPEIT4 (v4.1.3)65, then imputed using Minimac466 with African Genome Resources 539 

reference panel by Sanger Institute and 1000 Genomes Project phase3 as reference. Single 540 

nucleotide variants with imputation score <0.8, or HWE p-value ≤1×10-6, or minor allele 541 

frequency (MAF) lower than the threshold set in each ancestral group based upon their sample 542 

size (EA, 0.0005; AA, 0.001; LA, 0.005; EAA, 0.01; SAA, 0.01) were removed before 543 

association analysis. 544 

 545 
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 Participants with at least one inpatient or two outpatient International Classification of 546 

Diseases (ICD)-9/10 codes for AUD were assigned as AUD cases, while participants with zero 547 

ICD codes for AUD were controls. Those with one outpatient diagnosis were excluded from the 548 

analysis. In total, 80,028; 36,330; 10,150; 701; and 107 cases were included in EUR, AFR, LA, 549 

EAS, and SAS, respectively; 368,113; 79,100; 28,812; 6,254; and 389 controls were included in 550 

EUR, AFR, LA, EAS, and SAS, respectively. BOLT-LMM67 was used to correct for relatedness, 551 

with age, sex, and the first 10 PCs as covariates. 552 

  553 

UK Biobank (UKB). UKB released genotype and imputed data for ~500,000 individuals from 554 

across the United Kingdom17 which were accessed through application 41910. UKB defined 555 

White-British (WB) participants genetically. For the non-WB individuals, we used PCA to classify 556 

them into different genetic groups as for MVP. Subjects with available AUDIT-P score were 557 

included in this study. The final sample included 132,001 WB (hereafter called UKB-EUR1) and 558 

17,898 non-WB Europeans (hereafter called UKB-EUR2), and 1,220 SAS. SNPs with genotype 559 

call rate >0.95, HWE p-value >1×10-6, imputation score ≥0.8 and MAF ≥0.001 in EUR1 and 560 

EUR2 and ≥0.01 in SAS were kept for GWAS, BOLT-LMM was used for association correcting 561 

for relatedness, age, sex, and the first 10 PCs. 562 

 563 

FinnGen. Summary statistics for AUD from FinnGen data freeze 5 were downloaded from the 564 

FinnGen website (http://r5.finngen.fi/). Details of the genotyping, imputation and quality control 565 

for FinnGen data were described previously20. There were 8,866 AUD cases defined by ICD-566 

8/9/10 codes and 209,926 controls. Association analysis was performed using SAIGE68 mixed-567 

model with age, sex and 10 PCs as covariates. Positions of the variants were lifted over to build 568 

37 (GRCh37/hg19) for meta-analysis. 569 
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 570 

iPSYCH: The iPSYCH21,22 samples were selected from a baseline birth cohort comprising all 571 

singletons born in Denmark between May 1, 1981, and December 31, 2008. The iPSYCH study 572 

was approved by the Scientific Ethics Committee in the Central Denmark Region (Case No 1-573 

10-72-287-12) and the Danish Data Protection Agency. 574 

 575 

AUD was diagnosed according to the ICD-10 criteria (F10.1 – F10.9 diagnosis codes). 576 

The iPSYCH cohort was established to investigate genetic risk for major psychiatric disorders 577 

(i.e., attention-deficit/hyperactivity disorder, schizophrenia, bipolar disorder, major depressive 578 

disorder, autism spectrum disorder) but not AUD (or PAU), so comorbidity of psychiatric 579 

disorders among these AUD cases is higher than expected for cases selected randomly from 580 

the population. Therefore, we generated a control group around five times as large as the case 581 

groups, and to correct for the bias introduced by high comorbidity of psychiatric disorders 582 

among cases, we included within the control group individuals with the above listed psychiatric 583 

disorders (without comorbid AUD) at a proportion equal to what was observed among the cases. 584 

 585 

The samples were genotyped in two genotyping rounds referred to as iPSYCH1 and 586 

iPSYCH2. iPSYCH1 samples were genotyped using Illumina’s PsychChip array and iPSYCH2 587 

samples using Illumina´s GSA v.2 (Illumina, San Diego, CA, USA). Quality control and GWAS 588 

were performed using the Ricopili pipeline69. More details can be found in ref. 70. GWAS were 589 

performed separately for iPSYCH1 (2,117 cases and 13,238 controls) and iPSYCH2 (1,024 590 

cases and 5,732 controls) using dosages for imputed genotypes and additive logistic regression 591 

with the first 5 PCs (from the final PCAs) as covariates using PLINK v1.971. Only variants with a 592 

MAF >0.01 and imputation score >0.8 were included in the final summary statistics. 593 
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 594 

Queensland Berghofer Medical Research Institute (QIMR) cohorts. The Australian Genetics 595 

of Depression Study (AGDS) recruited >20,000 participants with major depression between 596 

2017 and 2020. Recruitment and subject characteristics have been reported24: Participants 597 

completed an online self-report questionnaire. Lifetime AUD was assessed on DSM-5 criteria 598 

using the Composite International Diagnostic Interview (CIDI). A total of 6,726 subjects with and 599 

4,467 without AUD were included in the present study. 600 

 601 

The Australian twin-family study of alcohol use disorder (TWINS, including Australian 602 

Alcohol and Nicotine Studies) participants were recruited from adult twins and their relatives 603 

who had participated in questionnaire- and interview-based studies on alcohol and nicotine use 604 

and alcohol-related events or symptoms (as described in Heath et al.72). They were 605 

predominantly of EUR ancestry. Young adult twins and their non-twin siblings were participants 606 

in the Nineteen and Up study (19Up)25. 2,772 cases and 5,630 controls were defined using 607 

DSM-III-R and DSM-IV criteria. Most alcohol-dependent cases were mild, with 70% of those 608 

meeting alcohol dependence criteria reporting only three or four dependence symptoms and ≤5% 609 

reporting seven dependence symptoms. 610 

 611 

The Australian Genetics of Bipolar Disorder Study (GBP) recruited >5,000 participants 612 

living with bipolar disorder between 2018 and 2021. The sample’s recruitment and 613 

characteristics have been reported23: Participants completed an online self-report questionnaire. 614 

Lifetime DSM-5 AUD was assessed using the CIDI. 615 

 616 
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Genotyping of QIMR cohorts was performed using Illumina Global Screening Array v2. 617 

Pre-imputation QC removed variants with GenTrain score <0.6, MAF <0.01, SNP call rate <95%, 618 

and Hardy-Weinberg equilibrium deviation (p<1x10-6). Variants were then imputed using the 619 

Michigan Imputation Server with the Haplotype Reference Consortium reference panel66. 620 

Association analysis was performed using SAIGE and the LOCO=TRUE flag with age, sex, 10 621 

PCs and two imputation variables as covariates. Participants of non-EUR ancestry (defined 622 

as >6 standard deviations from the PC1 and PC2 centroids) were excluded. Association 623 

analyses were limited to variants with a MAF≥0.0001, MAC≥5, and an R2≥0.1. 624 

 625 

Psychiatric Genomics Consortium (PGC). Lifetime DSM-IV diagnosis of AD in both EUR and 626 

AFR ancestries were analyzed by PGC, with details reported previously5. This included 5,638 627 

individuals from Australia. To avoid overlap with the new QIMR cohorts, we re-analyzed the 628 

PGC data without two Australian cohorts: Australian Alcohol and Nicotine Studies and Brisbane 629 

Longitudinal Twin Study. This yielded 9,938 cases and 30,992 controls of EUR ancestry and 630 

3,335 cases and 2,945 controls of AFR ancestry. 631 

 632 

Yale-Penn 3. There are 3 phases of the Yale-Penn study defined by genotyping epoch; the first 633 

two were incorporated in the PGC study, thus they are included in the meta-analyses. Here, we 634 

included Yale-Penn 3 subjects as a separate sample. Lifetime AD was diagnosed based on 635 

DSM-IV criteria. Genotyping was performed in the Gelernter laboratory at Yale using the 636 

Illumina Multi-Ethnic Global Array, then imputed using Michigan Imputation Server with 637 

Haplotype Reference Consortium reference. We did PCA analyses to classify EAs (567 cases 638 

and 1,074 controls) and AAs (451 cases and 410 controls). Variants with MAF >0.01, HWE p-639 

value >1×10-6 and imputation INFO score ≥0.8 were retained for association analyses using 640 
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linear mixed models implemented in GEMMA73 and corrected for age, sex and 10 PCs. 641 

 642 

East Asian cohorts. Summary statistics for AUD/AD GWAS from 5 EAS cohorts (MVP EAS, 643 

Han Chinese–GSA, Thai METH–MEGA, Thai METH–GSA and Han Chinese–Cyto) were 644 

included in the cross-ancestry meta-analysis. Analyses of these five cohorts were previously 645 

published and the detailed QC can be found in ref. 27. 646 

 647 

Meta-analyses. Meta-analyses were performed using METAL74 with effective sample size 648 

weighting. For all the case-control samples, we calculated effective sample size as: 649 

4
1 1effective

case control

n

n n

=
+

 650 

For AUDIT-P in UKB, a continuous trait, we used actual sample sizes for meta-analysis. For all 651 

meta-analyses within or across ancestries, variants with a heterogeneity test p-value <5×10-8 652 

and variants with effective sample size <15% of the total effective sample size were removed. 653 

For the cross-ancestry and EUR within-ancestry meta-analyses, we required that variants were 654 

present in at least two cohorts. For the AFR and SAS within-ancestry meta-analyses, which are 655 

small samples, this was not required. 656 

 657 

Independent variants and conditional analyses. We identified the lead variants using PLINK 658 

with parameters of clumping region 500 kb and LD r2 0.1. We then ran conditional analyses 659 

using GCTA-COJO75 to define conditionally independent variants among the lead variants using 660 

the 1000 Genomes Project phase3 as the LD reference panel. Any two independent variants <1 661 

Mb apart whose clumped regions overlapped were merged into one locus. 662 
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 663 

Cross-ancestry lookup. For the 85 independent variants associated in EUR, we looked up the 664 

associations in non-EUR groups. If the variants were not observed in another ancestry, we 665 

substituted proxy SNPs defined as associated with PAU (p<5×10-8) and in high LD with the EUR 666 

lead SNP (r2≥0.8). 667 

 668 

SNP-based heritability (h2). SNP-based h2 for common SNPs mapped to HapMap376 was 669 

estimated in EUR, AFR and LA ancestries using LDSC77; corresponding populations in the 1000 670 

Genomes Project phase3 were used as LD reference panels. For PAU in EUR, we only 671 

estimated the observed-scale h2. For AUD, both observed-scale h2 and liability-scale h2 were 672 

estimated, using population lifetime prevalence estimates of 0.326, 0.220, and 0.229 in EUR, 673 

AFR, and LA, respectively1. These prevalence estimates were for lifetime DSM-5 AUD in the 674 

United States, which could introduce bias given the different definitions and prevalence in 675 

different cohorts. By default, LDSC removes SNPs with sample size <90th percentile N/2. Here 676 

we skipped this filtering and kept all SNPs for analyses because we did basic filtering based on 677 

the number of cohorts and sample size. The final number of SNPs in the analyses range from 678 

527,994 to 1.17 M. 679 

 680 

Cross-ancestry genetic correlation. We estimated the genetic correlations between different 681 

ancestries using Popcorn78, which can estimate both the genetic-effect correlation (ρge) as 682 

correlation coefficient of the per-allele SNP effect sizes and the genetic-impact correlation (ρgi) 683 

as correlation coefficient of the ancestry-specific allele-variance-normalized SNP effect sizes. 684 

Populations in 1000 Genomes were used as reference for their corresponding population. A 685 

large sample size and number of SNPs are required for accurate estimation78, which explains 686 
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the non-robust estimates for EAS and SAS samples. 687 

 688 

Within- and cross-ancestry fine-mapping. We did fine-mapping using MsCAVIAR79, which 689 

can leverage LD information from multiple ancestries to improve fine-mapping of causal variants. 690 

To reduce bias introduced by populations with small sample size, here we performed fine-691 

mapping using summary statistics from the EUR, AFR and LA populations. Three sets of 692 

analyses were conducted. The first is within-ancestry fine-mapping for the 85 regions with 693 

independent variants in EUR using EUR summary data and 1000 Genomes Project phase3 694 

EUR LD reference data. For each region, we selected SNPs which clumped (within 500 kb and 695 

LD r2>0.1) with the lead SNP and with p<0.05 for fine-mapping. We then calculated the pair-696 

wise LD among the selected SNPs. If two SNPs were in perfect LD (r2=1, indicating that they 697 

are likely to be inherited together), we randomly removed one from the analysis. The second is 698 

cross-ancestry fine-mapping for the 100 regions with independent variants identified in cross-699 

ancestry meta-analyses. For each region, we performed clumping (within 500 kb and LD r2>0.1) 700 

in EUR, AFR, and LA summary data for the lead SNP separately, to select 3 sets of SNPs 701 

(p<0.05) for fine-mapping, corresponding LD reference panels from 1000 Genomes Project 702 

were used. For each set of SNPs, we calculated the pair-wise LD and randomly removed one 703 

SNP if r2=1. If the lead SNP was not presented in the EUR SNP set, we did not perform fine-704 

mapping for this region. Loci with limited numbers of variants cannot have convergent results, 705 

so they are not included in the results. After that, this cross-ancestry analysis included 92 706 

regions. For the 10 regions in which the lead SNPs are missing in both AFR and LA populations, 707 

we did within-ancestry fine-mapping in EUR instead to keep the lead SNP (cross-ancestry fine-708 

mapping will only analyze the SNPs common in analyzed ancestries). Third, because the 709 

credible set length identified is related to the number of variants in the input, to provide a more 710 

direct comparison between the cross-ancestry fine-mapping and the fine-mapping using 711 
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information only from EUR, we used the same lists of SNPs from the above 92 regions in the 712 

cross-ancestry fine-mapping as for the EUR-only fine-mapping. “Credible set” was defined as 713 

plausible causal variants with accumulated posterior inclusion probability (PIP) > 99%. For each 714 

credible set, we report the variant with the highest PIP. We assumed that each locus contains 715 

only one causal variant by default, and increased to three at maximum if the analysis unable to 716 

converge. 717 

 718 

Gene-based association analyses. We performed gene-based association analysis for PAU 719 

or AUD in multiple ancestries using MAGMA implemented in FUMA32,33. Default settings were 720 

applied. Bonferroni corrections for the number of genes tested (range from 18,390 to 19,002 in 721 

different ancestries) were used to determine genome-wide significant genes. 722 

 723 

Transcriptome-wide association study (TWAS). For PAU in EUR, we performed TWAS using 724 

S-PrediXcan to integrate transcriptomic data from GTEx. With prior knowledge that PAU is a 725 

brain-related disorder (evidenced by significant enrichment of gene expression in several brain 726 

tissues)6, 13 brain tissues were analyzed. The transcriptome prediction model database and the 727 

covariance matrices of the SNPs within each gene model were downloaded from the PredictDB 728 

repository (http://predictdb.org/). Significance of the gene-tissue association was determined 729 

following Bonferroni correction for the total number of gene-tissue pairs 730 

(p<0.05/166,064=3.01×10-7). We also used S-MultiXcan36 to integrate evidence across the 13 731 

brain tissues using multivariate regression to improve association detection. In total, 18,383 732 

genes were tested in S-MultiXcan, leading to a significance p-value threshold of 2.72×10-6. 733 

 734 

Association with chromatin interactions in brain. We used H-MAGMA37, a computational 735 
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tool that incorporates brain chromatin interaction profiles from Hi-C, to identify risk genes 736 

associated with PAU based on EUR inputs. Six brain annotations were used: fetal brain, adult 737 

brain, adult midbrain dopaminergic, iPSC-derived astrocyte, iPSC-derived neuron and cortical 738 

neuron. In total, 319,903 gene-chromatin associations were analyzed across the six brain 739 

annotations. Significant genes were those with a p-value below the Bonferroni corrected value 740 

for the total number of tests (p<0.05/319,903=1.56×10-7). 741 

 742 

Probabilistic fine-mapping of TWAS. We did fine-mapping for TWAS in EUR using FOCUS38, 743 

a method that models correlation among TWAS signals to assign a PIP for every gene in the 744 

risk region to explain the observed association signal. The estimated credible set containing the 745 

causal gene can be prioritized for functional assays. FOCUS used 1000 Genomes Project EUR 746 

samples as the LD reference and multiple eQTL reference panel weights that include 747 

GTEx_v780, The Metabolic Syndrome in Men81, Netherlands Twin Register82, Young Finns 748 

Study83, and CommonMind Consortium84. Under the model of PAU as substantially a brain 749 

disorder, we did fine-mapping while prioritizing predictive models using a brain tissue-prioritized 750 

approach. 751 

 752 

Drug repurposing. To match inferred transcriptional patterns of PAU with transcriptional 753 

patterns induced by perturbagens, we related our S-PrediXcan results to signatures from the 754 

Library of Integrated Network-based Cellular Signatures (LINCs) L1000 database85. This 755 

database catalogues in vitro gene expression profiles (signatures) from thousands of 756 

compounds >80 human cell lines (level 5 data from phase I: GSE92742 and phase II: 757 

GSE70138). Our analyses included signatures of 829 chemical compounds in five neuronal cell-758 

lines (NEU, NPC, MNEU.E, NPC.CAS9 and NPC.TAK). To test significance of the association 759 
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between PAU signatures and LINCs perturbagen signatures we followed the procedure from So 760 

et al86. Briefly, we computed weighted (by proportion of heritability explained) Pearson 761 

correlations between transcriptome-wide brain associations and in vitro L1000 compound 762 

signatures using the metafor package87 in R. We treated each L1000 compound as a fixed 763 

effect incorporating the effect size (rweighted) and sampling variability (se2) from all signatures of a 764 

compound (e.g., across all time points and doses). We only report those perturbagens that were 765 

associated after Bonferroni correction (p<0.05/829=6.03×10-5). 766 

 767 

Cross-ancestry polygenic risk score. We used PRS-CSx40, a method that couples genetic 768 

effects and LD across ancestries via a shared continuous shrinkage prior, to calculate the 769 

posterior effect sizes for SNPs mapped to HapMap3. Three sets of AUD GWAS summary data 770 

were use as input and corresponding posterior effect sizes in each ancestry were generated: 771 

EUR (without AUDIT-P from UKB, Neffective=352,373), AFR (Neffective=105,433), and LA 772 

(Neffective=30,023). Three sets of AUD PRS based on the posterior effect sizes were calculated 773 

for UKB-EUR1 and UKB-EUR2 individuals using PLINK, following standardization (zero mean 774 

and unit variance) for each PRS. For each related pair (≥3rd-degree, kinship coefficient ≥0.0442 775 

as calculated by UKB), we removed the subject with the lower AUDIT-P score, or randomly if 776 

they had the same score, leaving 123,565 individuals in UKB-EUR1 and 17,401 in UKB-EUR2. 777 

Then we ran linear regression for AUDIT-P in UKB-EUR2 as a validation dataset using PRSEUR, 778 

PRSAFR and PRSLA as independent variables. The corresponding regression coefficients were 779 

used as weights in the test dataset (UKB-EUR1) to calculate the final PRS: PRSfinal = 780 

ωEUR*PRSEUR + ωAFR*PRSAFR + ωLA*PRSLA. We used linear regression to test the association 781 

between AUDIT-P and PRSfinal after standardization, correcting for age, sex, and the first 10 782 

PCs. We also ran a null model of association between AUDIT-P and covariates only, to 783 

calculate the variance explained (R2) by PRSfinal. For comparison, we also calculated PRS in 784 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

 

UKB-EUR1 using only the AUD summary data in EUR using PRS-CS88, then calculated the 785 

variance explained by PRSsingle. The improved PRS association was measured as the difference 786 

of the variance explained (ΔR2). 787 

 788 

Genetic correlation. Genetic correlations (rg) between PAU or AUD and traits of interest were 789 

estimated using LDSC89. For EUR, we tested rg between PAU and 49 traits using published 790 

summary data and the EUR LD reference from the 1000 Genomes Project. rgs with p-value 791 

<1.02×10-3 were considered significant. For AFR, we tested rg between AUD and 13 published 792 

traits in AFR using MVP in-sample LD (most of the analyzed AFR were from MVP) built from 793 

1000 randomly-selected AFR subjects by cov-LDSC90. rgs with p-value <3.85×10-3 (0.05/13) in 794 

AFR were considered as significant. For comparison, we also tested rgs using 1000 Genomes 795 

AFR as LD reference, which showed similar estimates. 796 

 797 

PAU PRS for phenome-wide associations.  798 

We calculated PRS using PRS-continuous shrinkage (PRS-CS) for PAU (in EUR) and AUD (in 799 

AFR) in four independent datasets [Vanderbilt University Medical Center’s Biobank (BioVU), 800 

Mount Sinai (BioMe™), Mass General Brigham Biobank (MGBB)91 and Penn Medicine Biobank 801 

(PMBB)92] from the PsycheMERGE Network, followed by phenome-wide association studies. 802 

Details for each dataset are described below. 803 

 804 

BioVU: Genotyping of individuals was performed using the Illumina MEGEX array. Genotypes 805 

were filtered for SNP and individual call rates, sex discrepancies, and excessive heterozygosity 806 

using PLINK. Imputation was conducted using the Michigan Imputation Server based on the 807 
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Haplotype Reference Consortium reference panel. PCA using FlashPCA293 combined with CEU, 808 

YRI and CHB reference sets from the 1000 Genomes Project Phase 3 was conducted to 809 

determine participants of AFR and EUR ancestry. One individual from each pair of related 810 

individuals was removed (pi-hat>0.2). This resulted in 12,384 AFR and 66,903 EUR individuals 811 

for analysis. 812 

 813 

BioMe™: The BioMe™ Biobank: The Illumina Global Screening Array was used to genotype the 814 

BioMe™ samples. The SNP-level quality control (QC) removed SNPs with (1) MAF <0.0001 (2) 815 

HWE p-value ≤1×10-6 and (3) call rate <98%. The individual-level QC removed participants with 816 

(1) sample call rate <98% and (2) heterozygosity F coefficient ≥3 standard deviations. In 817 

addition, one individual from each pair of related samples with a genomic relatedness 818 

(proportion IBD) >0.125 was removed (--rel-cutoff=0.125 in PLINK). Imputation was 819 

performed using 1000 Genomes Phase 3 data. Each ancestry was confirmed by the genetic PC 820 

plot. A final sample size of 4,727 AFR and 9,544 EUR individuals were included for this study. 821 

 822 

MGBB: Individuals in the Mass General Brigham Biobank (MGBB) were genotyped using the 823 

Illumina Multi-Ethnic Global array with hg19 coordinates. Variant-level quality control filters 824 

removed variants with a call rate <98% and those that were duplicated across batches, 825 

monomorphic, not confidently mapped to a genomic location, or associated with genotyping 826 

batch. Sample-level quality control filters removed individuals with a call rate less than 98%, 827 

excessive autosomal heterozygosity (±3 standard deviations from the mean), or discrepant self-828 

reported and genetically inferred sex. PCs of ancestry were calculated in the 1000 Genomes 829 

Phase 3 reference panel and subsequently projected onto the MGBB dataset, where a Random 830 

Forest classifier was used to assign ancestral group membership for individuals with a 831 
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prediction probability >90%. The Michigan Imputation Server was then used to impute missing 832 

genotypes with the Haplotype Reference Consortium dataset serving as the reference panel. 833 

Imputed genotype dosages were converted to hard-call format and subjected to further quality 834 

control, where SNPs were removed if they exhibited poor imputation quality (INFO<0.8), low 835 

minor allele frequency (<1%), deviations from Hardy-Weinberg equilibrium (p<1×10-10), or 836 

missingness (variant call rate <98%). Only unrelated individuals (pi-hat<0.2) of EUR ancestry 837 

were included in the present study. These procedures yielded a final analytic sample of 25,698 838 

individuals in the MGBB. 839 

 840 

PMBB: Genotyping of individuals was performed using the Illumina Global Screening Array. 841 

Quality control removed SNPs with marker call rate <95% and sample call rate <90%, and 842 

individuals with sex discrepancies. Imputation was performed using Eagle294 and Minimac4 on 843 

the TOPMed Imputation Server. One individual from each pair of related individuals (pi-hat 844 

threshold of 0.25) were removed from analysis. PCA was conducted using smartpca62,63 and the 845 

Hapmap3 dataset to determine genetic ancestry. This resulted in 10,383 AFR and 29,355 EUR 846 

individuals for analysis. 847 

 848 

PheWAS: The AFR AUD PRS and EUR PAU PRS scores in each dataset were standardized 849 

for the PheWAS analyses. International Classification of Diseases (ICD)-9 and -10 codes were 850 

extracted from the electronic health record and mapped to phecodes. Individuals were 851 

considered cases if they had two instances of the phecode. We conducted PheWAS by fitting a 852 

logistic regression for each phecode within each biobank. Covariates included sex, age and the 853 

top 10 PCs. PheWAS results were meta-analyzed within each ancestral group across biobanks 854 

(AFR=27,494, EUR=131,500) using the PheWAS package95 in R. 855 
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 856 

Yale-Penn: Quality control and creation of the PheWAS dataset have been described 857 

previously45. We calculated PRS for PAU in EUR and AUD in AFR (using summary statistics 858 

that leave out the Yale-Penn 3 and PGC sample which includes Yale-Penn 1 and 2). We 859 

conducted PheWAS by fitting logistic regression models for binary traits and linear regression 860 

models for continuous traits. We used sex, age at recruitment, and the top 10 genetic PCs as 861 

covariates. We applied a Bonferroni correction to control for multiple comparisons. 862 

 863 

Data Availability: The full summary-level association data from the meta-analysis are available 864 

upon request to the corresponding authors and through dbGaP (accession number phs001672). 865 

 866 

Acknowledgements 867 

This research used data from the Million Veteran Program and was supported by funding from 868 

the Department of Veterans Affairs Office of Research and Development, Million Veteran 869 

Program Grant #I01CX001849, #I01BX004820, #I01BX003341, and the VA Cooperative 870 

Studies Program (CSP) study #575B, MVP004, and MVP025. This publication does not 871 

represent the views of the Department of Veterans Affairs or the United States Government. 872 

Supported also by NIH (NIAAA) P50 AA12870 (J.H.K.) and K01 AA028292 (R.L.K.), a NARSAD 873 

Young Investigator Grant 27835 from the Brain & Behavior Research Foundation (H.Z.), NCI 874 

R21 CA252916 (H.Z.), R01 AA026364 (J.G.), NIAAA T32 AA028259 (J.D.D.), NIMH R01 875 

MH124839 (L.M.H.), NIAAA K01 AA030083 (A.S.H.), NIDA K01 DA051759 (E.C.J.), TRDRP 876 

(T29KT0526, T32IR5226, S.S.R.) and NIDA DP1 DA054394 (S.S.R.). This research used data 877 

from UK Biobank (project ID: 41910), a population-based sample of participants whose 878 

contributions we gratefully acknowledge. The data access is supported by Yale SCORE pilot 879 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

 

grant (U54AA027989). We want to acknowledge the participants and investigators of the 880 

FinnGen study. D.D. was supported by the Novo Nordisk Foundation (NNF20OC0065561), the 881 

Lundbeck Foundation (R344-2020-1060). The iPSYCH team was supported by grants from the 882 

Lundbeck Foundation (R102-A9118, R155-2014-1724, and R248-2017-2003), NIH/NIMH 883 

(1U01MH109514-01 and 1R01MH124851-01 to A.D.B.) and the Universities and University 884 

Hospitals of Aarhus and Copenhagen. The Danish National Biobank resource was supported by 885 

the Novo Nordisk Foundation. High-performance computer capacity for handling and statistical 886 

analysis of iPSYCH data on the GenomeDK HPC facility was provided by the Center for 887 

Genomics and Personalized Medicine and the Centre for Integrative Sequencing, iSEQ, Aarhus 888 

University, Denmark (grant to A.D.B.). The Australian Genetics of Depression Study (AGDS) 889 

was primarily funded by the National Health and Medical Research Council (NHMRC) of 890 

Australia Grant No. 1086683 to N.G.M. N.G.M is supported by a NHMRC Investigator Grant (No. 891 

APP 1172990). We are indebted to all of the participants for giving their time to contribute to this 892 

study. We wish to thank all the people who helped in the conception, implementation, media 893 

campaign and data cleaning. We thank Richard Parker, Simone Cross, and Lenore Sullivan for 894 

their valuable work coordinating all the administrative and operational aspects of the AGDS 895 

project. We would also like to thank the research participants for making this work possible. The 896 

Australian Genetics of Bipolar Disorder Study (GBP) data collection was funded and data 897 

analysis was supported by the Australian NHMRC (No. APP1138514) to S.E.M. S.E.M. is 898 

supported by a NHMRC Investigator Grant (No. APP1172917). We thank the participants for 899 

giving their time and support for this project. We acknowledge and thank M. Steffens for her 900 

generous donations and fundraising support. The NHMRC (APP10499110) and the NIH 901 

(K99R00, R00DA023549) funded the 19Up study. Genotyping was funded by the NHMRC 902 

(389891). We thank the twins and their families for their willing participation in our studies. 903 

Funding for the Australian adult twin studies in which information on alcohol use and smoking 904 

status was obtained came from the US NIH (AA07535, AA07728, AA11998, AA13320, 905 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 

 

AA13321, AA14041, AA17688, DA012854 and DA019951); the Australian NHMRC (241944, 906 

339462, 389927, 389875, 389891, 389892, 389938, 442915, 442981, 496739, 552485 and 907 

552498); and the Australian Research Council (A7960034, A79906588, A79801419, 908 

DP0770096, DP0212016 and DP0343921). We acknowledge the work over many years of staff 909 

of the Genetic Epidemiology group at QIMR Berghofer Medical Research Institute (formerly the 910 

Queensland Institute of Medical Research) in managing the studies which generated the data 911 

used in this analysis. We also acknowledge and appreciate the willingness of study participants 912 

to complete multiple, and sometimes lengthy, questionnaires and interviews. Many of the 913 

participants were contacted originally through the Australian Twin Registry. This research also 914 

used summary data from the Psychiatric Genomics Consortium (PGC) Substance Use 915 

Disorders (SUD) working group. The PGC-SUD is supported by NIH grant R01DA054869. 916 

PGC-SUD gratefully acknowledges its contributing studies and the participants in those studies, 917 

without whom this effort would not be possible. We acknowledge the Penn Medicine BioBank 918 

(PMBB) for providing data and thank the patient-participants of Penn Medicine who consented 919 

to participate in this research program. We would also like to thank the PMBB team and 920 

Regeneron Genetics Center for providing genetic variant data for analysis. The PMBB is 921 

approved under IRB protocol# 813913 and supported by Perelman School of Medicine at 922 

University of Pennsylvania, a gift from the Smilow family, and the National Center for Advancing 923 

Translational Sciences of the NIH under CTSA award number UL1TR001878. This study was 924 

supported in part through the resources and staff expertise provided by the Charles Bronfman 925 

Institute for Personalized Medicine and The BioMe™ Biobank Program at the Icahn School of 926 

Medicine at Mount Sinai. Research reported in this paper was supported by the Office of 927 

Research Infrastructure of the NIH under award numbers S10OD018522 and S10OD026880. 928 

The content is solely the responsibility of the authors and does not necessarily represent the 929 

official views of the NIH. 930 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 

 

 931 

Disclosure: H.R.K. is a member of advisory boards for Dicerna Pharmaceuticals, Sophrosyne 932 

Pharmaceuticals, and Enthion Pharmaceuticals; a consultant to Sobrera Pharmaceuticals; the 933 

recipient of research funding and medication supplies for an investigator-initiated study from 934 

Alkermes; and a member of the American Society of Clinical Psychopharmacology’s Alcohol 935 

Clinical Trials Initiative, which was supported in the past 3 years by Alkermes, Dicerna, 936 

Ethypharm, Lundbeck, Mitsubishi, Otsuka, and Pear Therapeutics. M.B.S. has in the past 937 

3�years been a consultant for Actelion, Acadia Pharmaceuticals, Aptinyx, Bionomics, BioXcel 938 

Therapeutics, Clexio, EmpowerPharm, Epivario, GW Pharmaceuticals, Janssen, Jazz 939 

Pharmaceuticals, Roche/Genentech and Oxeia Biopharmaceuticals. M.B.S. has stock options in 940 

Oxeia Biopharmaceuticals and Epivario. He also receives payment from the following entities for 941 

editorial work: Biological Psychiatry (published by Elsevier), Depression and Anxiety (published 942 

by Wiley) and UpToDate. J.G. and H.R.K. hold US patent 10,900,082 titled: “Genotype-guided 943 

dosing of opioid agonists,” issued January 26, 2021. J.G. is paid for his editorial work on the 944 

journal Complex Psychiatry. J.H.K. has consulting agreements (less than US$10,000 per year) 945 

with the following: AstraZeneca Pharmaceuticals, Biogen, Idec, MA, Biomedisyn Corporation, 946 

Bionomics, Limited (Australia), Boehringer Ingelheim International, COMPASS Pathways, 947 

Limited, United Kingdom, Concert Pharmaceuticals, Inc., Epiodyne, Inc., EpiVario, Inc., 948 

Heptares Therapeutics, Limited (UK), Janssen Research & Development, Otsuka America, 949 

Pharmaceutical, Inc., Perception Neuroscience Holdings, Inc., Spring Care, Inc., Sunovion 950 

Pharmaceuticals, Inc., Takeda Industries and Taisho Pharmaceutical Co., Ltd. J.H.K. serves on 951 

the scientific advisory boards of Bioasis Technologies, Inc., Biohaven Pharmaceuticals, BioXcel 952 

Therapeutics, Inc. (Clinical Advisory Board), BlackThorn Therapeutics, Inc., Cadent 953 

Therapeutics (Clinical Advisory Board), Cerevel Therapeutics, LLC., EpiVario, Inc., Lohocla 954 

Research Corporation, PsychoGenics, Inc.; is on the board of directors of Inheris Biopharma, 955 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

 

Inc.; has stock options with Biohaven Pharmaceuticals Medical Sciences, BlackThorn 956 

Therapeutics, Inc., EpiVario, Inc. and Terran Life Sciences; and is editor of Biological Psychiatry 957 

with income greater than $10,000. I.B.H. is the Co-Director of Health and Policy at the Brain and 958 

Mind Centre (BMC) University of Sydney. The BMC operates an early-intervention youth 959 

services at Camperdown under contract to Headspace. He is the Chief Scientific Advisor to, and 960 

a 3.2% equity shareholder in, InnoWell Pty Ltd. InnoWell was formed by the University of 961 

Sydney (45% equity) and PwC (Australia; 45% equity) to deliver the $30 M Australian 962 

Government-funded Project Synergy (2017-20; a three-year program for the transformation of 963 

mental health services) and to lead transformation of mental health services internationally 964 

through the use of innovative technologies. J.W.S. is a member of the Leon Levy Foundation 965 

Neuroscience Advisory Board, the Scientific Advisory Board of Sensorium Therapeutics (with 966 

equity), and has received grant support from Biogen, Inc. He is PI of a collaborative study of the 967 

genetics of depression and bipolar disorder sponsored by 23andMe for which 23andMe 968 

provides analysis time as in-kind support but no payments. All other authors report no 969 

biomedical financial interests or potential conflicts of interest. 970 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

References 971 

1. Grant, B.F., et al. Epidemiology of DSM-5 Alcohol Use Disorder: Results From the National 972 

Epidemiologic Survey on Alcohol and Related Conditions III. JAMA Psychiatry 72, 757-766 (2015). 973 

2. Verhulst, B., Neale, M.C. & Kendler, K.S. The heritability of alcohol use disorders: a meta-analysis 974 

of twin and adoption studies. Psychol Med 45, 1061-1072 (2015). 975 

3. Gelernter, J. & Polimanti, R. Genetics of substance use disorders in the era of big data. Nat Rev 976 

Genet 22, 712-729 (2021). 977 

4. Sanchez-Roige, S., et al. Genome-Wide Association Study Meta-Analysis of the Alcohol Use 978 

Disorders Identification Test (AUDIT) in Two Population-Based Cohorts. Am J Psychiatry 176, 979 

107-118 (2019). 980 

5. Walters, R.K., et al. Transancestral GWAS of alcohol dependence reveals common genetic 981 

underpinnings with psychiatric disorders. Nat Neurosci 21, 1656-1669 (2018). 982 

6. Zhou, H., et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals 983 

yields insights into biology and relationships with other traits. Nat Neurosci 23, 809-818 (2020). 984 

7. Kranzler, H.R., et al. Genome-wide association study of alcohol consumption and use disorder in 985 

274,424 individuals from multiple populations. Nat Commun 10, 1499 (2019). 986 

8. Gelernter, J., et al. Genome-wide Association Study of Maximum Habitual Alcohol Intake 987 

in >140,000 U.S. European and African American Veterans Yields Novel Risk Loci. Biol Psychiatry 988 

86, 365-376 (2019). 989 

9. Deak, J.D., et al. Genome-Wide Investigation of Maximum Habitual Alcohol Intake in US 990 

Veterans in Relation to Alcohol Consumption Traits and Alcohol Use Disorder. JAMA Netw Open 991 

5, e2238880 (2022). 992 

10. Liu, M., et al. Association studies of up to 1.2 million individuals yield new insights into the 993 

genetic etiology of tobacco and alcohol use. Nat Genet 51, 237-244 (2019). 994 

11. Saunders, G.R.B., et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. 995 

Nature (2022). 996 

12. Saunders, J.B., Aasland, O.G., Babor, T.F., de la Fuente, J.R. & Grant, M. Development of the 997 

Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection 998 

of Persons with Harmful Alcohol Consumption--II. Addiction 88, 791-804 (1993). 999 

13. Mallard, T.T., et al. Item-Level Genome-Wide Association Study of the Alcohol Use Disorders 1000 

Identification Test in Three Population-Based Cohorts. Am J Psychiatry 179, 58-70 (2022). 1001 

14. Johnson, E.C., et al. A large-scale genome-wide association study meta-analysis of cannabis use 1002 

disorder. Lancet Psychiatry 7, 1032-1045 (2020). 1003 

15. Hatoum, A.S., et al. The addiction risk factor: A unitary genetic vulnerability characterizes 1004 

substance use disorders and their associations with common correlates. 1005 

Neuropsychopharmacology 47, 1739-1745 (2022). 1006 

16. Peterson, R.E., et al. Genome-wide Association Studies in Ancestrally Diverse Populations: 1007 

Opportunities, Methods, Pitfalls, and Recommendations. Cell 179, 589-603 (2019). 1008 

17. Bycroft, C., et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 1009 

562, 203-209 (2018). 1010 

18. Zheutlin, A.B., et al. Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia in 1011 

106,160 Patients Across Four Health Care Systems. Am J Psychiatry 176, 846-855 (2019). 1012 

19. Gaziano, J.M., et al. Million Veteran Program: A mega-biobank to study genetic influences on 1013 

health and disease. J Clin Epidemiol 70, 214-223 (2016). 1014 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 

 

20. Kurki, M.I., et al. FinnGen: Unique genetic insights from combining isolated population and 1015 

national health register data. medRxiv doi: 1016 

https://doi.org/10.1101/2022.03.03.22271360(2022). 1017 

21. Pedersen, C.B., et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic 1018 

and environmental architectures of severe mental disorders. Mol Psychiatry 23, 6-14 (2018). 1019 

22. Bybjerg-Grauholm, J., et al. The iPSYCH2015 Case-Cohort sample: updated directions for 1020 

unravelling genetic and environmental architectures of severe mental disorders. medRxiv doi: 1021 

https://doi.org/10.1101/2020.11.30.20237768(2020). 1022 

23. Lind, P., et al. Preliminary results from the Australian Genetics of Bipolar Disorder Study: A 1023 

nation-wide cohort. Psyarxive 10.31234/osf.io/yd3sx(2022). 1024 

24. Byrne, E.M., et al. Cohort profile: the Australian genetics of depression study. BMJ Open 10, 1025 

e032580 (2020). 1026 

25. Couvy-Duchesne, B., et al. Nineteen and Up study (19Up): understanding pathways to mental 1027 

health disorders in young Australian twins. BMJ Open 8, e018959 (2018). 1028 

26. Gelernter, J., et al. Genome-wide association study of alcohol dependence:significant findings in 1029 

African- and European-Americans including novel risk loci. Mol Psychiatry 19, 41-49 (2014). 1030 

27. Zhou, H., et al. Genome-wide meta-analysis of alcohol use disorder in East Asians. 1031 

Neuropsychopharmacology 47, 1791-1797 (2022). 1032 

28. Kember, R.L., et al. Genetic underpinnings of the transition from alcohol consumption to alcohol 1033 

use disorder: shared and unique genetic architectures in a cross-ancestry sample. medRxiv 1034 

https://doi.org/10.1101/2021.09.08.21263302(2021). 1035 

29. Gelernter, J., et al. Genomewide Association Study of Alcohol Dependence and Related Traits in 1036 

a Thai Population. Alcohol Clin Exp Res 42, 861-868 (2018). 1037 

30. Trubetskoy, V., et al. Mapping genomic loci implicates genes and synaptic biology in 1038 

schizophrenia. Nature 604, 502-508 (2022). 1039 

31. Okbay, A., et al. Polygenic prediction of educational attainment within and between families 1040 

from genome-wide association analyses in 3 million individuals. Nat Genet 54, 437-449 (2022). 1041 

32. de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of 1042 

GWAS data. PLoS Comput Biol 11, e1004219 (2015). 1043 

33. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and 1044 

annotation of genetic associations with FUMA. Nat Commun 8, 1826 (2017). 1045 

34. Barbeira, A.N., et al. Exploring the phenotypic consequences of tissue specific gene expression 1046 

variation inferred from GWAS summary statistics. Nat Commun 9, 1825 (2018). 1047 

35. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. 1048 

Science 369, 1318-1330 (2020). 1049 

36. Barbeira, A.N., et al. Integrating predicted transcriptome from multiple tissues improves 1050 

association detection. PLoS genetics 15, e1007889 (2019). 1051 

37. Sey, N.Y.A., et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder 1052 

risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci 23, 583-593 1053 

(2020). 1054 

38. Mancuso, N., et al. Probabilistic fine-mapping of transcriptome-wide association studies. Nat 1055 

Genet 51, 675-682 (2019). 1056 

39. Ochoa, D., et al. The next-generation Open Targets Platform: reimagined, redesigned, rebuilt. 1057 

Nucleic Acids Res 51, D1353-D1359 (2023). 1058 

40. Ruan, Y., et al. Improving polygenic prediction in ancestrally diverse populations. Nat Genet 54, 1059 

573-580 (2022). 1060 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

 

41. Kember, R.L., et al. Cross-ancestry meta-analysis of opioid use disorder uncovers novel loci with 1061 

predominant effects in brain regions associated with addiction. Nat Neurosci 25, 1279-1287 1062 

(2022). 1063 

42. Xu, K., et al. Genome-wide association study of smoking trajectory and meta-analysis of smoking 1064 

status in 842,000 individuals. Nat Commun 11, 5302 (2020). 1065 

43. Levey, D.F., et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-1066 

analysis in >1.2 million individuals highlight new therapeutic directions. Nat Neurosci 24, 954-1067 

963 (2021). 1068 

44. Vujkovic, M., et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular 1069 

outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet 52, 680-1070 

691 (2020). 1071 

45. Kember, R.L., et al. Phenome-wide Association Analysis of Substance Use Disorders in a Deeply 1072 

Phenotyped Sample. Biol Psychiatry, Aug 18:S0006-3223(0022)01515-01513. doi: 1073 

01510.01016/j.biopsych.02022.01508.01010. Epub ahead of print. PMID: 36273948. (2022). 1074 

46. Zhou, H., et al. Association of OPRM1 Functional Coding Variant With Opioid Use Disorder: A 1075 

Genome-Wide Association Study. JAMA Psychiatry 77, 1072-1080 (2020). 1076 

47. Deak, J.D., et al. Genome-wide association study in individuals of European and African ancestry 1077 

and multi-trait analysis of opioid use disorder identifies 19 independent genome-wide significant 1078 

risk loci. Mol Psychiatry 27, 3970-3979 (2022). 1079 

48. Schwantes-An, T.H., et al. Association of the OPRM1 Variant rs1799971 (A118G) with Non-1080 

Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of 1081 

European-Ancestry Cohorts. Behav Genet 46, 151-169 (2016). 1082 

49. Notaras, M., Hill, R. & van den Buuse, M. The BDNF gene Val66Met polymorphism as a modifier 1083 

of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry 20, 916-930 1084 

(2015). 1085 

50. Karlsson Linner, R., et al. Multivariate analysis of 1.5 million people identifies genetic 1086 

associations with traits related to self-regulation and addiction. Nat Neurosci 24, 1367-1376 1087 

(2021). 1088 

51. Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 1089 

schizophrenia-associated genetic loci. Nature 511, 421-427 (2014). 1090 

52. Mealer, R.G., et al. The schizophrenia risk locus in SLC39A8 alters brain metal transport and 1091 

plasma glycosylation. Sci Rep 10, 13162 (2020). 1092 

53. Mealer, R.G., et al. Glycobiology and schizophrenia: a biological hypothesis emerging from 1093 

genomic research. Mol Psychiatry 25, 3129-3139 (2020). 1094 

54. Amit, Z. & Smith, B.R. A multi-dimensional examination of the positive reinforcing properties of 1095 

acetaldehyde. Alcohol 2, 367-370 (1985). 1096 

55. Mews, P., et al. Alcohol metabolism contributes to brain histone acetylation. Nature 574, 717-1097 

721 (2019). 1098 

56. Pandey, S.C., Ugale, R., Zhang, H., Tang, L. & Prakash, A. Brain chromatin remodeling: a novel 1099 

mechanism of alcoholism. J Neurosci 28, 3729-3737 (2008). 1100 

57. Carlsson, C. & Gullberg, B. A double blind study with melperone and placebo in the treatment of 1101 

chronic alcoholics. Int J Clin Pharmacol Biopharm 16, 331-332 (1978). 1102 

58. Carlsson, C., Gullberg, B., Hostery, U. & Christensson, E. A double-blind study of melperone and 1103 

placebo in hospitalized chronic alcoholics in postintoxication phase. Int J Clin Pharmacol 1104 

Biopharm 17, 341-345 (1979). 1105 

59. Farokhnia, M., et al. Spironolactone as a potential new pharmacotherapy for alcohol use 1106 

disorder: convergent evidence from rodent and human studies. Mol Psychiatry 27, 4642-4652 1107 

(2022). 1108 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 

 

60. Sychla, H., Grunder, G. & Lammertz, S.E. Comparison of Clomethiazole and Diazepam in the 1109 

Treatment of Alcohol Withdrawal Syndrome in Clinical Practice. Eur Addict Res 23, 211-218 1110 

(2017). 1111 

61. Hunter-Zinck, H., et al. Genotyping Array Design and Data Quality Control in the Million Veteran 1112 

Program. Am J Hum Genet 106, 535-548 (2020). 1113 

62. Price, A.L., et al. Principal components analysis corrects for stratification in genome-wide 1114 

association studies. Nat Genet 38, 904-909 (2006). 1115 

63. Galinsky, K.J., et al. Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B 1116 

in Europe and East Asia. Am J Hum Genet 98, 456-472 (2016). 1117 

64. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 1118 

68-74 (2015). 1119 

65. Delaneau, O., Zagury, J.F., Robinson, M.R., Marchini, J.L. & Dermitzakis, E.T. Accurate, scalable 1120 

and integrative haplotype estimation. Nat Commun 10, 5436 (2019). 1121 

66. Das, S., et al. Next-generation genotype imputation service and methods. Nat Genet 48, 1284-1122 

1287 (2016). 1123 

67. Loh, P.R., Kichaev, G., Gazal, S., Schoech, A.P. & Price, A.L. Mixed-model association for biobank-1124 

scale datasets. Nat Genet 50, 906-908 (2018). 1125 

68. Zhou, W., et al. Efficiently controlling for case-control imbalance and sample relatedness in 1126 

large-scale genetic association studies. Nat Genet 50, 1335-1341 (2018). 1127 

69. Lam, M., et al. RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics 36, 930-933 1128 

(2020). 1129 

70. Demontis, D., et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic 1130 

architecture and implicate several cognitive domains. medRxiv 1131 

https://doi.org/10.1101/2022.02.14.22270780, 2022.2002.2014.22270780 (2022). 1132 

71. Chang, C.C., et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. 1133 

Gigascience 4, 7 (2015). 1134 

72. Heath, A.C., et al. A quantitative-trait genome-wide association study of alcoholism risk in the 1135 

community: findings and implications. Biol Psychiatry 70, 513-518 (2011). 1136 

73. Zhou, X. & Stephens, M. Efficient multivariate linear mixed model algorithms for genome-wide 1137 

association studies. Nat Methods 11, 407-409 (2014). 1138 

74. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide 1139 

association scans. Bioinformatics 26, 2190-2191 (2010). 1140 

75. Yang, J., et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies 1141 

additional variants influencing complex traits. Nat Genet 44, 369-375, S361-363 (2012). 1142 

76. International HapMap Consortium, et al. Integrating common and rare genetic variation in 1143 

diverse human populations. Nature 467, 52-58 (2010). 1144 

77. Bulik-Sullivan, B.K., et al. LD Score regression distinguishes confounding from polygenicity in 1145 

genome-wide association studies. Nat Genet 47, 291-295 (2015). 1146 

78. Brown, B.C., Asian Genetic Epidemiology Network Type 2 Diabetes, C., Ye, C.J., Price, A.L. & 1147 

Zaitlen, N. Transethnic Genetic-Correlation Estimates from Summary Statistics. Am J Hum Genet 1148 

99, 76-88 (2016). 1149 

79. LaPierre, N., et al. Identifying causal variants by fine mapping across multiple studies. PLoS 1150 

genetics 17, e1009733 (2021). 1151 

80. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204-1152 

213 (2017). 1153 

81. Laakso, M., et al. The Metabolic Syndrome in Men study: a resource for studies of metabolic and 1154 

cardiovascular diseases. J Lipid Res 58, 481-493 (2017). 1155 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 

 

82. Ligthart, L., et al. The Netherlands Twin Register: Longitudinal Research Based on Twin and 1156 

Twin-Family Designs. Twin Res Hum Genet 22, 623-636 (2019). 1157 

83. Turpeinen, H., et al. A genome-wide expression quantitative trait loci analysis of proprotein 1158 

convertase subtilisin/kexin enzymes identifies a novel regulatory gene variant for FURIN 1159 

expression and blood pressure. Hum Genet 134, 627-636 (2015). 1160 

84. Hoffman, G.E., et al. CommonMind Consortium provides transcriptomic and epigenomic data for 1161 

Schizophrenia and Bipolar Disorder. Sci Data 6, 180 (2019). 1162 

85. Subramanian, A., et al. A Next Generation Connectivity Map: L1000 Platform and the First 1163 

1,000,000 Profiles. Cell 171, 1437-1452 e1417 (2017). 1164 

86. So, H.C., et al. Analysis of genome-wide association data highlights candidates for drug 1165 

repositioning in psychiatry. Nat Neurosci 20, 1342-1349 (2017). 1166 

87. Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical 1167 

Software 36(3), 1–48(2010). 1168 

88. Ge, T., Chen, C.Y., Ni, Y., Feng, Y.A. & Smoller, J.W. Polygenic prediction via Bayesian regression 1169 

and continuous shrinkage priors. Nat Commun 10, 1776 (2019). 1170 

89. Bulik-Sullivan, B., et al. An atlas of genetic correlations across human diseases and traits. Nat 1171 

Genet 47, 1236-1241 (2015). 1172 

90. Luo, Y., et al. Estimating heritability and its enrichment in tissue-specific gene sets in admixed 1173 

populations. Hum Mol Genet 30, 1521-1534 (2021). 1174 

91. Boutin, N.T., et al. The Evolution of a Large Biobank at Mass General Brigham. J Pers Med 1175 

12(2022). 1176 

92. Verma, A., et al. The Penn Medicine BioBank: Towards a Genomics-Enabled Learning Healthcare 1177 

System to Accelerate Precision Medicine in a Diverse Population. J Pers Med 12(2022). 1178 

93. Abraham, G., Qiu, Y. & Inouye, M. FlashPCA2: principal component analysis of Biobank-scale 1179 

genotype datasets. Bioinformatics 33, 2776-2778 (2017). 1180 

94. Loh, P.R., et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat 1181 

Genet 48, 1443-1448 (2016). 1182 

95. Denny, J.C., et al. Systematic comparison of phenome-wide association study of electronic 1183 

medical record data and genome-wide association study data. Nature biotechnology 31, 1102-1184 

1110 (2013). 1185 

 1186 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2023. ; https://doi.org/10.1101/2023.01.24.23284960doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.24.23284960
http://creativecommons.org/licenses/by-nc-nd/4.0/

