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)e clinical characteristics and vascular computed tomography (CT) imaging characteristics of patients were explored so as to
assist clinicians in diagnosing patients with atherosclerosis. 316 patients with atherosclerosis who were hospitalized for emergency
treatment were treated with rapamycin (RAPA) in the hospital. A group of manually delineated left ventricular myocardia (LVM)
on the patient’s coronary computed tomography angiography (CCTA) were selected as the region of interest for imaging features
extracted. )e CCTA images of 80% of patients were randomly selected for training, and those of 20% of patients were used for
verification. )e correlation matrix method was used to remove redundant image omics features under different correlation
thresholds. In the validation set, CCTA diagnostic parameters were about 40 times higher than the manually segmented data. )e
average dice similarity coefficient was 91.6%.)e proposedmethod also produced a very small centroid distance (mean 1.058mm,
standard deviation 1.245mm) and volume difference (mean 1.640), with a segmentation time of about 1.45± 0.51 s, compared to
about 744.8± 117.49 s for physician manual segmentation. )erefore, the deep learning model effectively segmented the ath-
erosclerotic lesion area, measured and assisted the diagnosis of future atherosclerosis clinical cases, improved medical efficiency,
and accurately identified the patient’s lesion area. It had great application potential in helping diagnosis and curative effect analysis
of atherosclerosis.

1. Introduction

)e coronary atherosclerotic heart disease (CAHD) is a
common cardiovascular disease endangering human phys-
ical and mental health in China. It is the most common type
of organ disease caused by atherosclerosis, and the acute
myocardial infarction (AMI) is the most serious type of
coronary heart disease [1, 2]. In recent years, with the
continuous development of China’s economy and the
continuous rise of the people’s happiness index, the inci-
dence of atherosclerosis in China has also increased year by
year, with 45–55 deaths per 100,000 people from athero-
sclerosis. Besides, people who get sick are getting younger
and younger, making the occurrence and prognosis of AMI a
central issue in current research [3].

Rapamycin (RAPA) is the first knownmammalian target
of rapamycin (mTOR) pathway inhibitor, and the molecular

formula is C51H79NO13. As a traditional macrolide antibi-
otic, RAPA was first isolated from the fungus Streptomyces
hygroscopicus and used as an antifungal drug in the 1970s. It
was certified by the U.S. Food and Drug Administration in
1999 to resist acute immune rejection of organ transplant
patients [1]. In recent years, the antitumor activity and
antiaging function of RAPA and its analogues have been
gradually discovered; they also have certain effects on dia-
betes and cardiovascular diseases (CVD) and so forth and
have been gradually applied in relevant clinical treatment
[4].

)e imaging examination plays an important role in
assessing whether patients with coronary heart disease are
accompanied by myocardial ischemia [5]. However, ultra-
sound examination has strong subjective dependence, which
is related to the experience of the operator. Its current
application value in diagnosing myocardial ischemia is
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limited. Coronary computed tomography angiography
(CCTA) can clearly show the structure of the heart and the
condition of the coronary arteries [6]. Clinicians can assess
the degree of stenosis of the coronary arteries and the
characteristics of stenosis plaques, and then they can stratify
patients for risk. However, the radiology department or
clinician cannot directly identify whether the patient is
accompanied by myocardial ischemia on the resting CCTA.
CCTA combined with stress perfusion examination can
visually display whether the myocardium has perfusion
defects and can identify myocardial ischemia. However,
compared with resting state CCTA, stress perfusion ex-
amination will increase the radiation dose, and the use of
stress drugs will increase the risk of patient examination, and
some patients cannot tolerate it [7]. )erefore, if advanced
image analysis methods, such as artificial intelligence (AI)
technologies, can be used to identify myocardial ischemia on
the CCTA in the conventional resting state, the various
follow-up invasive examinations can be reduced, which has
important clinical significance.

AI is a branch of the field of computer science, which
aims to imitate human thinking process, learning ability, and
knowledge storage as much as possible [8]. Some research
limitations based on traditional methods have gradually
become prominent with the advent of the “big data” era.
With the development of computer hardware and software,
the application research of AI in the medical field has be-
come a hot topic [9]. At present, the research results of AI in
the medical field continue to emerge, and it has applications
in disease screening, diagnosis, choice of treatment methods,
and patient prognosis judgments. At present, many studies
showed that some diagnostic or predictive models based on
AI methods were better than those based on traditional
methods. For example, Esteva et al. [10, 11] established a
machine learning-based model to predict the 5-year all-
cause mortality of patients with suspected coronary heart
disease. )is model evaluated 25 clinical features and 44
CCTA-based features. )is model based on machine
learning had better predictive performance than the Fra-
mingham risk assessment model established by traditional
statistical methods. However, the above-mentioned work
required the clinician to manually outline the contour of the
myocardium on the corresponding image, which was un-
doubtedly a heavy and laborious work [12]. At present,
studies showed that some deep learning-based methods can
quickly, efficiently, and automatically outline the structure of
interest, which not only greatly reduced the workload of
clinicians, but also avoided subjective differences between
different doctors to a certain extent [13].

)erefore, the research aimed to study the use of imaging
omics methods combined withmachine learningmethods to
analyze LVM characteristics. As a reference, the fractional
flow reserve (FFR) of invasive coronary artery was compared
with the hemodynamically significant stenosis judged by
CCTA and invasive coronary angiography (ICA) to evaluate
the effectiveness of different methods in diagnosing ath-
erosclerosis. In addition, through the deep learning method
and with the contour of the left ventricle myocardium
manually drawn by the clinician as a reference, a deep

learning model that can accurately and automatically outline
the left ventricle was constructed to reduce the workload of
the clinician.

2. Methods

2.1. Research Object. 316 patients with CAHD who under-
went emergency treatment for the first time within 12 hours
of onset of hospitalization were selected in the research from
May 2017 to March 2021. )ere were 221 males and 95
females, aged 60.66± 12.19 years. )e CAHD patients met
the 2014 American College of Cardiology/American Heart
Association (ACC/AHA) AMI diagnostic criteria.

Inclusion criteria were as follows: a) patients who met
the diagnostic criteria of AMI and received emergency
treatment within twelve hours; b) patients with complete
case data and complete follow-up on time.

Exclusion criteria were as follows: (a) patients with a
history of myocardial infarction or coronary revasculari-
zation; (b) patients with previous arrhythmia such as per-
sistent atrial fibrillation; (c) patients with hematological
diseases, malignant tumors, autoimmune diseases, infec-
tions, or inflammatory diseases; (d) patients with severe
heart, liver, and kidney dysfunction; (e) patients with recent
major trauma and major surgery; (f ) patients with incom-
plete clinical data.

A total of 316 patients with coronary atherosclerosis met
the above inclusion criteria and exclusion criteria in the
research. )e research had been approved by the medical
ethics committee of hospital, and the family members of the
patients included in the research had signed an informed
consent form.

2.2. Data Acquisition and Image Analysis

2.2.1. CCTA Data Collection. )e CCTA data was collected
for all patients using 64 rows, and CCTA images were
collected by scanning machines from four different CT
manufacturers (Siemens, Somatom Flash, Definition Flash,
Somatom Definition FlashAS+, Force; GE Discovery CT 750
HD, Light Speed VCT; Toshiba, Aquilion One Vision;
Philips BrillianceiCT 256). )e patients took nitroglycerin
sublingually to dilate the coronary arteries five minutes
before the CCTA examination. For patients with a fast heart
rate, they can consider taking oral p-blockers (25–75mg)
before the examination according to the doctor’s recom-
mendation. )e CTscan range was determined according to
location phase, which was from tracheal protrusion to lower
edge of the heart. All patients received adaptive sequence
acquisition triggered by prospective electrocardiogram.

2.2.2. Image Analysis. )eCCTA images of all patients were
locally anonymized to remove sensitive information, then
transmitted to the core laboratory, and imported into the
Siemens postprocessing workstation for further analysis.)e
CCTA image quality was assessed by two experienced im-
aging doctors (with 3 years and 18 years of CCTA-related
work experience, respectively). A 4-point method was used
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for evaluation: 1� undiagnosable; 2� acceptable; 3� good;
4� excellent. When there was a difference, the two radiol-
ogists reached a consensus through consultation. )e cases
with an image quality score of one were excluded.

2.3. Experiment Environment

2.3.1. Construction of the Deep Learning Segmentation
Model. Before the deep learning model was constructed, the
contours of the left ventricular myocardium (LVM) of 100
patients were manually sketched as a reference for the deep
learning method to learn from CCTA images. )e deep
learning model was composed of U-Net and deep attention,
which mainly included two parts: training phase and seg-
mentation phase. )e flow chart of the research is shown in
Figure 1. Before the training was started, the 3D-patches on
the CCTA images and the corresponding hand-drawn
myocardial contours were collected. A voxel window with a
window size of 512× 512× 32 was used to slide on the Z axis
of the image to extract 3D-patches. )e data augmentation
methods were used, such as flipping, rotating, and scaling, to
increase the heterogeneity of the training set. Figure 2 shows
that the deep learning network was composed by an
encoding path and a decoding path. )e long-hop con-
nection bypassed the feature extracted from the encoding
path and was mapped to the decoding path.

2.3.2. Deep Learning Model. After training, first the 3D-
patches of the CCTA image were input into the trained
model to obtain the probability map that each pixel on the
CCTA image was the myocardial tissue, so as to obtain the
myocardial segmentation result of the new patient. )en,
these probability maps were merged into the entire image,
and the final segmentation result of the LVM contour was
obtained by gathering the myocardial probability maps and
merging them on average. )e fivefold cross-validation was
used to verify the segmentation performance of the deep
learning model. )at is, the data of the above-mentioned
patients were randomly classified into five equal parts, and
four groups were selected for training, and the remaining
group was used for verification. )e dice similarity coeffi-
cient (DSC), mean surface distance (MSD), residual mean
square distance (RMSD), center mass distance (CMD), and
volume of difference (VOD) were used to evaluate the
difference between LVM contour drawn by the model and
that drawn manually by the doctor. )e image segmentation
accuracy was evaluated visually, and the segmentation time
was recorded.

2.3.3. Statistical Analysis. )e data conforming to the
normal distribution was represented by the mean± standard
deviation in the research, and the data not conforming to the
normal distribution was represented by the median or
percentage. )e categorical variables were expressed in
frequency and percentage. )e commercial software (Med
Calc; version 18.2.1) and SPSS 22.0 version were used for
statistical analysis of data. )e Kolmogorov–Smirnov test

was used to determine whether the data fit a normal dis-
tribution. )e t-test was used to compare the difference
between LVM time by the automatic segmentation model
and that drawn manually by the doctor. )e bilateral
P< 0.05 was considered statistically significant in the
research.

2.4. %erapeutic Reagents and Methods

2.4.1. Preparation of %erapeutic Reagent RAPA Nano-
particles (RAPA NP). 10mg of RAPA and 20mg of indo-
methacin (IND) were accurately weighed and added into
1mL dimethyl sulfoxide (DMSO), which were fully sus-
pended and dissolved with ultrasound.)en, 1mL of DMSO
suspension solution of 10mg/mL PEI was added. After full
and uniformmixing, the mixed solution was transferred into
a dialysis bag (molecular weight was 3500Da). )e sus-
pension of RAPA nanoparticles (PEI/IND/RAP) was ob-
tained after dialyzed with ultrapure water for 24 hours. )e
suspensions containing different masses of small molecule
shuttle-based drugs ursodeoxycholic acid (UDCA) were
prepared in the same way.

2.4.2. Treatment Method. 300mg aspirin and 180mg tica-
grelor/300mg clopidogrel were given before treatment.
RAPA was injected intravenously during treatment. Coro-
nary angiography was performed via femoral artery or radial
artery using standard techniques to assess coronary artery
disease. Other treatments included angiotensin converting
enzyme inhibitors (ACED) receptor blockers, diuretics, and
nitrates, which can be used depending on the patient’s own
specific conditions.

2.5.Observation Index. )e0, 12, and 24 weeks were selected
as the evaluation time points. )e intima-media thickness
(IMT) and plaque thickness (course integral) were detected
at each evaluation point, and the patients in the treatment
group were followed up to test the carotid artery intima-
media thickness after three months to monitor the degree of
treatment.

2.6. Statistical Method. )e appropriate statistical analysis
method was selected according to the nature of clinical trial
data (measurement, classification, and grade data). )e chi-
square test or exact probability test was used for classifi-
cation data, normality test and homogeneity test of variance
were used for measurement data first, t-test was used for
comparison of sample means for those who met the re-
quirements, and paired t-test was used for the comparison of
sample mean before and after treatment. )e paired signed
rank sum test was used to compare the samples that did not
meet the conditions. )e Wilcoxon rank sum test (correc-
tion) for sample comparisons or the Kruskal–Wallis test for
multigroup comparisons were used for grade data. )e
repeated measure analysis of variance was used for quan-
titative primary outcome indexes at multiple observation
time points. A two-sided test was used, with the baseline
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comparison test level P � 0.05, the efficacy group compar-
ison test level P � 0.05, and the pairwise comparison be-
tween groups P � 0.01670.

3. Results

3.1. Visual Assessment of the Results of the Deep Learning
Model and the Doctor’s Manual Segmentation. In the axial
CCTA image, the comparison of the contour results of visual
assessment method and the left ventricular muscle manually
segmented by the doctor is shown in Figure 3. On the CCTA
image, the contrast between the LVM and the surrounding
tissues was not very different, while the segmentation effect
of the proposed deep learning-based segmentation method
was basically consistent with the contour of the myocardium
manually segmented by the doctor.

3.2. Objective Parameters Evaluating the Results of the Deep
LearningModel andManual Segmentation byDoctors. In the
data set of all patients, the LVM contour segmented by the
proposedmethod was consistent with the myocardial contour
drawn by doctors.)e average DSC� 91.6%, and the standard
deviation was 4.1%.)e proposed method also produced very
small CMD (average of 1.058mm, standard deviation of
1.245mm) and VOD (average of 1.640, standard deviation of
1.777), and the specific results are shown in Figure 4. )e
distance of HI was less than 10mm, which meant that the
pixels of the myocardium segmented by this method were
very close to the pixels of the manually segmented myocar-
dium, and LVM can be well positioned by this method.

In addition, the MSD and RMSD were both less than
2mm, which indicated that the accuracy of the segmentation
method was high. )e differences of DSC and VOD between
this method and manual segmentation of myocardium were
evaluated at different levels of myocardium, and the results
are shown in Figure 5.

3.3. %e Time Required for Automatic Segmentation of Deep
Learning Models and Manual Segmentation of LVM by
Physicians. )e time required for LVM by the automatic
segmentationmodel and that of manual segmentation by the
doctor were compared in the research. )rough a ran-
domized analysis of the time required for myocardial seg-
mentation in 20 patients, it was found that LVM
segmentation based on deep learning method required
significantly short time. )e deep learning method only
needed an average of about 1.45± 0.51 seconds to complete
segmentation, while the doctor’s manual segmentation
needed about 744.8± 117.49 seconds to complete segmen-
tation (P< 0.001). )e results showed that the efficiency and
quality of automatic segmentation were much higher than
those of manual segmentation by doctors.

3.4. Data Results after RAPA Treatment

3.4.1. IMT Results. A paired t-test was performed in the
control group and the treatment group to test the data before
and after treatment. Wilcoxon signed rank test was used for

the measurement data that did not meet the conditions
before and after treatment. )e Shapiro-Wilk normality test
is shown in Figure 6. After inspection, the difference of the
left carotid artery before and after IMT treatment in the
treatment group showed that P � 0.043, and the difference
of the right carotid artery before and after IMT treatment
showed that P � 0.025. )ere were statistical differences
before and after treatment, which proved that the use of a
deep learning-based imaging system had a certain thera-
peutic effect in improving the thickness of carotid artery
intima-media in patients with carotid atherosclerotic plaque.

3.4.2. Carotid Artery Intima-Media %ickness Results.
Before treatment, at the end of treatment, and during follow-
up, the thickness of carotid medial artery was statistically
analyzed and compared between groups, as shown in Fig-
ure 7. )e IMT of left carotid artery was significantly dif-
ferent between the three groups at the end of treatment and 3
months of follow-up (P � 0.025). At the end of treatment,
there was a difference between the control group and the
treatment group (P � 0.011), while there was no statistical
difference between the control group and the treatment
group (P � 0.618). After three months of follow-up, there
was a difference between the control group and the treat-
ment group (P � 0.019), while there was no statistical
difference between the control group and the treatment
group (P � 0.865). It was concluded that, in terms of the
improvement of carotid artery thickness, the group using
deep learning-based CT imaging characteristics analysis was
superior to the control group with respect to the left carotid
artery.

4. Discussion

How to accurately monitor the occurrence of adverse cardiac
events in patients with atherosclerosis is always the core of
cardiovascular disease research.)e process of diagnosis and
treatment of cardiovascular patients generates a large
amount of data, including the patient’s symptoms, labora-
tory test results, medical imaging data, and drug prescrip-
tions. In general, clinicians judge the prognosis of patients
based on their own models, their own experience, and the
current condition of the patient. However, most prediction
models were based on regression models and only used
limited variables, which may not meet the requirements of
accurate prediction [14]. )e routine diagnosis and treat-
ment of patients with CVD generated a large amount of data.
At the same time, the amount of cardiovascular imaging data
was also increasing. Clinically, doctors were unlikely to be
familiar with various electronic medical record information
including genetic data and cardiovascular imaging data and
made full use of this information in clinical practice. )is
may lead to misdiagnosis due to insufficient information
utilization. A recent study pointed out that about
40,000–80,000 people die every year because of diagnostic
errors [15]. )e autopsy studies found that diagnosis based
on imaging data had an error rate of up to 20%. However, a
fivefold cross-validation method was used to verify the
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segmentation effect of the LVM based on the proposed deep
learning model. )e subjective and objective methods were
used to evaluate the contour difference between the pro-
posed method of automatic segmentation of the LVM
contour and the manual segmentation drawn by the doctor.
It was verified that the proposed method could accurately
segment the LVM tissue from CCTA images by analyzing six
objective parameters, including DSC, HD, MSD, RMSD,
C1VID, and VOD, and the proposed method significantly

shortened the time needed to segment LVM from CCTA
images. It reduced the time that would normally take about
12 minutes on average to about a second, which greatly
reduced the workload of the doctor [16].

In the past, some scholars had achieved good results by
establishing a deep learning-based method to automatically
segment cardiac tissue of cardiac MRI images [17]. However,
the contrast of myocardial tissue on CCTA images was not
obvious compared with cardiac MR images, so there were few
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studies on the automatic segmentation of LVM on CCTA
images. For the first time in the research, a neural learning
network was used to integrate a deep-attention network to
detect and segment LVM on CCTA images. After the model
was trained, automatic LVM recognition and segmentation
were performed on newly inputted CCTA images of patients.
At present, some scholars have proposed to use different AI-
based methods to segment the LVM on CCTA images. )e
imaging omics method used in this study can extract many
quantitative and qualitative features from the region of interest
on the image with high throughput. )ese imaging omics
features can reflect the internal features of the organizational
structure. Combined with machine learning methods, a lot of
information was provided for the diagnosis of myocardial
ischemia, which overcame the limitation of clinicians to an-
alyze CCTA solely based on the naked eye. For example, Smyth
et al. [18] used a multiscale convolutional neural network
(CNN) to segment the LVM.)e segmentation performance of
CNN network on CCTA images of 20 patients was analyzed,
and the average DSC was 0.910. Gertsen et al. [19] used a fully
convolutional network to analyze the virtual single-energy
CCTA data, and the best DSC value was 90.1 through CCTA
image verification in 40 patients. )e 3D fully convolutional
neural network was used for CT brain tissue image segmen-
tation, which can improve the accuracy of image analysis of
atherosclerotic hard blood vessel function, and significantly
improved the clearance rate of vascular plaque deposition and
the recovery of carotid artery intima-media thickness after
treatment. In this retrospective study, the feasibility of using
imaging omics combined with machine learning method to
analyze the characteristics of left ventricular myocardium on
CCTA images to predict whether patients with coronary heart
disease had myocardial ischemia was established and verified.
Compared with the method that clinicians identify lesions
based on CT images and determine myocardial ischemia based
on the degree of coronary artery stenosis, the proposedmethod
of image omics combined with machine learning had a better
performance in predicting myocardial ischemia. )e ability of
the model to predict myocardial ischemia was relatively stable,
and the accuracy was still high in the validation group. In
addition, CCTA images generated by a number of hospitals
and a variety of CT devices across the country were collected,
and the model was randomly trained and verified, which re-
flected the universality and generalization of the model. To our
knowledge, this was the first time that left ventricular myo-
cardial features were analyzed using image omics to investigate
whether patients with coronary heart disease had myocardial
ischemia. Unlike the traditional clinical use of the degree of
coronary artery stenosis as a standard to determine whether
patients with CHD had myocardial ischemia, the character-
istics of myocardium supplied by coronary arteries were an-
alyzed to assess whether patients with CHD had myocardial
ischemia, which also provided a new idea for future research.

5. Conclusion

)e research showed that the CT angiography images were
used during the treatment of atherosclerosis with rapamy-
cin. Compared with the LVM contour manually drawn by

the doctor on the CCTA image, the method proposed in the
research had little difference with the LVM contour man-
ually drawn by the doctor regardless of whether subjective or
objective evaluation methods were used. )e method sig-
nificantly reduced the time required to segment LVM
compared with traditional manual segmentation. However,
there are still some shortcomings in this study. First, al-
though patients with atherosclerosis were included in this
study, CCTA images of only 100 patients were randomly and
continuously selected for model training and validation.)e
results need to be further validated for the segmentation of
myocardium on CCTA images collected by hospitals and CT
scanning equipment in the future. Due to the different
expertise and experience of imaging doctors, each doctor
will have different contour labeling of the left ventricular
myocardium, and such difference cannot be corrected by
this deep learning algorithm. Second, there are only patients
with suspected or confirmed coronary heart disease in-
volved. )e results of the myocardial segmentation model in
patients with other diseases and at different stages of the
disease need further study. Finally, the model is currently in
the initial stage of establishment, and the extent to which it
can reduce the workload of doctors in clinical practice is still
unknown. Future research needs to be improved.
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