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Simple Summary: Hypoxia in solid tumors is common in most solid cancers and is associated with
treatment resistance to both chemo- and radiation-therapy. There is also reason to believe that hypoxia
is an important determinant of metastic disease. Identifying hypoxia in solid tumors is important
in treatment planning and decision making. In 2018 Hompland et al. proposed a method, based
on quantifying consumption and supply of oxygen from diffusion weighted magnetic resonance
imaging, to estimate the hypoxic fraction of a solid tumor. The method was based on training model
parameters on a known hypoxia state in prostate cancer. In the present study we verified the validity
of the consumption and supply concept in breast cancer. Furthermore, we developed and validated a
new approach to the concept that does not require a ground truth to train the parameters.

Abstract: The purpose of the present study is to investigate if consumption and supply hypoxia (CSH)
MR-imaging can depict breast cancer hypoxia, using the CSH-method initially developed for prostate
cancer. Furthermore, to develop a generalized pan-cancer application of the CSH-method that doesn’t
require a hypoxia reference standard for training the CSH-parameters. In a cohort of 69 breast cancer
patients, we generated, based on the principles of intravoxel incoherent motion modelling, images
reflecting cellular density (apparent diffusion coefficient; ADC) and vascular density (perfusion
fraction; fp). Combinations of the information in these images were compared to a molecular hypoxia
score made from gene expression data, aiming to identify a way to apply the CSH-methodology in
breast cancer. Attempts to adapt previously proposed models for prostate cancer included direct
transfers and model parameter rescaling. A novel approach, based on rescaling ADC and fp data
to give more nuanced response in the relevant physiologic range, was also introduced. The new
CSH-method was validated in a prostate cancer cohort with known hypoxia status. The proposed
CSH-method gave estimates of hypoxia that was strongly correlated to the molecular hypoxia score
in breast cancer, and hypoxia as measured in pathology slices stained with pimonidazole in prostate
cancer. The generalized approach to CSH-imaging depicted hypoxia in both breast and prostate
cancers and requires no model training. It is easy to implement using readily available technology
and encourages further investigation of CSH-imaging in other cancer entities and in other settings,
with the goal being to overcome hypoxia-induced resistance to treatment.
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1. Introduction

Breast cancer is the most commonly diagnosed cancer in women worldwide (Interna-
tional Agency for Research on Cancer (IARC) December 2020). The treatment options upon
initial diagnosis are determined based on receptor and molecular status, local tumor extent,
involvement of lymph nodes and tumor histology and grading. Despite all of these assess-
ments it is not possible to identify who will relapse and whose tumor will metastasize [1].
This is an important clinical challenge because about 90% of breast cancer deaths are due
to metastases, reflecting insufficient response to currently available treatments. There is
increasing evidence that tumor hypoxia, areas of low oxygen concentration, is an important
determinant of metastases [2] and an adverse indicator for patient prognosis independent
of available prognostic parameters in use today [3].

Several methods have been used to measure tumor hypoxia in research settings [4], but
due to inherent limitations none of these have been established as a clinical routine assay.
Direct needle electrode measurements are invasive, limited to accessible tumors only, and
cannot differentiate pO2 values from necrotic or viable hypoxic cells [5]. Furthermore, simi-
larly to biopsy-based molecular biomarkers, the technique is highly operator-dependent
and prone to sampling bias [6]. Positron emission tomography (PET) imaging of nitromida-
zole (FMISO) uptake depicts the intratumor heterogeneity of hypoxia but has limited spatial
resolution and contrast, requires radiation exposure, long wait before scanning due to slow
clearance from the blood yielding and high physiologic uptake in liver, intestine and kidney
that prohibits abdominal imaging. As opposed to PET, magnetic resonance imaging (MRI)
is readily available, non-invasive, does not rely on the use of ionising radiation, has high
spatial resolution and is currently included in the work-up of most solid cancers, including
breast cancer. Thus, a MRI-based method that depicts the heterogeneity of hypoxia in space
and time will pave the way for development of new and innovative hypoxia modification
therapies that may ultimately translate into improved treatment outcome.

In 2018, Hompland and colleagues presented a novel MR-based imaging strategy for
depicting tumor hypoxia in a cohort of prostate cancer patients—Consumption and Supply
Hypoxia (CSH) imaging [7]. CSH imaging exploits the intravoxel incoherent motion (IVIM)
separation of signal loss from vascular pseudo diffusion and extracellular diffusion from
diffusion weighted (DW) MR images to model hypoxia based on a combination of oxygen
consumption (cell density) and oxygen supply (blood vessel density). Hypoxic fractions
were calculated as the fraction of pixels within each tumor with high consumption and low
supply. These hypoxic fractions were strongly correlated to tumor hypoxic fractions, as-
sessed by pimonidazole staining of the resected prostate glands, and tumor aggressiveness.
In a study of 74 patients with cervical cancer Hillestad et al. found that CSH imaging could
predict chemoradiotherapy outcome [8]. Both studies used pimonidazole staining of tissue
specimens as a direct measure of hypoxia, as reference standard for model-training [7,8].
The need for a reference standard is a major limitation for widespread CSH imaging of
hypoxia and to what extent the CSH parameters found for prostate cancer are transferable
to other cancer entities without re-training needs to be established.

Breast and prostate cancers have many similarities. They both arise in glandular
tissues, with comparable morphology, and they display similar biology [9]. In this study
we investigate if CSH-imaging can depict breast cancer hypoxia, using the CSH-method
initially developed for prostate cancer. Furthermore, we propose a more generalized pan-
cancer application of the CSH-method that does not rely on a reference standard of hypoxia
for training the CSH-parameters.
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2. Materials and Methods
2.1. Study Cohort

The study cohort consisted of 69 breast cancer patients recruited at Oslo university
hospital as part of a multicentre study between November 2008 and July 2012 (ClinicalTri-
als ID NCT00773695) and included large (≥2.5 cm) untreated HER2-negative mammary
tumors. Patient and tumor and characteristics are shown in Table 1.

Table 1. Patient and tumor characteristics.

Characteristic All N (%) More
Hypoxic *

Less
Hypoxic * Adjusted p

Patients 69 34 45
Age (years)

Mean 49.3 50.3 48.3 1.00 (MW)
Median 49 50 48
Range 30–70 39–64 30-70

Clinical tumor stage 0.67
(ANOVA)

T2 21 (30.4) 8 (23.5) 13 (37.1)
T3 44 (63.8) 25 (73.5) 19 (54.3)
T4 4 (5.8) 1 (2.9) 3 (8.6)

Tumor volume (mean cm3) 21.4 22.9 19.9 0.70 (MW)

Lymph node status ** 1.00
(ANOVA)

cN0 35 (50.7) 18 (52.9) 17 (48.6)
cN1 6 (8.7) 2 (5.9) 4 (11.4)
pN1 28 (40.6) 14 (41.2) 14 (40.0)

Type 0.02 (Fisher
exact)

IDC 55 (79.7) 22 (64.7) 33 (94.3)
ILC 14 (20.3) 12 (35.3) 2 (5.7)

Grade 0.12
(ANOVA)

1 5 (7.2) 3 (8.8) 2 (5.7)
2 50 (72.5) 28 (82.4) 22 (62.9)
3 13 (18.8) 2 (5.9) 11 (31.4)
N/A 1 (1.4) 1 (2.9) 0 (0.0)

ER status 0.63
(ANOVA)

Positive 58 (84.1) 33 (97.1) 25 (71.4)
Negative 11 (15.9) 1 (2.1) 10 (28.6)

Abbreviations: IDC = invasive ductal carcinoma, ILC = invasive lobular carcinoma, ER = estrogen receptor,
MW = Mann-Whitney, ANOVA = Analysis of variance, N/A = not available. * Hypoxia category is determined by
a median split of hypoxia gene expressions as described by Buffa et al. [10]. ** cN1: palpable malignant nodes not
verified by fine needle aspiration; pN1: malignant cells in nodes verified by fine needle aspiration.

Written informed consents were obtained from all patients prior to inclusion. The
study protocol was approved by the institutional protocol review board, the regional ethics
committee, the Norwegian Medicines Agency and carried out in accordance with the
Declaration of Helsinki, International Conference on Harmony/Good Clinical practice.

2.2. Molecular Hypoxia Reference Standard

For each patient, a molecular hypoxia reference standard was established by calcu-
lating a molecular hypoxia score (HSmol) from the mean expression of 15 genes identi-
fied by Buffa et al. [10]. mRNA profiling was performed in this study cohort by Silwal-
Pandit et al. [11]. Right after the MRI examination was done, three core needle biopsies
were collected from each patient. The biopsies weighed between 6–30 mg and were priori-
tized for RNA and DNA extraction. Gene expression profiling was performed using 40 ng



Cancers 2022, 14, 1326 4 of 16

total RNA and one color SurePrint G3 Human GE 8 × 60 k Microarrays (Agilent Technolo-
gies) following the manufacturer’s protocol. Feature values were log2-transformed, and
replicated probes averaged to yield one value per probe. The data was quantile normalized,
and missing values were imputed using a linear least squares regression with a cluster size
k = 20. Batch, hospital (N = 3), RNA integrity number, and array background signal effects
were removed using a generalized linear model to adjust the signal. The data were then
mean centered in both patient-, and gene axis, on a cohort consisting of 131 patients, of
which 69 are included in this study. Microarray data are previously published [11], and are
available in the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress, (accessed on
17 January 2022)) under accession number E-MTAB-4439. Based on HSmol patients were
stratified into two groups. Because there is no consensus on the definition of a hypoxic
tumor neither based on oxygenation level nor hypoxic tumor fraction [12], we chose to use
a median split to divide the tumors into two equal groups referred to as less hypoxic and
more hypoxic, similarly to the approach used by previous pO2 studies [13].

2.3. MRI Examination

The MRI images were acquired with an ESPREE 1.5T MR scanner (Siemens, Erlangen,
Germany) equipped with a phased-array bilateral breast coil (CP breast coil, Siemens,
Erlangen, Germany). The MRI protocol follows the EUSOBI recommendations [14] and
contained T2-weighted, diffusion-weighted, and dynamic contrast-enhanced (DCE) MRI.
The DW MR images, forming the basis for constructing the CSH-images, were acquired
using a single-shot spin-echo echo planar imaging (SE EPI) sequence with fat-saturated,
short T1 inversion recovery (TR = 5200 ms, TE = 69 ms, field of view (FoV) = 360 mm × 185,
pixel size = 2.57 mm × 2.57 mm, slice thickness = 4.5 mm) and diffusion gradients applied
along three orthogonal directions with five b-values of 0, 50, 250, 500, and 800 s/mm2.
DCE-MRI, used for guiding tumor delineation, was acquired using a k-space weighted
spoiled gradient echo (TR = 5.46 ms, TE = 2.59 ms), with spectral adiabatic inversion
recovery (SPAIR) fat suppression and spatial resolution 1 mm × 1 mm × 1.5 mm, following
a bolus injection of the contrast agent Gadovist (0.08 mmol/kg).

2.4. Image Analysis

An overview of the steps involved in the analyses of the breast cancer images is shown
in Figure 1.

First, the breast tumors were delineated on a noise reduced version of the b800 image.
Image noise was reduced using an edge preserving anisotropic diffusion algorithm, and
delineation was done using a marching-squares algorithm with an iso-level set by a local
Otsu-threshold [15] in the region surrounding and including the tumor. An experienced
breast radiologist (SHBB) manually reviewed the delineations using DW and DCE MR
images as guidance and made corrections if needed. Next, the voxels within the resulting
3D volume were subjected to voxel-wise IVIM-modelling separating signal attenuation
due to microcirculation-induced spin dephasing from thermal diffusion-induced spin
dephasing [16]. The model can be described by a bi-exponential equation: S

S0
= fpe−bD∗ +(

1− fp
)
e−bADC where S

S0
is the signal normalized to the signal at zero diffusion-weighting,

fp is the perfusion fraction, in the tissue of interest, D∗ is the pseudo-diffusion coefficient
associated to the IVIM-effect and ADC is the apparent diffusion coefficient.

http://www.ebi.ac.uk/arrayexpress
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Figure 1. Overview of the steps involved in calculating hypoxia from DWI images. IVIM; Intra voxel
incoherent motion.

By assuming the signal lost due to the fast flow in the vasculature is large compared
to the signal lost by Brownian motion in the extravascular space (D∗ � ADC), the IVIM
model can be simplified to a mono-exponential equation for high b-values:

S
S0

=
(
1− fp

)
e−bADC (1)

for b ≥ 200 s/mm2. DW images have inherently low signal-to-noise ratio (SNR), and with
only one data point in the range dominated by flow-driven signal loss (b50), Estimates of
D∗ and fp tends to be unstable when using the full IVIM model. More stable estimates of
ADC and fp are obtained by using the simplified IVIM model described by Equation (1),
including only b-values b ≥ 200. Since D∗ is not required for the CSH model, we calculated
ADC and fp by a voxel-by-voxel linear least squares fit to the MR signal at b > 200 s/mm2.
Voxels with an ADC > 2× 10−3 mm2/s were considered necrotic [17], and excluded from
further analysis.

Images of ADC and fp were then combined to generate estimates of the tumor hypoxic
fractions. Hypoxic fractions were defined as the fraction of voxels that satisfies Equation (2).
This is equivalent to the fraction of voxels that falls on the lower left side of the decision
boundary in a plot of fp versus ADC, defined uniquely by the model coefficients ADC0
and fp,0 from Hompland et al. [7]:

ADC
ADC0

+
fp

fp,0
< 1 (2)

The relative weights of ADC and fp on the resulting estimates of hypoxic fractions are
determined by the model coefficients ADC0 and fp,0. Increase in either ADC0 or fp,0 would
result in decreased relative weights of ADC and fp respectively in the final hypoxic fraction.

There is reason to believe that inherent differences in structural and perfusion prop-
erties between healthy prostate and breast tissue would hinder the direct application of
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a CSH model, developed and optimized in prostate, in breast tissue. A failure of such a
model to identify hypoxia in breast cancer without alterations is therefore to be expected.
Two different strategies were employed to overcome the challenge of different inherent
tissue structure: The first strategy involved re-scaling the model coefficients to the new
breast tissue specific distributions of the IVIM parameters. Defining new, tissue specific,
model parameters in accordance with Equation (3) ensures a decision boundary that gives
a relative weighting of consumption and supply that more closely resembles that found to
be optimal in prostate.

ADCbreast
0 = ÂDC

(
ADC0

ÂDC

)
prostate

f breast
p,0 = f̂p

(
fp,0

f̂p

)
prostate

(3)

where ÂDC and f̂p are the mean values of all tumor voxels in all patients in each cohort.
Model parameter re-scaling is essentially equivalent to re-scaling the data itself, using

a mean value normalization. This is a common method of dealing with difference in
data dimensionality, but when comparing different cancer types, it is ignoring the known
difference in oxygenation between the two tissues [18]. Different levels of oxygenation in
different cancers have shown to be predictive of clinical outcome. Additionally, different
cancers display different biological responses to similar oxygenation levels. Therefore,
defining a tumor as hypoxic is not trivial. A breast cancer tumor can be categorized
as hypoxic at an oxygenation level that would be considered non-hypoxic in prostate.
Under the assumptions underlying the consumption and supply hypoxia model, the lower
oxygenation in prostate cancers can be explained by the lower ADC values. Normalizing the
data by the mean results in a CSH model that ignores the inherent difference in distribution
of ADC and fp in different tissues. Such a model would implicitly assume that similar
relationships between ADC and fp gives rise to hypoxia in both prostate and breast tumors.
Ideally, we want a method of scaling the data in such a way that the magnitude of ADC
and fp is comparable without negating the inherent difference between the tissues. This
can be achieved by re-scaling the data using a variant of min-max normalization, where the
normalization and data centring is done using global, tissue independent, values ADClow,
ADChigh, fp,low, and fp,high:

ADC =
ADC− ADClow

ADChigh − ADClow

fp =
fp − fp,low

fp,high − fp,low

(4)

where ADC and fp are the re-scaled feature arrays. We have assumed that ADC values above
2× 10−3 mm2/s represents necrotic tissue, and that ADC values below 0.4× 10−3 mm2/s
represents the maximum extracellular diffusion restriction possible, where intracellular
water diffusion is present. We also assume that the clinically relevant range of the fp values
is 0–0.4. The values used for re-scaling the data are these assumed physiological limits of
ADC and fp respectively: ADClow = 0.4× 10−3 mm2/s, ADChigh = 2.0× 10−3 mm2/s,
fp,low = 0 and fp,high = 0.4.

Rather than using a decision boundary to create a binary classifier, we calculated a
continuous hypoxia score that reflects the individual weighing of ADC and fp. This score
is based on the Euclidean distance from the origin in a cartesian plot of ADC versus fp. For
ease of interpretation, the score is given as:

HSEuclid = 1− 1√
2

√
ADC2 + f 2

p (5)
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This ensures a score ranging from 0 to 1, that increases with increasing estimated
probability of hypoxia.

2.5. Validation Cohort

To validate the pan-cancer feasibility of any proposed generalized applications de-
veloped in the breast tumors, a validation cohort consisting of 95 prostate cancer patients
was used. This is the cohort in which the CSH method was first developed and is well
suited to use as a validation cohort, as the hypoxia reference standard consists of whole-
mount prostatectomy specimens stained with the hypoxia marker pimonidazole. This is
considered the gold standard for assessing hypoxia in pathological specimens and provides
high resolution hypoxia information that accounts for intra-tumor heterogeneity. Based
on the extent and intensity of pimonidazole staining, tumors were categorized as hypoxic
or non-hypoxic. Details on the methodology concerning the pimonidazole staining, and
hypoxia scoring is available in [19]. Details on the patient and tumor characteristics, as
well as the details on the MRI protocol are available in [7].

2.6. Statistical Analysis

Non-Gaussian distributed data groups were compared using the non-parametric
Mann-Whitney U test and Spearman’s rank correlation coefficient. In the comparison
between hypoxia scores, hypoxic fractions and molecular hypoxia scores, a one-sided Mann-
Whitney test was used. For all other comparisons, the test was two-sided. Categorical
variables were compared using the two-sided Fisher’s exact test. Significance level was set
at p < 0.05.

3. Results
3.1. Molecular Hypoxia Score

Tumor hypoxia was assessed in pre-treatment diagnostic tumor biopsies from mRNA
expression data by calculating the molecular Buffa hypoxia score (HSmol) in 69 breast cancer
patients. Large differences in HSmol were found between patients, with a median value of
0.007 and a range from least hypoxic, −0.6 to most hypoxic, 1.4. Patients were categorized
as more hypoxic (n = 35) and less hypoxic (n = 34) using the median value as a cut-off.
There were no significant differences in clinical parameters like tumor volume, clinical stage
or lymph node status between the two hypoxia groups There was, however, an increased
occurrence of hypoxic tumors in the invasive lobular carcinomas (p = 0.02), and decreased
occurrence of hypoxic tumors in estrogen receptor negative tumors (p = 0.04) (Table 1).
The hypoxia categories served as a hypoxia reference standard for developing a hypoxia
imaging tool from DW MR images.

3.2. Individual IVIM Parameters and Buffa Hypoxia Score

ADC and fp images were produced, and tumor voxels extracted from 69 breast cancer
patients. Both ADC and fp showed significant heterogeneity both between and within
patients (Figure 2), demonstrating the ability of imaging to reflect the heterogenic cell
growth and vascular pattern characteristic of breast cancer.

Both ADC and fp were found to be significantly lower in the more hypoxic tumors
than in the less hypoxic tumors (p < 0.02, p < 0.05). These results formed the rationale
for using ADC and fp as proxies for oxygen consumption and supply, respectively, and
combine them using the CSH model to create hypoxia images.
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Figure 2. Examples of ADC and fp maps in two patients. One with a high molecular hypoxia score
(HSmol) (A) and one with a low HSmol (B). The median ADC and fp for all tumors with a low HSmol
are shown against the tumors with a high HSmol in (C).

3.3. CSH Imaging in Breast Cancer

CSH calculations in breast cancer were first done by directly transferring the linear
decision boundary for hypoxia classification found in prostate cancer, as described by
Equation (2), with ADC0 = 0.79× 10−3 mm2/s and fp,0 = 0.437. This approach gave
relatively low hypoxic fractions, mean = 0.1, with limited variation between patients, and
there was no difference in estimated hypoxic fractions between the two hypoxia categories
(p = 0.1). Hence the CSH model cannot be directly transferred from prostate cancer to
breast cancer. Comparing the ADC and fp from the prostate cancer patients, on which the
original model was trained, to those in the breast cancer patients investigated here may
explain these results. Figure 3 shows the distribution of ADC and fp values of all tumor
voxels in the breast cancer and the prostate cancer patients.

The median ADC tumor values in the breast cancer patients were 52% higher than
those in the prostate cancer tumors, while fp values were similar between the two diseases.
This may explain why lower hypoxic fractions were found in breast cancer than what was
reported using this method in prostate cancers.

It is clear that a combination of ADC and fp, trained and optimized in prostate cancer
to identify hypoxia, do not identify hypoxia in breast cancer. If a CSH model capable
of identifying hypoxia in breast exists, a retraining for the new cancer type is required.
Using the hypoxia reference (HSmol) as ground truth, the potential results obtained from
model retraining were examined. Hypoxic fractions were calculated using a range of
decision boundaries, obtained from different combinations of ADC0 and fp,0. For each
decision boundary, the Mann-Whitney p-value was calculated, and used as a measure of
the ability of the model to separate between hypoxic and non-hypoxic tumors. p-values
were calculated for ADC0 ranging from 0.4 to 2, and fp ranging from 0.1 to 0.6. Figure 4
illustrates how two different decision boundaries look in one single patient (A) and in the
entire patient cohort (B).

The Mann-Whitney p-values for all combinations of ADC0 and fp,0 are shown in
Figure 4C. There exists a range of ADC0 and fp,0 that gives decision boundaries with an
ability to separate hypoxic and non-hypoxic tumors that is better than both ADC and fp
alone (p < 0.005). The best separation (p = 0.002) was found for ADC0 = 1.51 mm2/s, and
fp,0 = 0.33.

The results above demonstrate that CSH imaging has the potential to provide informa-
tion on tumor hypoxia in breast cancer, however, it also highlights the fact that different
tumor entities require retraining the model against a hypoxia reference standard. A hypoxia
reference standard is not commonly available, and a general approach for transferring
the CSH model between cancer types, without the need for retraining the model, would
expand the applicability of CSH imaging considerably. The development of a pan cancer
CSH model approach is described in the following results. As a means of transferring
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model-parameters between cancer types, the ADC0 and fp,0 for breast cancer were scaled
according to the distributions of ADC and fp in breast cancer, relative to that reported for
prostate cancer, according to Equation (3). Figure 3 shows that the distributions of ADC
and fp values are different in breast and prostate. Particularly ADC is higher in breast,
whereas the difference in fp between the two cancer entities is much smaller. A model
optimized in prostate cancer would therefore tend to overestimate the importance of the
relative weighing of the consumption term in tissues with higher ADC values. To obtain
a model that preserves the relative weighing of the consumption and supply terms, the
model coefficients were re-scaled such that the relationship between them and the mean
values of their respective consumption and supply parameters were equal in both tissues.
The new, tissue specific model coefficients were calculated according to Equation (3).

Figure 3. The distribution of ADC and fp for all voxels in the 3D breast tumor volumes, together
with the corresponding distributions from the prostate cohort from Hompland et al. [7]. Median
ADC and fp in the breast cancer tumors were 1.06× 10−3 mm2/s and 0.12 respectively, compared to
0.7× 10−3 mm2/s and 0.13 in prostate cancer [7].

The new, tissue-specific, recalibrated values (ADCbreast
0 = 1.18 mm2/s, and

f breast
p,0 = 0.43), gave a decision boundary that resulted in hypoxic fractions that were

higher than those obtained using the prostate-trained parameters (mean = 0.32± 0.17),
with a larger variation between patients. Using this approach, a moderate improvement in
separating more hypoxic from less hypoxic tumors was achieved (p < 0.02). This improve-
ment was, however, not enough to approach the optimal results identifiable by a retrained
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model, indicating that the optimal weighting of the two model parameters had not been
identified by this model parameter re-scaling.

Figure 4. Two different linear decision boundaries (LDB) in a breast cancer patient (A). Boundary 1
(upper row) is the same LDB as Hompland et al. found to be optimal in prostate cancer. Boundary
2 (lower row) is the LDB that gives the best results in the breast cancer cohort. The difference in
calculated hypoxic fraction between more hypoxic and less hypoxic tumors, using the same two LDBs
shown in A (B). Mann-Whitney p-values calculated using a range of different decision boundaries (C).

The generalized CSH method allows creation of continuous hypoxia maps of the
whole tumor with the same spatial resolution as the DW MR images. Figure 5 shows the
calculated hypoxia maps for two of the patients with low and high HSmol , respectively.

Figure 5. CSH hypoxia maps of the same two patients as shown in Figure 2; one patient with a
high molecular hypoxia score HSmol = 0.33 (left), and one with a low molecular hypoxia score
HSmol = −0.23 (right).

Median HSEuclid4 was significantly correlated to HSmol (Spearman ρ = 0.31, p < 0.01).
In the binary hypoxia categories, median HSEuclid was significantly higher in the more hypoxic
tumors(median HSEuclid = 0.39) than in the less hypoxic tumors (median HSEuclid = 0.33),
p = 0.001. This significance level was similar to the level obtained from the optimal linear
decision boundary identified in Figure 4. Figure 6 shows how the three different methods
of identifying tumor hypoxia using the CSH-concept compare.

The stratification of tumors into more and less hypoxic was done by dividing the
tumors into two equally populated groups, based on the Buffa gene expression score,
HSmol . To investigate whether the results were influenced by this arbitrary division of
hypoxic and non-hypoxic tumors, a broad sweep of HSmol cut-off values was performed.
As shown in Figure 7 the generalized CSH method is reliable (p < 0.05) for a wide range of
cut-off values.
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Figure 6. Three different ways of estimating hypoxia in breast cancer using the CSH method. HFLDB,1

is hypoxic fraction, calculated using the same model, with the same model-parameters as Hompland
et al. used in prostate cancer. HFLDB,2 is hypoxic fraction calculated using the Hompland model,
but with adapted model parameters, and median HSEuclidean is the median hypoxia score, calculated
by Equation (5). Area under the reciever operateor characteristic curves for all three approaches are
shown to the right.

Figure 7. Mann-Whitney p-value (blue) for hypoxia stratification thresholds ranging from
HSmol = −0.4 to HSmol = 0.6. The resulting fractions of patient stratified as hypoxic for the thresh-
olds are displayed in red.

The generalized CSH method and the linear decision boundary CSH method were
compared by calculating hypoxic fractions from HSEuclid, as the fraction of tumor voxels
that satisfies HSEuclid > HSthreshold, where HSthreshold is defined as the median value of
HSEuclid across all voxels in all tumors (HSthreshold = 0.54).

The difference between the hypoxic fractions calculated using HSEuclid and the hy-
poxic fractions calculated using the linear decision boundary approach, were calculated
for a range of decision boundaries, given by different combinations of ADC0 and fp,0.
For each decision boundary, the difference in calculated hypoxic fractions was given as
∆HF = HFLDB − HFEuclid and is shown in Figure 8.
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Figure 8. The Mann-Whitney p-values from comparisons of the hypoxic fraction (HF), as calculated
using a range of linear decision boundaries, with the molecular hypoxia score (HSmol) (A). The region
surrounded by the black, dotted line is indicating the model coefficients ( fp,0 and ADC0) that gives
the strongest correlation to HSmol (p < 0.005). The difference in HF calculated using the novel,
unsupervised method and linear decision boundary models (B) is minimal for values of fp,0 and
ADC0 that are largely overlapping those that gives the best decision boundary.

The two calculations of hypoxic fractions were equal, to within 1%, in a region that lies
within the region previously identified as giving the best linear decision boundary results
(p < 0.005).

3.4. Validation in a Prostate Cohort

The unsupervised way of calculating hypoxia, using the continuous hypoxia proba-
bility score performed well in breast cancer, and reproduced the best achievable results
when using a trained linear decision boundary method. The potential of the generalized
CSH model was evaluated using the prostate cancer patient cohort from the original paper
introducing the CSH methodology [7]. HSEuclid was calculated in the prostate cancer cohort,
and hypoxic fractions were calculated using the median HSEuclid as a threshold. There was
strong correlation between hypoxic fractions, calculated from the two different methods
(Pearson r = 0.78, p < 10−19). The unsupervised, generalized CSH method resulted in
an equally good separation between the more hypoxic and less hypoxic tumors in the
validation cohort as the linear decision boundary. Figure 9 shows how the generalized
method compares to the original classification by Hompland et al. [7].

Figure 9. Hypoxic fractions in prostate cancer calculated using the original linear decision
boundary(HFLDB) from Hompland et al., and the hypoxic fraction calculated using the unsupervised
(Euclidean) method (HFEuclidean) (A). Area under the reciever operating characteristic curve for the
two methods (B).
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4. Discussion

Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has
been associated with a poor clinical outcome and plays a critical role in chemo- and radio-
resistance. This is the first study to show that consumption and supply imaging, based on
DW MRI, depicts hypoxia in breast cancer. Using the breast cancer data, we developed a
generalized method for CSH imaging that, as opposed to previous methods, requires no
model training. The generalized method was validated, without adaptation, in a prostate
cancer cohort.

Our findings in breast cancer follows previous results in prostate [7,20] and cervical [8]
cancer. Hompland et al. compared CSH derived hypoxic fractions to hypoxic fractions
from pimonidazole-stained whole-mount prostatectomy specimens in 114 patients. They
found a strong correlation between the hypoxic fractions, and a strong correlation to disease
aggressiveness. Chen et al. used the Hompland-model on 75 prostate cancer patients and
found that the hypoxic fraction separated low- and high-grade prostate cancers. Hillestad
et al. studied xenografts in mice, and cervical cancer patients. They found strong associa-
tion between CSH derived hypoxia level, direct measures of hypoxia from pimonidazole
staining, and indirect measures by expression of nine hypoxia-associated genes. All three
studies relied on a supervised learning procedure to optimize the combination of con-
sumption and supply parameters against a hypoxia reference standard. The generalized
method proposed here requires no model training. We found that the generalized method
performed similarly to the pre-trained linear decision boundary model [7] in both breast
and prostate cancer patients.

The CSH methodology assumes that cellular density reflects oxygen consumption,
and that perfusion fraction reflects oxygen supply. Inherently, these assumptions ignore
differences in cellular respiration, and differences in blood oxygen saturation and vessel
perfusion. It is known that proliferating cell consumes more oxygen than non-proliferating
cells [21]. The strong correlation between cell density and the cellular proliferation marker
Ki67 [22] support the assumption that oxygen consumption increases with increasing
cell density. Treatment that affects tumor cell metabolism may alter the validity of this
assumption. A prerequisite for oxygen supply is the presence of functional vessels. It
is generally accepted that there is a linear relationship between the blood volume and
the IVIM perfusion fraction [16,23,24] and the correlation between the fp and microvessel
density was also confirmed in the prostate cancer cohort [7]. In this paper we have used
only blood volume to model oxygen supply and therefore assumed uniform transport
of oxygen in the blood. However, other factors such as blood rheology, haematocrit
and oxygen-haemoglobin saturation also influence oxygen supply, and could alter the
relationship between blood volume and oxygen supply. Comparing fp to more oxygen-
specific imaging techniques, such as T2* BOLD imaging as proposed by Zhang et al. [25]
and Hoskin et al. [26] might provide insight into the nature of the relationship between fp
and oxygen supply, potentially improving the precision of the CSH method.

In the breast cancer cohort, the molecular hypoxia score, HSmol was used as the
hypoxia reference standard. The correlation between CSH-derived hypoxia and HSmol
in the breast cancer cohort was not as strong as that obtained between the CSH-derived
hypoxia and pimonidazole-score in the prostate cancer cohort (Figure 9). A possible
explanation could be that HSmol was obtained from one or two needle biopsies, originating
from unknown locations within the tumors. Given the heterogenic nature of the tumor
microenvironment, including vascular and cellular density, the gene expression hypoxia
might only be moderately representative of the overall hypoxia status of the tumor. In the
validation cohort, for which there existed a much more comprehensive reference standard,
the results were much stronger, using either method.

We have found a method for combining images reflecting oxygen consumption and
supply to depict hypoxia levels. Hypoxic fraction has been shown to be superior to median
hypoxia levels in predicting clinical outcome [12]. However, the hypoxia level defining
the hypoxic fractions, relevant for clinical outcome, has been shown to be different in
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different cancers, and for different treatment regimes [12]. The original CSH method is, by
nature, a binary classifier that returns hypoxic fractions, based on an optimization against
a pathologic measure of hypoxic fractions. Using the generalized method, the result is
a continuous CSH score, where a threshold must be determined that defines the binary
classification of hypoxic or non-hypoxic. In this study, the median CSH probability score
was used as a threshold. This gave strong likeness to the hypoxic fractions as calculated
using the optimal linear decision boundary in both breast and prostate cancers. It is,
however, not known how this threshold affects how the hypoxic fractions are related to
clinical outcome.

Tumor hypoxia is a spatially and temporally heterogenous phenomenon [2], and reli-
able longitudinal imaging of oxygenation status is required for therapies aimed at targeting
areas of hypoxia in an effort to improve therapeutic outcome [27]. Our proposed model for
in vivo hypoxia imaging has several advantages compared to other MRI approaches. It is
based on an imaging method already in widespread clinical use, and, as opposed to other
proposed techniques, such as OE-MRI, T2* maps from BOLD imaging, requires no image
co-registration, contrast agent administration, or oxygen challenge [25,26,28]. Diffusion
has high SNR and has been shown to be very stable [29]. CSH imaging is an appealing
candidate for dose painting [30] to achieve dose escalation within hypoxic areas because it
is non-invasive, the imaging time is a few minutes, and neither contrast media nor ionizing
radiation are needed. Furthermore, integration of MRI and linear accelerators is antici-
pated to revolutionize cancer treatment, allowing real time adaptation of radiotherapy to
MR-derived biomarkers of physiological changes, such as hypoxia [31].

The CSH scores were calculated based on ADC and fp estimates obtained from differ-
ent sets b-values. The choice of b-values used for calculating the simplified IVIM model
parameters may have profound effects on the physiological meaning of the ADC and fp
values. In the original paper by Hompland et al. this effect was thoroughly documented,
and they found that ADC reflected cellular density when calculated using b-values in the
range b [200,800]. The b-values used to estimate ADC and fp in breast were not the same,
but within this range, therefore the effect of the selection of b-values are unlikely to have
significantly affected the estimates of hypoxic fractions.

To what extent our generalized CSH method is transferrable to other cancer entities,
with different tissue morphology and underlying biology, remains to be determined. It
is, however, worth noting that despite all the similarities between breast and prostate
cancers, they have been shown to be different in terms of oxygenation [18]. This is reflected
in the findings in this study, where the generalized CSH model gives a higher hypoxia
score in prostate cancers than in breast cancers. This difference in hypoxia levels is lost
when the tissue specific median HSEuclid is used to calculate hypoxic fractions. Different
levels of hypoxia have different biological and clinical implications, demonstrated by
the findings of different hypoxia threshold levels for predicting outcome in different
cancers [12]. Hillestad et al. found that different levels of hypoxia were associated to
biological processes like cancer hallmarks and stabilization of HIF1A protein [8].

5. Conclusions

In this study of 68 patients with untreated locally advanced breast cancer we have ver-
ified that CSH imaging identifies hypoxic breast cancers. Furthermore, we have developed
a novel approach to CHS imaging that requires no model training. The novel unsupervised
CSH imaging method for quantification of tumor hypoxia performed equally well as the
original CSH model. It also demonstrated a potential for use in multiple cancer entities.
The MR technology is widely available and our findings encourages further studies of CSH
imaging in other cancer entities and in other setting with the goal being to help overcome
hypoxia-induced resistance to treatment.
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