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Microbiota have increasingly become implicated in predisposition to human diseases,
including neurodegenerative disorders such as Parkinson’s disease (PD). Traditionally, a
central nervous system (CNS)-centric approach to understanding PD has predominated;
however, an association of the gut with PD has existed since Parkinson himself reported
the disease. The gut–brain axis refers to the bidirectional communication between
the gastrointestinal tract (GIT) and the brain. Gut microbiota dysbiosis, reported in
PD patients, may extend this to a microbiota–gut–brain axis. To date, mainly the
bacteriome has been investigated. The change in abundance of bacterial products
which accompanies dysbiosis is hypothesised to influence PD pathophysiology via
multiple mechanisms which broadly centre on inflammation, a cause of alpha-synuclein
(a-syn) misfolding. Two main routes are hypothesised by which gut microbiota can
influence PD pathophysiology, the neural and humoral routes. The neural route involves
a-syn misfolding peripherally in the enteric nerves which can then be transported to
the brain via the vagus nerve. The humoral route involves transportation of bacterial
products and proinflammatory cytokines from the gut via the circulation which can
cause central a-syn misfolding by inducing neuroinflammation. This article will assess
whether the current literature supports gut bacteria influencing PD pathophysiology via
both routes.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide.
Insoluble intracytoplasmic protein aggregates, primarily consisting of misfolded fibrillar alpha-
synuclein (a-syn), are PD neuropathological hallmarks. These aggregates [Lewy bodies (LBs) and
Lewy neurites (LNs)], are believed to cause the catecholaminergic (CA) and dopaminergic (DA)
neuronal loss which manifests as motor dysfunction (parkinsonism). Since PD motor symptoms
are not evident until approximately 60–70% of DA neurons in the substantia nigra pars compacta
(SNpc) are lost (Dauer and Przedborski, 2003), the gut–brain hypothesis may allow earlier
interventions to be made before the motor system becomes affected.
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The microorganisms in the gut are involved in gastrointestinal
(GI) homoeostasis, such as maintaining the integrity of the gut
epithelial barrier (Miraglia and Colla, 2019), and their abnormal
colonisation and function (dysbiosis) can lead to peripheral
and/or systemic inflammation (Chen et al., 2019) which may
facilitate PD pathophysiology by neural and humoral routes.

EVIDENCE FOR GUT INVOLVEMENT IN
PARKINSON’S DISEASE

Gastrointestinal symptoms have been shown to precede motor
symptoms by Parkinson himself (Parkinson, 2002). Non-
motor symptoms are thought to predate motor symptoms by
approximately a decade and increase the risk of developing PD
(Abbott et al., 2001; Adams-Carr et al., 2016). Prolonged colonic
transit time is present in up to 80% of PD patients (Jost, 1997)
with significantly higher constipation incidence also reported
compared to healthy controls (HCs) (Edwards et al., 1991; Chen
et al., 2015). Gut microbiota have been implicated since they can
aid in host nutrient metabolism and modulate gastrointestinal
motility (Miraglia and Colla, 2019).

Pathophysiological Evidence
The characteristic Lewy bodies (LBs) have also been observed in
the enteric nervous system (ENS) of PD patients (Wakabayashi
et al., 1988; Shannon et al., 2012b; Gold et al., 2013). Braak
et al. (2003) defined the caudo-rostral axis in the brain along
which a-syn pathology progresses and identified LBs and LNs
in the dorsal motor nucleus of the vagus (DMV) in PD post
mortem brain samples. This implicated the vagus nerve, and later
the ENS (Braak et al., 2006), in the spreading of PD pathology.
Braak’s hypothesis states that retrograde transport of misfolded
a-syn occurs from projection neurons in the ENS to the central
nervous system (CNS), via the vagus nerve. The initial a-syn
misfolding was posited to be induced in the enteric nerves by an
exogenous, neurotropic pathogen (Lionnet et al., 2018). Indeed,
other studies have corroborated this hypothesis (Shannon et al.,
2012a; Stokholm et al., 2016).

NEURAL AND HUMORAL ROUTES FOR
A-SYNUCLEIN MISFOLDING AND
AGGREGATION

Dysbiosis may explain the association between PD and risk
factors known to influence microbiome composition, such as
pesticides and diet (Gorecki et al., 2019; Gubert et al., 2020).
Studies in PD, discussed below, propose that changes in bacterial
products accompanying dysbiosis could contribute toward the
observed inflammation in PD patients (Devos et al., 2013; Chen
et al., 2019). Indeed, functional increases in intestinal epithelial
barrier permeability (Davies et al., 1996; Kelly et al., 2014)
and decreased expression of intestinal barrier tight junctions
(Edelblum and Turner, 2009; Clairembault et al., 2015; Perez-
Pardo et al., 2019) in PD have been attributed to inflammation.
This increased permeability would allow translocation of bacteria

and their products into the lamina propria, triggering further
inflammation. Both neural and humoral routes converge on
inflammation which, via oxidative stress, forms one way in
which a-syn misfolding can occur (Hashimoto et al., 1999; Lema
Tomé et al., 2013). Local inflammation facilitates peripheral a-syn
misfolding which propagates to the brain via the neural route.
Systemic inflammation induces neuroinflammation in the brain
(Mogi et al., 1994) via the humoral route which causes a-syn
misfolding. A-syn can induce further oxidative stress, forming a
positive feedback loop which leads to neurodegeneration in the
brain (Dias et al., 2013; Chen et al., 2019).

Neural Route
Braak’s hypothesis forms the basis of the neural route. Dysbiosis
in the gut lumen leads to a-syn aggregation in enteric nerves.
Indirectly, inflammation increases intestinal barrier permeability
and hence mucosal inflammation, from translocation of bacteria
and their products, which facilitates a-syn misfolding (Forsyth
et al., 2011; Lema Tomé et al., 2013; Kelly et al., 2014). Directly,
enteroendocrine cells (EECs) may propagate misfolded a-syn
from the lumen, along their neuropods, to enteric nerves via
functional synapses (Chandra et al., 2017). This may explain
how Braak’s luminal exogenous pathogen could directly cause
a-syn aggregation in the enteric nerves without violating the
gut epithelium. Peripheral misfolded a-syn is proposed to be
transported in a prion-like way between neurons, passing from
the enteric nerves to the vagus nerve to the brain, where
a-syn forms intracytoplasmic aggregates (Visanji et al., 2013).
Exogenous a-syn fibrils enter neurons (Volpicelli-Daley et al.,
2011), seeding intracellular a-syn aggregation both in vitro (Luk
et al., 2009) and in vivo (Kordower et al., 2011; Holmqvist et al.,
2014; Okuzumi et al., 2018), and upon exiting these neurons
restarts the process (Lee et al., 2005).

Various animal models have supported Braak’s hypothesis.
Vagus nerve-mediated translocation of a-syn aggregations from
the gut to the brain was observed after injections of human
recombinant a-syn from PD patients into rats’ intestinal walls
(Holmqvist et al., 2014), or the peritoneal cavity of a-synuclein
overexpressing (ASO) mice (Breid et al., 2016). Furthermore,
injection of preformed fibrils (PFFs) into mouse gastrointestinal
tracts (GITs) led to DA neuronal loss in the SNpc and motor
symptoms after 7 months, with a-syn accumulation in anatomical
locations associated with more advanced Braak’s stages (Kim
et al., 2019). In this study, truncal vagotomy in the PFF-injected
mice prevented a-syn spreading to the brain and protected
against loss of DA neurons. Decreased risk of PD with truncal
vagotomy has also been observed in patients (Svensson et al.,
2015; Liu et al., 2017).

Humoral Route: Dysbiosis and
Inflammation
Bacterial products and proinflammatory cytokines in the
systemic circulation trigger neuroinflammation, inducing central
a-syn misfolding through oxidative stress (Hashimoto et al., 1999;
Lema Tomé et al., 2013). Although mechanistically distinct to
the neural route, the direction of pathology transfer remains the
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same. The first study to link dysbiosis with PD demonstrated
significant differences in faecal bacterial taxa between PD
patients and HCs (Scheperjans et al., 2015). Many more case–
control studies, using faecal samples, have followed (Table 1).
Although heterogeneity between results exists, the consensus
is that the dysbiosis observed represents a shift toward a
proinflammatory profile.

Short-chain fatty acids (SCFAs) are produced by GI bacteria
when anaerobically fermenting dietary fibres. These SCFAs
(in particular butyrate, propionate and acetate) have anti-
inflammatory effects both locally and systemically (Millard et al.,
2002; Dalile et al., 2019). Reductions in the butyrate-producing
families Lachnospiraceae and Prevotellaceae and bacterial genera
such as Blautia, Roseburia, Coprococcus, and Faecalibacterium
prausnitzii are most commonly found (Table 1). Decreased
faecal SCFA concentrations in PD have been documented (Unger
et al., 2016), which could increase local inflammation and in
turn peripheral a-syn misfolding, facilitating the neural route.
Since SCFAs can maintain the integrity of the intestinal barrier
(Wang et al., 2012), their reduction could increase gut barrier
permeability, facilitating the passage of other bacterial products
and proinflammatory cytokines into the circulation, thereby
engaging the humoral system (Dalile et al., 2019). Moreover, in
normal physiology unmetabolised SCFAs can reach the systemic
circulation and cross the blood–brain barrier (BBB) (Mitchell
et al., 2011), following the humoral route, meaning that a lack of
SCFAs could directly contribute to neuroinflammation. However,
reports of SCFA-producing bacteria abundance are contradictory:
Prevotella is decreased across studies whilst Akkermansia is
increased, despite both containing mucin-degrading species
(Table 1). This same pattern has been identified in multiple
sclerosis (Freedman et al., 2018). Decreased Prevotella levels may
reflect a lack of mucin synthesis, linked to increased barrier
permeability (Bullich et al., 2019). Indeed, butyrate stimulates
mucin synthesis (Brown et al., 2011) and putative-butyrate-
producing (pBP) bacteria, such as F. prausnitzi and Roseburia,
are consistently decreased (Table 1). Akkermansia may function
as a double-edged sword: although mucin degradation is pro-
inflammatory, decreased mucin levels could negatively feedback
and increase other bacteria’s mucin synthesis (Bullich et al., 2019).
Moreover, Akkermansia converts mucin degradation products
into SCFAs (Derrien et al., 2004). Therefore, without pBP bacteria
decreases, increased Akkermansia could be anti-inflammatory;
however, decreased pBP bacteria abundance could cause net
mucin degradation and increased barrier permeability.

Molecular H2 is another bacterial fermentation product
which could be affected by dysbiosis. H2 has anti-inflammatory
and antioxidant properties (Ostojic, 2018). Reduced intestinal
H2 production in PD, through decreases of Clostridium and
Prevotella and species such as Bacteroides fragilis (Table 1),
may compromise the function of tissues which use it (such
as DA neurons) (Ostojic, 2018). Indeed, motor symptoms in
rodent lesion models of PD were prevented by H2S inhalation
and systemic administration of NaHS (an H2S donor), and DA
neuronal loss was reduced (Hu et al., 2010; Kida et al., 2011).
Therefore, a decrease in H2 might predispose to DA neuronal loss
and hence PD pathology via the humoral route.

The bacterial endotoxin, LPS, is also implicated in PD
pathogenesis and may arise from the enrichment of Gram-
negative-rich phyla such as Proteobacteria and Verrucomicrobia
(Table 1). Increased TLR4 (LPS-specific receptor) expression in
PD colonic biopsies (Perez-Pardo et al., 2019) and decreased
serum LPS-binding protein (LBP) concentrations in PD (Forsyth
et al., 2011; Hasegawa et al., 2015), also indicated LPS
involvement. Functional evidence comes from rotenone-treated
TLR4-KO mice which, compared to rotenone-treated WT mice,
had reduced inflammation (intestinal and of the brain) and
dysfunction (intestinal and motor) (Perez-Pardo et al., 2019).
LPS can subvert the intestinal epithelial barrier both indirectly,
through induced proinflammatory cytokines, and directly
(Forsyth et al., 2011; Pawłowska and Sobieszczańska, 2017). LPS-
induced inflammation in the lamina propria facilitates the neural
route and, by entering the systemic circulation, LPS can directly
participate in the humoral route. Moreover, LPS can disrupt the
BBB (Kortekaas et al., 2005; Banks and Erickson, 2010), and in the
brain can activate microglial CD14/TLR4/LBP complexes (Rivest,
2003). This creates a positive feedback cycle whereby microglia
release proinflammatory cytokines, causing neuroinflammation
which results in neuronal death and release of a-syn which then
binds to TLR4 and/or TLR2 to further activate microglia and
astroglia (Fellner et al., 2013; Kim et al., 2013). This process can
mediate DA neuronal loss in the SN via oxidative stress (Qin et al.,
2007; Dias et al., 2013).

Bacterial amyloids are increasingly being implicated in PD
pathology via the neural route or exacerbating existing pathology
via the humoral route. Extracellular amyloid fibres, such as
curli, are produced by bacterial species including Escherichia
coli (Römling et al., 1998; Hufnagel et al., 2013). Since bacterial
amyloids can cross-seed amyloids from other bacterial species
to induce aggregation, they may also cross-seed human a-syn
in enteric nerves for propagation via the vagus nerve (Santos
et al., 2019). Evidence for this comes from a study which
exposed aged rats with human-a-syn-expressing-Caenorhabditis
elegans to curliated E. coli: rats had increased a-syn inclusions
in the gut and brain, accompanied by neuroinflammation (Chen
et al., 2016). Furthermore, administration of curliated E. coli
to ASO mice produced motor defects and GI dysfunction
in addition to increasing gut and brain a-syn aggregation
(Sampson et al., 2020).

A role for bacterial amyloids in PD would presumably
require a significant increase in amyloid-synthesising bacteria.
Although none of the studies summarised in Table 1 investigated
amyloid-synthesising bacteria, consistent enrichment of E. coli is
observed, though without changes in other amyloid-producing
bacteria such as Streptococcus mutans, Staphylococcus aureus,
and Mycobacterium tuberculosis. This potential discrepancy
may be resolved by hypotheses that bacterial amyloids from
different bacterial species induce cross-seeding in a strain-specific
manner, i.e., solely on a-syn (Friedland and Chapman, 2017),
meaning that even small quantities of bacterial amyloids could
initiate pathology.

Bacterial amyloids and human oligomeric a-syn are
recognised by the host immune system via the gut
mucosal TLR2/TLR1 heterocomplex (Tükel et al., 2010;
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TABLE 1 | Table presenting results of statistically significant (p < 0.05) changes in abundance of bacterial taxa in faecal samples between Parkinson’s disease patients
(PD) and healthy controls (HCs).

Studys Increased in PD patient faeces Decreased in PD patient faeces

Scheperjans et al. (2015) Family: Lactobacillaceae, Verrucomicrobiaceae, Bradyrhizobiaceae,
Ruminococcaceae

Family: Prevotellaceae, Clostridiales i.s. IV

Keshavarzian et al. (2015) Phylum: Bacteroidetes, Proteobacteria, Verrucomicrobia
Family: Bacteroidaceae, Clostridiaceae, Verrucomicrobiaceae
Genus: Akkermansia, Oscillospira, Bacteroides

Phylum: Firmicutes
Family: Lachnospiraceae, Coprobacillaceae
Genus: Blautia, Coprococcus, Dorea, Roseburia

Hasegawa et al. (2015) Genus: Lactobacillus Species: Bacteroides fragilis, Clostridium coccoides,
Clostridium leptum

Unger et al. (2016) Family: Enterobacteriaceae
Genus: Bifidobacterium

Phylum: Bacteroidetes
Family: Lactobacillaceae, Enterococcaceae
Species: Faecalibacterium prausnitzii

Bedarf et al. (2017) Phylum: Firmicutes, Verrucomicrobiaceae
Genus: Unclassified Firmicutes, Akkermansia

Family: Erysipelotrichaceae, Prevotellaceae
Genus: Eubacterium, Prevotella

Hill-Burns et al. (2017) Family: Bifidobacteriaceae, Christensenellaceae, Lactobacillaceae,
Tissierellaceae, Verrucomicrobiaceae
Genus: Akkermansia, Lactobacillus, Bifidobacterium

Family: Lachnospiraceae, Pasteurellaceae

Hopfner et al. (2017) Family: Lactobacillaceae*, Barnesiellaceae, Enterococcaceae n/a

Petrov et al. (2017) Genus: Bifidobacterium, Catabacter, Christensenella, Lactobacillus,
Oscillospira

Genus: Bacteroides, Dorea, Faecalibacterium, Prevotella

Li et al. (2017) Phylum: Proteobacteria, Actinobacteria
Family: Enterobacteriaceae, Veillonellaceae, Erysipelotrichaceae,
Coriobacteriaceae, Streptococcaceae, Moraxellaceae, and
Enterococcaceae
Genus: Acidaminococcus, Acinetobacter, Enterococcus,
Escherichia–Shigella, Megamonas, Megasphaera, Proteus,
Streptococcus

Phylum: Bacteroidetes
Genus: Blautia, Faecalibacterium, Ruminococcus

Heintz-Buschart et al. (2018) Phylum: Verrucomicrobia
Class: Verrucomicrobiae
Order: Verrucomicrobiales
Genus: Akkermansia

n/a

Lin et al. (2018) Family: Eubacteriaceae, Bifidobacteriaceae, Aerococcaceae,
Desulfovibrionaceae

Phylum: Firmicutes, Tenericutes, Euryarchaeota
Family: Streptococcaceae, Methylobacteriaceae,
Comamonadaceae, Halomonadaceae, Hyphomonadaceae,
Brucellaceae, Xanthomonadaceae, Lachnospiraceae,
Actinomycetaceae, Sphingomonadaceae, Pasteurellaceae,
Micrococcaceae, Intrasporangiaceae, Methanobacteriaceae,
Idiomarinaceae, Brevibacteriaceae, Gemellaceae

Qian et al. (2018) Genus: Clostridium IV, Sphingomonas, Holdemania, Clostridium XVIII,
Butyricicoccus, Anaerotruncus, Aquabacterium

n/a

Barichella et al. (2019) Phylum: Proteobacteria, Verrucomicrobia
Family: Enterobacteriaceae, Verrucomicrobiaceae, Bifidobacteriaceae,
Christensenellaceae, Coriobacteriaceae, Lactobacillaceae
Genus: Akkermansia

Family: Lachnospiraceae

Li et al. (2019) Family: Ruminococcaceae, Verrucomicrobiaceae,
Porphyromonadaceae, Hydrogenoanaerobacterium, Lachnospiraceae
NK4A

Family: Bacteroides, Prevotellaceae

Pietrucci et al. (2019) Family: Lactobacillaceae, Enterobacteriaceae, Enterococcaceae Family: Lachnospiraceae

Vidal-Martinez et al. (2020) Family: Verrucomicrobiaceae
Genus: Akkermansia

n/a

Ren et al. (2020) PD-MCI (mild cognitive impairment)
Vs. PD-NC (normal cognition) and HC:
Genus: Blautia, Ruminococcus
PD-NC vs. PD-MCI and HC:
Family: Rikenellaceae
Genus: Alistipes, Barnesiella, Butyricimonas, Odoribacter

n/a

Zhang et al. (2020) Phylum: Firmicutes, Actinobacteria, Verrucomicrobia
Genus: Oscillospira, Akkermansia

Phylum: Bacteroidetes, Fusobacteria
Genus: Fusobacterium

*Further statistical analysis rendered change non-statistically significant.
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Nishimori et al., 2012; Hufnagel et al., 2013; Kim et al., 2013;
Daniele et al., 2015). This would initiate a local and central
immune response against endogenous a-syn (Lindestam
Arlehamn et al., 2020), creating a proinflammatory environment
which could facilitate a-syn misfolding (Hufnagel et al., 2013;
Friedland and Chapman, 2017; Miraglia and Colla, 2019).

HOW USEFUL ARE THESE STUDIES?

Some common criticisms can be applied to these studies.
Methodological differences, some of which are highlighted in
Supplementary Table 1, may explain some of the heterogeneity
between results. Many studies did not identify potential
confounders in statistical analyses which may have resulted
in false positive outcomes. For example, dietary differences
between PD and HC groups, which could account for differential
microbial composition (Graf et al., 2015), were not assessed.
Sample handling methods (not listed), such as the time period
between collection and freezing of samples, also varied greatly
but were not considered as potential confounders (Haikal

et al., 2019). Future studies need to agree on a standardised
protocol, with more stringent inclusion/exclusion criteria, to
increase the reproducibility and hence the reliability of the
reported results.

Cause or Consequence?
It is difficult to discern whether dysbiosis is a cause or
consequence of PD. Although two longitudinal studies have
been conducted in PD patients, neither have reported significant
changes in microbial composition with progression (Minato
et al., 2017; Aho et al., 2019). Support for a causative role
comes from the association between PD risk and inflammatory
conditions where dysbiosis is also reported, such as irritable
bowel syndrome (IBS) and inflammatory bowel disease (IBD)
(Lai et al., 2014; Lin et al., 2016; Mertsalmi et al., 2017).
Evidence for the ENS controlling microbial composition,
with the CNS modulating these ENS signals (Rolig et al.,
2017), suggests that dysbiosis is a consequence of PD. This
substantiates the hypothesis that loss of central DA neurons
initiates DMV degeneration which results in GI inflammation

FIGURE 1 | Summary diagram of the main mechanisms by which gut microbiota dysbiosis (specifically of bacteria) may cause PD pathophysiology. Created with
BioRender.com.
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and hence dysbiosis (Ulusoy et al., 2017; Rolli-Derkinderen
et al., 2020). However, the decreased PD risk after vagotomy
would suggest pathology originating from a region innervated
by the vagus nerve, such as the GIT, refuting the CNS-
centric hypothesis (Svensson et al., 2015; Liu et al., 2017;
Kim et al., 2019). These opposing arguments could potentially
be reconciled by an emerging theory which suggests the
existence of different subtypes of PD: “PNS-first” or “CNS-first”
(Borghammer and Van Den Berge, 2019). If a-syn pathology
starts in the PNS in a subset of patients, early interventions
to manipulate gut microbiota could be performed to halt
the progression of neurodegeneration before motor system
involvement. Faecal microbiota transplantation (FMT) studies
in humans have produced varying results: whilst Xue et al.
(2020) found improvements in clinical scoring scales (such
as UPDRS and NMSS), Huang et al. (2019) did not but
noted constipation alleviation. These studies’ sample sizes and
follow-up periods are too small to draw conclusions from,
however, a larger clinical trial is currently ongoing (Santens,
2021 – NCT03808389). Probiotics administration in PD patients
produced significant improvements (i.e., decreases in MDS-
UPDRS score) (Tamtaji et al., 2019) which has been supported
by DA neuron neuroprotective effects and decreased motor
impairment observed after probiotic administration in a PD
mouse model (Hsieh et al., 2020).

Seminal evidence for the role of GIT microbiota in PD
pathogenesis comes from a study of germ-free (GF) ASO mice
by Sampson et al. (2016). These mice had reduced a-syn
pathology load, microglial activation and motor symptoms
compared to specific pathogen-free (SPF) ASO mice, implicating
gut microbiota in causing PD pathophysiology. Moreover, GF-
ASO mice transplanted with faecal microbiota from human PD
donors developed exacerbated motor symptoms compared to
those given HCs (Sampson et al., 2016). This translates the
associative evidence from Table 1 into causal evidence.

SUMMARY OF GUT MICROBIAL
MECHANISMS UNDERLYING PD
PATHOPHYSIOLOGY

The routes linking gut microbiota to PD pathophysiology
are illustrated in Figure 1. The change in SCFA- and H2-
producing bacteria, which accompanies dysbiosis, initiates a local
proinflammatory environment which triggers a-syn misfolding
peripherally in the gut, thus facilitating the neural route.
Bacterial amyloids may also induce peripheral a-syn misfolding
independently of inflammation. Peripheral misfolded a-syn can
be transported along the enteric nerves via the vagus nerve
to the brainstem. Once in the brain, a-syn progresses along
Braak’s caudo-rostral axis. Local inflammation from dysbiosis can
also increase the permeability of the gut brain barrier, allowing
bacterial products to enter the lamina propria which can generate
further inflammation. Some of these bacterial products (e.g., LPS)

and proinflammatory cytokines can enter the circulation from
the lamina propria, acting via the humoral route by generating
neuroinflammation which causes a-syn misfolding.

CONCLUSION

Microbiota undoubtedly play a role in PD pathophysiology.
Associative evidence from case–control studies and functional
evidence from animal models have provided support for
microbiota causing PD via the neural and humoral routes.
PD is primarily considered a disease of old age, despite
pathogenesis preceding motor symptoms by years, with dysbiosis
conceivably acting to exacerbate inflammation. Whilst previously
gut dysbiosis was only considered as a consequence of
PD, it is now also accepted that bacterial products may
influence PD pathology through creating peripheral and systemic
inflammatory environments, increasing both peripheral a-syn
transport to the brain and neuroinflammation (Perez-Pardo
et al., 2017). However, it is still not clear what initially triggers
dysbiosis nor how inflammation would selectively cause a-syn
aggregation rather than, for example, aggregation of Aβ in
Alzheimer’s disease since inflammation is an underlying feature
of many neurodegenerative diseases. Other factors are most likely
implicated, such as gene mutations (e.g., in clearance mechanisms
for misfolded a-syn), since not every ageing person develops PD
or a neurodegenerative disease (Tran et al., 2020).

Understanding the exact mechanisms by which dysbiosis
could lead to the neuropathological hallmarks of PD will
require case–control studies to shift from predominantly
bacterial abundance measures to whole metagenome sequencing
(Supplementary Table 1) which provides data on functional
changes in the microbiota as well as the levels of other microbes
such as yeasts and viruses (Scheperjans, 2016). Studies which
look set to strengthen evidence for gut bacteria involvement
are investigating the effects of antibiotic administration on
PD risk, since antibiotics alter gut bacteria composition
(Mertsalmi et al., 2020).
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