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Abstract

We discovered a transient adhesion property in poly(ethylene glycol) dimethacrylate (PEG-

DMA) hydrogels and employed it to develop a novel “stem cell bandage” model of cellular

delivery. First, we cultured human mesenchymal stromal cells (MSCs) on the surface of

PEG-DMA hydrogels with high amounts of arginine-glycine-aspartic acid (RGD) adhesive

peptides (RGD++) or without RGD (RGD-). On day 1, MSCs underwent an initial adhesion

to RGD- hydrogels that was not significantly different over 13 days (n = 6). In addition, cells

appeared to be well spread by day 3. Significantly fewer cells were present on RGD- hydro-

gels on day 15 compared to day 9, suggesting that RGD- hydrogels allow for an initial cellu-

lar adhesion that is stable for multiple days, but transient over longer periods with a

decrease by day 15. This initial adhesion is especially surprising considering that PEG-DMA

does not contain any biological adhesion motifs and is almost chemically identical to poly

(ethylene glycol) diacrylate (PEG-DA), which has been shown to be non-adhesive without

RGD. We hypothesized that MSCs could be cultured on RGD- PEG-DMA hydrogels and

then applied to a wound site to deliver cells in a novel approach that we refer to as a “stem

cell bandage”. RGD- donor hydrogels were successfully able to deliver MSCs to PEG-DMA

acceptor hydrogels with high RGD content (RGD++) or low amounts of RGD (RGD+). Our

novel “bandage” approach promoted cell delivery to these model surfaces while preventing

cells from diffusing away. This stem cell delivery strategy may provide advantages over

more common stem cell delivery approaches such as direct injections or encapsulation and

thus may be valuable as an alternative tissue engineering approach.

Introduction

Numerous tissues have been targeted in tissue engineering approaches including cartilage [1],

skin, bone [2], teeth [3], blood vessels [4], and intestine [5]. Mesenchymal stromal cells

(MSCs) are commonly employed in tissue engineering. MSCs are multipotent progenitor cells

with the capacity to differentiate down multiple lineage lines including fibroblasts, osteocytes,
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chondrocytes, and adipocytes [6]. In addition to their differentiation potential, MSCs secrete

relatively high levels of growth factors, inhibit scarring, promote angiogenesis, and release

immunomodulatory chemicals that allow these cells to be used allogenically [6]. In addition to

ease of growth and expansion in vitro, MSCs may be isolated and reintroduced to the patient

of interest, reducing the danger of immunologic rejection [7]. Tissue engineering strategies

often involve combining MSCs with biomaterials to promote differentiation or stimulate other

beneficial MSC behaviors.

Poly(ethylene-glycol) (PEG)-based polymers are commonly used as biomaterials for tissue

engineering. PEG has many favorable properties, such as biocompatibility and biodegradabil-

ity, making it ideal for insertion into the body. However, PEG by itself is relatively biologically

inert and requires modification to become bioactive and allow for cell adhesion and prolifera-

tion on its surface [1]. Arg-Gly-Asp (RGD), an adhesive peptide found in the cell attachment

region of fibronectin, is one of the most common modifications for hydrogels [8]. Several

derivatives of PEG have been investigated for use as biomaterials, including poly(ethylene-gly-

col)-diacrylate (PEG-DA) and poly(ethylene-glycol)-dimethacrylate (PEG-DMA). These

nearly identical polymers are used for scaffolding purposes due to their biocompatibility,

which allows for cell viability up to several weeks [9,10]. In previous studies, RGD adhesive

peptides have been incorporated into PEG-DA hydrogels to promote cellular adhesion and

spreading that is not possible in the absence of the RGD peptides [11]. Cells have also been

shown to adhere to PEG-DMA hydrogels modified with RGD [12].

Functions of hydrogel biomaterials span a wide range of applications including drug deliv-

ery, neural tissue engineering, and cancer research [13–15]. One common tissue engineering

approach is to add MSCs to an injectable PEG-hydrogel that rapidly crosslinks when placed in

the body at the wound site. This approach results in MSCs that are encapsulated inside the

hydrogel, effectively trapping the MSCs in one area [16]. Other approaches involve injection

of MSCs directly to the wound site [17] or systemic administration via intravenous (IV) injec-

tion or intra-arterial (IA) injection [18].

However, current cell delivery models are not without their drawbacks. MSCs directly

injected into the body without a biomaterial matrix may not remain at the target site. For

example, MSC delivery via both systemic and local administration has resulted in cells accu-

mulating in areas other than the targeted wound site [18]. In contrast, MSCs encapsulated

in hydrogels may constrain the cells to the site of interest, but the majority of the MSCs

remain trapped within the hydrogel and cannot be in direct contact with the wound. While

the encapsulated MSCs would still be able to secrete growth factors and immunomodula-

tory molecules, cell proliferation is hindered, potentially reducing the effectiveness of the

therapy [19]. This study reveals unexpected transient adhesion properties of unmodified

PEG-DMA hydrogels and explores the usage of these properties for a novel approach to

stem cell delivery. In our approach MSCs are seeded on the surface of unmodified

PEG-DMA hydrogels and placed in direct contact with the desired area, creating a “ban-

dage”-like delivery model. This approach may overcome some limitations of other

approaches by trapping stem cells at the target site while still allowing cellular proliferation

and access to the wound.

Results

Trilineage differentiation potential

MSC pellets in chondrogenic differentiation medium for 21 days produced a dark blue

color under Alcian Blue staining, indicating the presence of glycosamioglycans (Fig 1).

In contrast, MSCs cultured in basal medium had a light blue color under Alcian Blue,
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indicating a lack of glycosaminoglycan production. MSCs cultured in osteogenic differenti-

ation medium produced a dark red color under Alizarin Red staining, indicating the pres-

ence of calcium deposits (Fig 1). In contrast, MSCs cultured in basal medium showed no

evidence of red coloration under Alizarin Red, indicating a lack of calcium production.

MSCs cultured in adipogenic medium for 21 days produced areas of red staining under Oil

Red O, indicating the presence of lipids (Fig 1). In contrast, MSCs cultured in basal medium

showed little evidence of accumulation of red coloration under Oil Red O, indicating a lack

of lipid accumulation.

PEG-DA cellular attachment study

The number of cells collected from RGD- hydrogels was significantly lower on day 6 and day

15 compared to day 1 (Fig 2). The number of cells on RGD++ hydrogels was significantly

higher on day 1, 6, and 11 compared to day 15 (Fig 2). On days 6 and 11 the RGD++ hydrogels

had significantly more cells present than RGD- hydrogels. The quantitative data generally

matched well with the images (Fig 3). However, it can be difficult to draw general trends from

the images alone as the distribution of cells on the hydrogels did not always appear uniform.

For example, on day 11 some areas of the RGD++ hydrogel appeared to have a moderate cellu-

lar density and other areas appeared to have a high cellular density (Fig 3 inset). In addition,

cells found on RGD- PEG-DA hydrogels generally appeared to be more rounded while spread-

ing of cells was more apparent on RGD++ hydrogels. When observing patterns of cellular

adhesion on hydrogels in this study and the other studies in this work, the researchers noted

that the cellular density often appeared greater toward the center of the hydrogel compared to

the edges.

Fig 1. MSCs demonstrate trilineage differentiation potential. Staining of cells cultured in chondrogenic, osteogenic,

or adipogenic differentiation medium (top row) showed production of molecules associated with chondrogenic

(glycosaminoglycans, dark blue), osteogenic (calcium deposits, red), or adipogenic (lipids, red) differentiation.

Staining of cells cultured in basal medium (bottom row) did not show evidence of differentiation. The scale bar in the

chondrogenic images is 6.5 mm. The scale bar in the osteogenic and adipogenic images is 40 μm.

https://doi.org/10.1371/journal.pone.0202825.g001
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PEG-DMA cellular release study

The number of MSCs collected from RGD- hydrogels was significantly higher on day 9 com-

pared to day 15 (Fig 4). Similarly, a repeated version of this experiment with time points on

only day 1, day 11, and day 14 showed a significantly higher number of cells on day 11 com-

pared to day 1, but this significance disappeared on day 14 (S1 Fig). The number of cells on

RGD++ hydrogels was not significantly different over time (Fig 4). On days 1, 6, and 13 the

Fig 2. Cells adhere over time to PEG-DA hydrogels with RGD (RGD++), but not without RGD (RGD-). Number

of cells present on RGD- and RGD++ hydrogels after 1, 6, 11, and 15 days (n = 6 ± standard deviation). (1)Significance

vs. day 1 for the same sample type. (6)Significance vs. day 6 for the same sample type. (11)Significance vs. day 11 for the

same sample type. ‡significance from RGD- hydrogels at same time point (p< 0.05).

https://doi.org/10.1371/journal.pone.0202825.g002

Fig 3. Cellular adhesion on PEG-DA hydrogels. Cells adhered to PEG-DMA hydrogels with RGD peptides (RGD++) on days 1, 6, 11, and 15. Cells

appeared more rounded and sparse on hydrogels without RGD (RGD-). Inset: an alternate area of the hydrogel showing a different pattern of

cellular adhesion. Scale bar = 10 μm.

https://doi.org/10.1371/journal.pone.0202825.g003
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RGD++ hydrogels had significantly more cells present than RGD- hydrogels. The quantitative

data generally matched well with the images (Fig 5 and S2 Fig). However, it can be difficult to

draw general trends from the images alone as the distribution of cells on the hydrogels did not

always appear uniform. For example, on day 3 RGD- hydrogels, some areas of the hydrogels

appeared to have a moderate cellular density and other areas appeared to have a much higher

number of cells (Fig 5 inset).

Delivery to strong acceptor hydrogels

The number of MSCs delivered from RGD- donor hydrogels to the RGD++ acceptor hydro-

gels was not significantly different over time (Fig 6). There was also no significant difference in

the number of cells delivered by the RGD++ donor hydrogels to RGD++ acceptor hydrogels

over time or between the cells delivered by RGD++ donor hydrogels compared to RGD-

donor hydrogels. Results generally matched well with images (Fig 7). Similar results were

obtain in a second run of the experiment (S3 Fig).

Delivery to weak acceptor hydrogels

The number of MSCs delivered to RGD+ acceptor hydrogels was significantly higher on day

14 compared to day 7 for both RGD- donor and RGD++ donor hydrogels (Fig 8). The number

of cells delivered on day 7 did not differ between RGD- and RGD++ donor hydrogels. In con-

trast, the number of cells delivered on day 14 using an RGD- donor hydrogel was significantly

higher than the number delivered using an RGD++ donor hydrogel.

Trilineage differentiation potential of delivered cells

Cell delivered from RGD- hydrogels to RGD++ hydrogels after 7 days were trypsinized and

tested for trilineage differentiation potential. Pellets derived from the delivered cells that were

Fig 4. Timeline of MSC adhesion varies on PEG-DMA hydrogels with RGD (RGD++) or without RGD (RGD-).

Number of MSCs present on RGD- and RGD++ hydrogels after 1, 3, 6, 9, 11, 13, and 15 days (n = 6 ± standard deviation).
(9)Significance vs. day 9 for the same sample type, ‡significance from RGD- hydrogels at same time point (p< 0.05).

https://doi.org/10.1371/journal.pone.0202825.g004
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cultured in chondrogenic differentiation medium for 21 days produced a dark blue color

under Alcian Blue staining, indicating the presence of glycosamioglycans (Fig 9). Delivered

cells that were cultured in osteogenic differentiation medium produced a dark red color under

Alizarin Red staining, indicating the presence of calcium deposits (Fig 9). However, the stain-

ing of the delivered cells was much less intense and prevalent than the staining seen with the

original MSC population which suggests lower levels of calcium deposits. Delivered cells that

were cultured in adipogenic medium for 21 days produced areas of red staining under Oil Red

O, indicating the presence of lipids (Fig 9).

Attachment to laminated hydrogels

After cross-linking was complete, there was a visually detectable seam between the RGD+

+/RGD- sides of the laminated hydrogels, but this seam was not perceptible through tactile

examination. MSCs demonstrated the ability to adhere across the seam connecting the two

sides. MSCs seeded on laminated hydrogels appeared to be present in greater numbers on the

RGD++ side compared to the RGD- side by day 3 (Fig 10). This difference was especially

apparent at junctions where the RGD++ and the RGD- hydrogels were joined.

Discussion

In this study, we identified unexpected changes in cellular adhesion to RGD- PEG-DMA

hydrogels. We then harnessed the particular adhesive properties of PEG-DMA hydrogels to

develop a novel “bandage” delivery model to supply stem cells to a model wound site.

Fig 5. MSC adhesion on PEG-DMA hydrogels. MSCs adhered to PEG-DMA hydrogels on days 1, 3, 6, 9, 11, 13, and

15. Top two rows: hydrogels without RGD peptides (RGD-). Bottom two rows: hydrogels with RGD peptides (RGD+

+). Inset: an alternate area of the d3 RGD- hydrogel showing a different pattern of cellular adhesion. Scale bar = 10 μm.

https://doi.org/10.1371/journal.pone.0202825.g005
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Cellular attachment and release studies

In the study of cellular attachment to PEG-DA hydrogels, we investigated the relative levels of

attachment to RGD- PEG-DA hydrogels compared to RGD++ hydrogels. Cells on RGD-

hydrogels showed a relative lack of attachment and a rounded morphology (Figs 1 and 2), sim-

ilar to previous studies with PEG-DA [11] and other PEG-based polymers [20]. The appear-

ance of rounded cells on RGD- hydrogels was apparent throughout the entire timeframe of the

Fig 6. MSCs delivered to RGD++ hydrogels (strong acceptors). Cells were successfully delivered from RGD- donor

hydrogels (strong donor) and RGD++ donor hydrogels (weak donors) to the RGD++ acceptor hydrogel surface over

time. Cell numbers on RGD++ acceptor hydrogels were measured after 1, 7, 14, and 21 days (n = 6 ± standard

deviation). There were no significant differences between hydrogels of any type at p< 0.05.

https://doi.org/10.1371/journal.pone.0202825.g006

Fig 7. Cells delivered to RGD++ hydrogels (strong acceptors). Cells were delivered to RGD++ PEG-DMA hydrogels on days 1, 7, 14, and 21 from

both RGD- donor hydrogels (strong donors) and RGD++ donor hydrogels (weak donors). Scale bar = 10 μm.

https://doi.org/10.1371/journal.pone.0202825.g007
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study, suggesting poor adhesion. In contrast, cells appeared well spread on RGD++ hydrogels

throughout the entire 15 days of culture (Fig 3).

In the study of cellular attachment to PEG-DMA hydrogels, we examined the level of cellu-

lar attachment to RGD- PEG-DMA hydrogels and RGD++ PEG-DMA hydrogels. Since the

only difference between PEG-DMA and PEG-DA is a methyl group that comprises a very

small portion of the molecule (Fig 11), we expected to see results that would be virtually identi-

cal to what has been seen in similar studies with PEG-DA hydrogels. We observed that the

average number of MSCs on hydrogels with high amounts of RGD (RGD++) did not signifi-

cantly change over the 15 days of culture (Fig 4). In addition, images of the RGD++ hydrogels

Fig 8. MSCs delivered to RGD+ hydrogels (weak acceptors). MSCs were delivered to RGD+ acceptor hydrogel

surfaces after 7 and 14 days (n = 5 ± standard deviation). (7)Significance vs. day 1 for the same sample type.
‡significance from RGD- at the same time point (p<0.05).

https://doi.org/10.1371/journal.pone.0202825.g008

Fig 9. Delivered cells demonstrate trilineage differentiation potential. Staining of cells delivered from RGD-

hydrogels to RGD++ hydrogels after 7 days. Delivered cells were cultured in their respective differentiation media for

21 days and stained. Delivered cells cultured in chondrogenic, osteogenic, or adipogenic differentiation medium

showed production of molecules associated with chondrogenic (glycosaminoglycans, dark blue), osteogenic (calcium

deposits, red), or adipogenic (lipids, red) differentiation. The scale bar in the chondrogenic images is 6.5 mm. The scale

bar in the osteogenic and adipogenic images is 40 μm.

https://doi.org/10.1371/journal.pone.0202825.g009
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appeared to show a high cellular density with spread cells over the entire 15 day period. These

results suggest MSCs can adhere to PEG-DMA hydrogels containing RGD and the adhesion is

relatively stable. These results with RGD++ PEG-DMA hydrogels matched well with similar

studies of PEG-based hydrogels containing RGD, including our experiment with PEG-DA

hydrogels (Figs 1 and 2) and studies with PEG-DA [11] and an OPF/PEG-DA mix [20].

In studies with PEG-DA, cells do not effectively adhere to hydrogels without RGD and cells

that are observed are unable to take on a spread morphology characteristic of fibroblasts and

MSCs [11]. We expected to see a similar phenomenon on PEG-DMA hydrogels without RGD

(RGD-). Surprisingly, fully spread MSCs were observed on RGD- hydrogels by day 3 (Fig 5),

and the number of cells was not significantly different from day 1 to day 13 (Figs 4 and 5). The

ability of cells to spread and adhere has also been seen in a repeated version of this experiment

(S1 and S2 Figs). A recent study that grew HaCaT and MG-63 cells on PEG-DMA hydrogels

for 48 hours observed cellular adhesion, spreading, and good viability [12]. Another study

using L929 mouse fibroblasts on glass slides coated with PEG-DMA for three days showed

some adhesion and good viability [21]. Both of these studies provide further confirmation of

our result.

On day 15 the number of cells on RGD- hydrogels was significantly lower compared to day

9. On day 15 we were unable to locate any spread cells through microscopic examination (Figs

3 and 4). One potential explanation of the decreasing cell number is that MSCs can initially

adhere to RGD- hydrogels, but will release from the hydrogel over time. We initially believed

that the observation of cell adhesion and spreading on RGD- hydrogels was due to an experi-

mental error, but this finding (and the decrease in cell number over time) has been observed

Fig 10. Adhesion to laminated RGD++/RGD- hydrogels. (�) indicates the edge of the laminated hydrogel. (&) Indicates the seam connecting

sides of the hydrogel without RGD (RGD-) and with RGD (RGD++). The circle indicates an area where a cell is adhered across the seam. Scale

bar = 10 μm.

https://doi.org/10.1371/journal.pone.0202825.g010

Fig 11. Chemical structures of PEG-DA (left) and PEG-DMA (right). The two chemicals only differ in structure by methyl groups

near the carbon-carbon double bonds.

https://doi.org/10.1371/journal.pone.0202825.g011

Transient adhesion on PEG-DMA for a stem cell bandage approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0202825 August 23, 2018 9 / 20

https://doi.org/10.1371/journal.pone.0202825.g010
https://doi.org/10.1371/journal.pone.0202825.g011
https://doi.org/10.1371/journal.pone.0202825


in other iterations of this experiment (S1 and S2 Figs) and has been qualitatively observed by

multiple independent researchers in our lab. In addition, when we created a laminated hydro-

gel with conjoined RGD- and RGD++ portions there was an observable difference in the

apparent cellular density on the RGD- side compared to the RGD++ side (Fig 10). While the

ability of MSCs to adhere across the seams of the laminated hydrogels and the lack of percepti-

ble tactile differences across the junction suggests that the two sides were well-integrated, simi-

lar to previous studies [22,23], it can not be determined from this data whether the cell

migrated to that location or was just initially attached at that position. The integration of the

RGD-/RGD++ sides of the laminated hydrogels provides further support that cells can adhere

to and spread on both RGD- and RGD++ PEG-DMA hydrogels and that differences in cell

number between the two sides are not due to variations in cell populations or seeding proto-

cols. The apparent differences in cellular density between the RGD- and RGD++ sides of the

hydrogel could be explained by differences in the adhesion of MSCs to each side due to the dif-

ferent RGD contents in each area. The adhesive differences could be differences in the initial

adhesion of MSCs to the hydrogels or differences that only manifested at a later time. Both of

these interpretations would be consistent with our quantitative results (Figs 4 and 5). An alter-

native explanation is that there was a preferential migration of cells from one side of the lami-

nated hydrogels to the other. It is also possible that differential attachment and preferential

migration are both involved in the apparent differences in cellular density that were observed.

Future quantitative studies with laminated hydrogels would be helpful to further confirm these

findings and to determine the relative influences of differential attachment and/or migration

on these hydrogels.

The adhesion of MSCs to PEG-DMA hydrogels was surprising because cells do not adhere

well to PEG-DA hydrogels [11] (see also our data in Figs 1 and 2) which are almost chemically

identical. This attachment was also surprising because PEG-DMA does not contain biological

motifs (such as RGD) that would be expected to promote receptor-mediated adhesion [1].

However, it has been noted that adhesion to biomaterials can occur via attachment to proteins

incidentally adsorbed to the biomaterial surface [24]. In addition, despite the high degree of

chemical similarity between PEG-DA and PEG-DMA, differences in adhesion are not incon-

ceivable, as it is known that small chemical changes can affect the presentation of adsorbed

proteins thus affecting the biomaterial adhesion properties [25]. It is possible that the methyl

group present in PEG-DMA promoted greater protein adsorption or a more favorable config-

uration for cellular adhesion compared to PEG-DA. This would explain the initial adhesion

observed with RGD- PEG-DMA hydrogels. As cells proliferate on RGD- hydrogels the

adsorbed proteins would need to support a greater density of cells on the hydrogel surface.

Due to the lack of covalent attachment, the ability of the adsorbed proteins to anchor cells to

the hydrogel may be exceeded as cells increase in density. This loss of anchoring could pro-

mote the release of cells from the RGD- surface once a certain density is reached. Such a phe-

nomenon would explain the apparent decrease in cell number on RGD- hydrogels after an

initial increase.

The apparent fall in cell number on RGD- hydrogels could also potentially be explained by

an initial cell growth followed by cellular death. Perhaps cells are initially able to adhere to the

RGD- hydrogels and grow, resulting in increasing cell numbers, but a lack of biological signal-

ing motifs causes them to die over time, thus resulting in a decrease in cell number at later

time points. If this were the case it would be expected that cells would initially appear healthy,

but signs of cellular distress would become apparent over time as cells died off. In our study,

cells of RGD- PEG-DMA hydrogels were initially observed to have a rounded morphology on

day 1, but appeared well spread from day 3 to day 13 with the rounded morphology returning

at day 15 (Fig 5). While the rounded morphology seen on day 1 could be a sign of weak

Transient adhesion on PEG-DMA for a stem cell bandage approach
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adhesion or poor cellular health, the spread morphology seen from day 3 to 13 and the lack of

changes in cell number over that timeframe are hard to explain if the cells are dying over time

due to a lack of biological signaling motifs. Therefore it seems unlikely that cellular death

explains the decrease in cell number at later time points. Further study examining the surface

chemistry of adsorbed proteins, the strength and mechanism of cellular adhesion, and the via-

bility of attached cells over time would be helpful in elucidating the precise mechanism of the

transient changes in cell numbers that we observed.

Delivery to strong acceptor hydrogels

The ostensible release of cells from the RGD- surfaces suggested that RGD- hydrogels could be

useful as a novel tool for stem cell delivery. We hypothesized that if the RGD- hydrogels allow

cells to weakly adhere, proliferate, then release over time; they may be utilized in an RGD-

hydrogel as a patch covered in stem cells that could then be placed over a wound site. The cells

would initially adhere to the patch and would be prevented from leaving the wound due to the

RGD- surface covering the wound. Cells may then be able to leave the surface of the RGD-

hydrogel and thus be delivered to the wound site. We refer to this delivery model as a “stem

cell bandage”. To test this hypothesis, we applied RGD- and RGD++ donor hydrogels to an

RGD++ acceptor surface.

MSCs were successfully delivered from RGD- donor hydrogels to RGD++ acceptor surfaces

(Fig 6) which suggests that our “stem cell bandage” could be used to deliver cells to a surface

that contains RGD adhesive peptides. The number of cells delivered from the RGD- donors to

the RGD++ acceptors was not significantly different over the 21 days of the experiment. While

this shows that the “stem cell bandage” can deliver cells to a model surface, it is unclear

whether the cellular delivery is due to a release of cells from the donor surface, a proliferation

of cells on the acceptor surface, or some other mechanism.

We did not observe a significant difference in the ability to deliver cells when an RGD+

+ donor hydrogel was used instead of an RGD- donor. The absence of changes between hydro-

gels suggests that RGD- hydrogels are not the only type capable of delivering stem cells and

that RGD++ hydrogels could also be used in a “stem cell bandage” approach. The similarity

between RGD- and RGD++ donor hydrogels was unexpected. We hypothesized that the lack

of difference may be due to the strength of the acceptor surface. The RGD++ acceptor hydro-

gel, which contained high amounts of RGD, may have been so adhesive that cells strongly

adhered to it no matter the adhesive properties of the donor surface. Conceptually, we think

this phenomenon may be analogous to strong and weak electron acceptors in chemistry. A

strong electron acceptor (i.e. with a high electronegativity) will attract electrons from both

strong and weak electron donors. Similarly, our RGD++ surfaces (strong acceptor surfaces),

may attract cells at similar levels irrespective of the ability of the donor surface to deliver cells.

We believed that the donor surface may become more important if the acceptor surface is only

weakly adhesive. In the “delivery to weak acceptor hydrogels” experiment we sought to test

this hypothesis by using a relatively weak acceptor surface (RGD+).

Delivery to weak acceptor hydrogels

RGD++ and RGD- donor hydrogels with attached cells were placed on RGD+ acceptor hydro-

gels that contained a relatively low concentration of RGD. This experiment was identical to the

“delivery to strong acceptor hydrogels” experiment except the acceptor hydrogels used in this

experiment were RGD+ hydrogels that contain a lower concentration of RGD (0.1 μmol RGD

vs. 1 μmol RGD). The RGD+ acceptor hydrogels were expected to be weakly adhesive and thus

to be relatively weak as cellular acceptors compared to the RGD++ hydrogels. The number of
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cells delivered to the RGD+ acceptor hydrogels was significantly higher on day 14 compared

to day 7 for both the RGD++ and RGD- donor hydrogels, suggesting that both hydrogel

donors can be successful in delivering increasing numbers of cells over time to a weakly adhe-

sive surface.

The RGD+ acceptor hydrogels are crosslinked with fewer adhesive molecules than RGD+

+ donor hydrogels, but more adhesive molecules than the RGD- hydrogels. Therefore, it was

believed that the RGD++ donors might retain more cells and thus deliver fewer cells than the

RGD- donors. Indeed, RGD- hydrogels delivered significantly more cells on day 14 than RGD

++ hydrogels, matching our prediction. This result suggests that when there is a weakly adhe-

sive acceptor surface, such as the RGD+ acceptors, a donor hydrogel with even weaker cellular

adhesion (i.e. one that strongly donates cells) such as the RGD- hydrogels, might be the best

option to maximize cellular delivery. In other words, if the adhesive nature of a wound site is

known it could be possible to control the dose of cells in our system by tailoring the adhesive-

ness of the donor hydrogel. It is outside the scope of this paper to determine the adhesive

nature of particular wound sites or to create a detailed experimental plan for investigating this

adhesive nature. However, some possible experimental approaches might include: a) the crea-

tion of different model wound site in an animal model followed by excision of the tissue and

measurement of the RGD content, b) addition of cells to a model wound site and measurement

of cellular attachment over time, or c) placement of one of our cellular bandages on a model

wound site followed by quantification of cells that stay at the site over time. Further studies

that characterize the adhesive nature of different types of wound sites could be valuable in

improving the utility of this technology.

Trilineage differentiation potential of delivered cells

Cells delivered from RGD- hydrogels to RGD++ hydrogels after 7 days demonstrated the abil-

ity to produce gylcosaminoglycans, calcium deposits, and lipids in response to chondrogenic,

osteogenic, and adipogenic differentiation media respectively. This production suggests that

these cells retain the trilineage differentiation potential (Fig 9) that was seen the initial MSCs

(Fig 1). However, the osteogenic staining of the delivered cells was much less intense and prev-

alent than the osteogenic staining seen with the original MSC population which suggests that

the delivered cells may be less effective at osteogenic differentiation and thus the trilineage dif-

ferentiation potential may be lower. Given the apparently lower osteogenic potential of deliv-

ered cells, this tissue engineering strategy may be less useful for applications targeted toward

bone regeneration. On the other hand, lower osteogenic differentiation might make this

approach more readily applicable to applications targeted toward cartilage repair. Further

investigation of differentiation strategies could improve the potential of this approach as a tis-

sue engineering.

Conclusion

To our knowledge, this is the first study to investigate the transient cell adhesion pattern on

PEG-DMA hydrogels that would be unexpected according to data in previous studies with

similar materials. In addition, we provided proof of principle for use of this transient adhesion

pattern in a novel “stem cell bandage” approach to delivering cells to a wound site. We also

used a model system to demonstrate how the adhesiveness of the wound site (modeled by our

acceptor surfaces) and the adhesiveness of the “stem cell bandage” (modeled by our donor

hydrogels) may interact to modulate the dose of cells delivered to the wound site. We were

able to deliver cells to model sites with both high and low adhesive levels with increasing num-

bers of MSCs delivered over time.
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This “bandage” approach has an advantage over direct stem cell injections as our approach

prevents cells from diffusing away from the wound site, potentially increasing potency. Unlike

encapsulating cells inside of a hydrogel, the “bandage” approach does not trap cells and allows

access to the wound site. It may be possible to promote cellular release after encapsulation

through methods such as incorporation of enzymatically degradable sequences [26] or dithio-

threitol [27]. However, encapsulated cells may be prevented from proliferating and even

decrease in cell number while trapped in the hydrogels [22,26]. In addition, hydrogels with

high degradation rates may quickly release their cells without holding them at the wound site,

thus decreasing long term cellular dose and acting similar to an injection of stem cells. On the

other hand, hydrogels with low degradation rates may be able to deliver cells over time and

confine the cells to the wound site, but the cellular dose in early weeks may be decreased [27].

Our system has the potential to provide a high cellular dose at early time points and maintain

it over time. In addition, our system would require fewer components than encapsulation with

degradable sequences, thus making it simpler, and would require fewer cells since the cells are

only on the surface of our “bandage” instead of distributed throughout the hydrogel. Studies

comparing our system to other systems could be valuable in revealing relative doses of cells

that can be delivered to a wound site.

While the “stem cell bandage” developed in this work shows great potential as a method to

deliver cells to a wound site, further work investigating the specific mechanism behind the

stem cell delivery or experiments that employ this technology in an in vivo setting would be

valuable in moving this work forward.

Materials and methods

Stem cell isolation

Human adipose derived MSCs were obtained through an abdominal liposuction procedure

(Trinity Sports Medicine), and isolated according to previously published methods [28].

Briefly, MSCs were isolated from liposuction aspirates harvested from subcutaneous adipose

tissue sites of subjects undergoing orthopedic procedures at the Trinity Sports Medicine and

Performance Center Clinic. Written, informed consent was obtained from patients for this cell

isolation. The research protocol used was approved by the Franciscan University of Steuben-

ville Institutional Review Board. To isolate the MSCs, lipoaspirate samples were washed

repeatedly in a syringe using Hanks Balanced Salt Solution (HBSS; Corning). After washing,

adipose tissue was digested with 0.1% collagenase (type I; Worthington) in a 37˚C water bath

for 1 hr with gentle agitation. The digest was then centrifuged for 5 minutes at 500g to pellet

the stromal vascular fraction (SVF). The SVF was resuspended in HBSS and passed through a

40 micron filter. The SVF was re-pelleted by centrifuging for 5 minutes at 500g. The cells were

resuspended in appropriate growth media and the live nucleated cells were counted on a Cell-

ometer Vision CBA cell counter (Nexcelom Bioscience) using an AO/PI dye. The isolated stro-

mal cells were then cultured in 89% Dulbecco’s Modification Of Eagle’s Medium/ Ham’s F-12

50/50 mix with L-glutamine & 15mM HEPES (DMEM/F-12; Atlanta Biologicals), 10% Fetal

bovine serum (FBS; Atlanta Biologicals), and 1% penicillin streptomycin solution (Pen/Strep;

Corning), and incubated at 25˚C and 5% CO2. This medium formulation was our basal

medium.

Trilineage differentiation potential

To test the trilineage differentiation potential of the isolated cells, the cells were grown in

6-well plates under basal medium and passaged when cells appeared approximately 80% con-

fluent until they reached passage 4 (p4). p4 cells were tryspinized (0.25% trypsin 2.2 mM
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EDTA; Corning) to p5, then counted using the Cellometer Vision CBA cell counter. Portions

of the cells were then deposited into new well plates for chondrogenic, osteogenic, or adipo-

genic differentiation (n = 2).

For chondrogenic differentiation cells were suspended at one million cells/mL. 200 μl of

this solution was added to wells of a 96-well plate for a total of 200,000 cells/well. To create a

pellet to facilitate chondrogenic differentiation, the plate was centrifuged at 2000 rpm for 5

minutes. After centrifugation, the plate was incubated overnight at 25˚C and 5% CO2. The

next day, chondrogenic differentiation medium was added to the cells and was changed every

two days. The differentiation medium consisted of the StemProTM Chondrogenesis Differenti-

ation Kit (ThermoFisher Scientific) and 1% penicillin streptomycin (Hyclone). Undifferenti-

ated control cells were plated at 15,000 cells/well in 12-well plates and cultured in basal

medium. After three weeks of culture the cells were stained with Alcian Blue according to pre-

viously established protocols [29] to test for evidence of chondrogenic differentiation through

observation of glycosaminogylcans. Briefly, cells were washed twice in HBSS. HBSS was aspi-

rated and a 10% formalin solution (BDH) was added for 10 minutes to fix the cells. After fixa-

tion, the formalin was aspirated and removed by washing in HBSS three times. After washing,

an Alcian Blue solution was filtered through a 0.22 μm syringe filter (Corning) and added to

the cells. The Alcian Blue stock consisted of a solution of 60% EtOH 40% acetic acid (EMD)

with 1 mg of Alcian Blue (Alfa Aesar) per mL. The plate was covered in aluminum foil to pro-

tect it from light and incubated for 45 minutes at room temperature. After incubation the

Alcian Blue solution was aspirated and destaining solution was added for 10 minutes. The

destaining solution consisted of 60% EtOH and 40% acetic acid. This destaining was repeated

twice. After destaining, PBS was added and the cells were imaged using a Canon PowerShot

A490 camera (Canon). Dark blue staining was seen as an indication of the presence of glycos-

aminoglycans and thus evidence of chondrogenic differentiation.

For osteogenic differentiation cells were deposited into 12-well plates at 15,000 cells/well

and incubated at 25˚C and 5% CO2. After two days osteogenic differentiation medium was

added to the cells and was changed every three days. The differentiation medium consisted of

the StemProTM Osteogenesis Differentiation Kit (ThermoFisher Scientific) and 1% penicillin

streptomycin. Undifferentiated control cells were plated at 15,000 cells/well in 12-well plates

and cultured in basal medium. After three weeks of culture, the cells were stained with Alizarin

Red according to previously established protocols [30] to test for evidence of osteogenic differ-

entiation through observation of calcium deposits. Briefly, cells were washed twice in HBSS.

HBSS was aspirated and a 10% formalin solution was added for 10 minutes to fix the cells.

After fixation, the formalin was aspirated and the well was washed in HBSS three times. After

washing, a 2% Alizarin Red solution (ScienCell) was added to the cells. The plate was incu-

bated for 30 minutes at room temperature. After incubation the Alizarin Red solution was

aspirated and the wells were washed with HBSS three times. After washing, the cells were

imaged using a Leica Type 090-135-002 microscope. Dark red staining was seen as an indica-

tion of the presence of calcium deposits and thus evidence of osteogenic differentiation.

For adipogenic differentiation, cells were deposited into 12-well plates at 15,000 cells/well

and incubated at 25˚C and 5% CO2. After two days adipogenic differentiation medium was

added to the cells and was changed every three days. The differentiation medium consisted of

the StemProTM Adipogenesis Differentiation Kit (ThermoFisher Scientific) and 1% penicillin

streptomycin. Undifferentiated control cells were plated at 15,000 cells/well in 12-well plates

and cultured in basal medium. After three weeks of culture the cells were stained with Oil Red

O according to previously established protocols [31] to test for evidence of adipogenic differ-

entiation through observation of lipid deposits. Briefly, cells were washed twice in HBSS.

HBSS was aspirated and a 10% formalin solution was added for 15 minutes to fix the cells.
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After fixation, the formalin was aspirated and the well was washed in HBSS three times. After

washing, the Oil Red O working solution was filtered through a 0.22 μm syringe filter and

added to the cells. The Oil Red O working solution consisted of 60% Oil Red O stock solution

(ScienCell) and 40% deionized water. The plate was incubated for 15 minutes at room temper-

ature. After incubation the Oil Red O solution was aspirated and the wells were washed with

HBSS five times. After washing, the cells were imaged using a Leica Type 090-135-002 micro-

scope. Dark red staining was seen as an indication of the presence of lipids and thus evidence

of adipogenic differentiation.

Poly(ethylene glycol)-dimethacrylate synthesis

PEG-DMA was created according to previous methods [9]. Briefly, poly(ethylene glycol)

(PEG, nominal molecular weight 3350 Da; Sigma-Aldrich) was mixed in glass vials (max 1g/

vial) with an excess of methacrylic anhydride (MA; ThermoFisher Scientific) in a 10:1 molar

ratio of MA:PEG). The vials were placed in a commercial domestic microwave (Whirlpool

Model No. MT2100xyr-0 Manufactured June 1992, 800W). The mixture was heated for 30s,

1min (4x), and 30s. Between heating intervals, the solution was allowed to cool as needed to

prevent heat damage to the vials from the elevated temperatures. After the reaction was com-

pleted, the product was cooled to room temperature, 10 mL of anhydrous ethyl ether (EMD)

was added, and the bottom of the vial was vigorously scraped to dislodge cooled product. The

product was washed in 10 mL of anhydrous ethyl ether (2x) to ensure the removal of unreacted

MA and isolated via Buchner filtration. Remaining solvent was removed by rotovaporation

overnight and the product was stored in a -20˚C freezer.

GRGDS acrylation

To provide adhesive motifs to the hydrogels for the cells, H-Gly-Arg-Gly-Asp-Ser-OH (RGD;

Calbiochem) peptide was reacted with the acrylated-PEG-succinimidyl valerate (A-PEG-SVA,

MW 3400; LaysanBio, Inc.) spacer in a 1:2 molar ratio according to previous methods [20].

Briefly, GRGDS and A-PEG-SVA were combined in a sodium bicarbonate buffer (pH 8.1–8.3;

ThermoFisher Scientific), under stirring, at room temperature, for 2.5 h. The mixture was dia-

lyzed in deionized water (diH2O) overnight (2x) using a dialysis membrane (molecular weight

cutoff of 1000 Da; Spectrum Lab) to remove any unreacted peptide. The dialyzed polymer

solution was rotovapped for 24h and stored at -80˚C until use.

PEG-DA and PEG-DMA swelling study

PEG-DA (MW 4 kDa) was obtained from Polysciences, Inc. To characterize the swelling prop-

erties of PEG-DA and PEG-DMA hydrogels, RGD- PEG-DA and PEG-DMA hydrogels were

cross-linked between glass slides using the thermal radical initiators ammonium persulfate

(APS, 0.3M; Amresco) and N,N,N’,N’-tetramethylethylenediamine (TEMED, 0.3M; Thermo-

Fisher Scientific) for 10 min at 37˚C, according to procedures established with similar PEG-

based polymers [22,32,33]. Cross-linking occurred between glass slides separated by 500μm,

resulting in a thin hydrogel sheet. After crosslinking, the hydrogels were cut into discs (1.63cm

dia) with a cork borer. Each hydrogel disc was weighed to determine the initial crosslinking

weight. The hydrogels were then swollen in deionized (DI) water overnight. After swelling, the

hydrogels were blotted using weigh paper to remove excess water and weighed again to obtain

a swollen weight. The swollen weight was divided by the crosslinking weight to determine the

degree of hydrogel swelling after crosslinking. It was determined that PEG-DA swelled to 1.62

±0.24 times the crosslinking weight (n = 11) and PEG-DMA swelled to 1.42±0.06 times the

crosslinking weight (n = 12). To better account for the differences in swelling of different
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hydrogel types, the RGD added to the hydrogels was multiplied by these swelling ratios. In this

way the ‘RGD added/swollen weight’ would be the same even for hydrogels with different

swelling ratios.

PEG-DA cell adhesion study

To characterize cellular adhesion to PEG-DA hydrogels over time, RGD++ PEG-DA hydrogels

(75wt% diH2O) with 1μmol acrylated RGD/g swollen hydrogel or RGD- PEG-DA hydrogels

were cross-linked between glass slides using the thermal radical initiators APS (0.3M) and

TEMED (0.3M) for 10 min at 37˚C, according to the procedures noted in the swelling study

above. After crosslinking, the hydrogels were swollen in deionized (DI) water overnight and

cut into discs (1.63cm dia) with a cork borer before use. Under sterile conditions, hydrogel

discs (1.63cm dia) were soaked with 70% EtOH and washed twice in HBSS (10 min per wash)

to remove residual EtOH. MSCs were seeded (d0) at a density of 21.0e3cells/cm2 on top of

RGD- and RGD++ donor hydrogels and allowed to attach overnight. At each time point, cells

on the hydrogels were imaged and counted. Imaging was performed using a Leica Type 090-

135-002 microscope (U100/115230V~50-60HZ, Leica Microscosystems, Wetzlar, Germany

GmbH). To count cells, hydrogels were first moved to a new plate in order to remove the effect

of non-adherent cells and cells that may have detached from the hydrogel and attached to the

bottom of the well plate. The hydrogels were then washed twice in HBSS and attached cells

were trypsinized, then counted using the Cellometer Vision CBA cell counter (n = 6) on days

1 (one day after seeding), 6, 11, and 15.

PEG-DMA cell release study

To characterize the adhesion of MSCs to PEG-DMA hydrogels over time, RGD++ PEG-DMA

hydrogels (MW 3.4 kDa, 75wt% diH2O) with 1μmol acrylated RGD/g swollen hydrogel or

RGD- hydrogels were cross-linked between glass slides using the thermal radical initiators

APS (0.3M) and TEMED (0.3M) for 10 min at 37˚C, according to procedures noted in the

swelling study above. After crosslinking, the hydrogels were swollen in deionized (DI) water

overnight and cut into discs (1.63cm dia) with a cork borer before use. Under sterile condi-

tions, hydrogel discs were soaked with 70% EtOH and washed twice in HBSS (10 min per

wash) to remove residual EtOH. MSCs were seeded (d0) at a density of 21.0e3cells/cm2 on top

of RGD- and RGD++ donor hydrogels and allowed to attach overnight. At each time point,

cells on the hydrogels were imaged and counted. Imaging was performed using a Leica Type

090-135-002 microscope. To count cells, hydrogels were first moved to a new plate in order to

remove the effect of non-adherent cells and cells that may have detached from the hydrogel

and attached to the bottom of the well plate. The hydrogels were then washed twice in HBSS

and attached cells were trypsinized (0.25% trypsin 2.2 mM EDTA), then counted using the

Cellometer Vision CBA cell counter (n = 6) on days 1 (one day after seeding), 3, 6, 9, 11, 13,

and 15.

Cell delivery study to strong acceptor hydrogel

In order to determine if cells could be delivered from a hydrogel to a model surface, RGD+

+ and RGD- hydrogel discs (dia 1.63cm) (MW 3.4 kDa, 75wt% diH2O) were fabricated, swol-

len, and sterilized using the same procedures noted in the cell release study above. MSCs were

seeded at a density of 21.0e3cells/cm2 on top of RGD- and RGD++ hydrogels and allowed to

attach overnight. Since these hydrogels were being used to deliver MSCs they are referred to as

“donor hydrogels”. After attachment, donor hydrogels were moved to new 12-well plates and

an RGD++ hydrogel was placed on top of the donor hydrogel. The top hydrogels were used to
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model an adhesive target surface and were thus termed “acceptor hydrogels”. To achieve maxi-

mum contact between the hydrogels, an autoclaved stainless steel washer (0.9cm) was placed

on top of each donor/acceptor complex. After 24h, 7 days, 14 days, and 21 days, acceptor

hydrogels were removed and cells present on those hydrogels were trypsinized and counted

(n = 6).

Cell delivery study to weak acceptor hydrogel

In order to determine whether the RGD concentration of the acceptor hydrogel affects cell

delivery, RGD++, RGD+ and RGD- hydrogels (dia 1.63cm, MW 3.4 kDa, 75wt% diH2O) were

fabricated, swollen, and sterilized using the same procedures noted in the cell release study

above. MSCs were seeded at a density of 21.0e3cells/cm2 on top of the RGD- or RGD++ donor

hydrogels and allowed to attach overnight. After attachment, the donor hydrogels were moved

to new 12-well plates and an RGD+ acceptor hydrogel was placed on top of the donor hydro-

gel. To achieve maximum contact between the gels, an autoclaved stainless steel washer (0.9cm

dia) was placed on top of each donor/acceptor complex. After 24h, 7 days, and 14 days, the

acceptor hydrogels were removed and cells present on the acceptor hydrogel were trypsinized

and counted (n = 5).

Trilineage differentiation potential of delivered cells

In order to determine whether stem cells delivered from PEG-DMA hydrogels maintain their

trilineage differentiation potential, RGD++ and RGD- hydrogel discs (dia 1.63cm) (MW 3.4

kDa, 75wt% diH2O) were fabricated, swollen, and sterilized using the same procedures noted

in the cell release study above. MSCs were seeded at a density of 21.0e3cells/cm2 on top of

RGD- hydrogels and allowed to attach overnight. After attachment, donor hydrogels were

moved to new 12-well plates and an RGD++ hydrogel was placed on top of the donor hydro-

gel. To achieve maximum contact between the hydrogels, an autoclaved stainless steel washer

(0.9cm) was placed on top of each donor/acceptor complex. After 7 days, acceptor hydrogels

were removed and cells present on those hydrogels were trypsinized, counted, and deposited

into new well plates. The trilineage differentiation potential of cells from the acceptor hydro-

gels was tested using the methods described above in the “trilineage differentiation potential”

section (n = 2).

Laminated hydrogels

Laminated hydrogels were fabricated to create a single unified hydrogel containing an RGD++

side and an RGD- side, similar to previous methods [22,23]. Briefly, an RGD- hydrogel mix-

ture was placed on half of a glass slide complex and allowed to cross-link for 6 min at 37˚C.

The RGD++ hydrogel mixture was then added to the unoccupied side of the slide complex

until it bordered the semi-polymerized RGD- hydrogel. The complex was then cross-linked

for another 8 minutes to complete both sides of the laminated hydrogel. MSCs were seeded at

a density of 21.0e3cells/cm2 on top of laminated RGD-/RGD++ hydrogels, and allowed to

attach overnight, then imaged.

Statistical analysis

All data is reported as an average +/- standard deviation. Data was analyzed for statistical

significance by first using a Q-test to remove statistical outliers, then by using a two-way

ANOVA followed by Tukey’s post-hoc test (p� 0.05).
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Supporting information

S1 Fig. Repeated run of Fig 4. Number of cells present on RGD- and RGD++ hydrogels after

1, 11, 14 days (n = 6 ± standard deviation). (1)Significance vs. day 1 for the same sample type.
‡Significance from RGD- hydrogels at same time point (p< 0.05).

(TIF)

S2 Fig. Repeated run of Fig 5. Cells adhered to PEG-DMA hydrogels with RGD peptides

(RGD++) and without peptides (RGD-) on days 1, 11, and 14. Inset: an alternate area of the

hydrogel showing a different pattern of cellular adhesion. Scale bar = 10 μm.

(TIF)

S3 Fig. Repeated run of Fig 6. Increasing numbers of cells are delivered by RGD- donor

hydrogels (strong donor) to the RGD++ acceptor hydrogel surface over time. Cell numbers on

RGD++ acceptor hydrogels were measured after 1, 7, and 14 days (n = 5 ± standard deviation).
(1)Significance from d1 hydrogels for the same sample type. (7)Significance from d7 hydrogels

for the same sample type (p< 0.05).

(TIF)

S4 Fig. Fig 2 raw data.

(XLSX)

S5 Fig. Fig 4 raw data.

(XLSX)

S6 Fig. Fig 6 raw data.

(XLSX)

S7 Fig. Fig 8 raw data.

(XLSX)

S8 Fig. S1 Fig raw data.

(XLSX)

S9 Fig. S2 Fig raw data.

(XLSX)

S10 Fig. Raw data for PEG-DA and PEG-DMA swelling study.

(XLSX)

Acknowledgments

Franciscan Institute for Science and Health for provision of stem cells Denise Lombard for lab

support.

Author Contributions

Conceptualization: Rosita R. Asawa, Holly N. Baca, Derek M. Doroski.

Data curation: Rosita R. Asawa, Jessica C. Belkowski, Daniel A. Schmitt, Elizabeth M. Her-

nandez, Ann E. Babcock, Christina K. Lochner, Holly N. Baca, Colleen M. Rylatt, Isaac S.

Steffes, Jace J. VanSteenburg, Karina E. Diaz, Derek M. Doroski.

Formal analysis: Colleen M. Rylatt, Derek M. Doroski.

Transient adhesion on PEG-DMA for a stem cell bandage approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0202825 August 23, 2018 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202825.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202825.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202825.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202825.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202825.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202825.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202825.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202825.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202825.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0202825.s010
https://doi.org/10.1371/journal.pone.0202825


Investigation: Rosita R. Asawa, Jessica C. Belkowski, Daniel A. Schmitt, Elizabeth M. Hernan-

dez, Ann E. Babcock, Christina K. Lochner, Holly N. Baca, Colleen M. Rylatt, Isaac S.

Steffes, Jace J. VanSteenburg, Karina E. Diaz.

Methodology: Rosita R. Asawa, Jessica C. Belkowski, Daniel A. Schmitt, Elizabeth M. Hernan-

dez, Ann E. Babcock, Christina K. Lochner, Holly N. Baca, Isaac S. Steffes, Jace J. VanSteen-

burg, Karina E. Diaz, Derek M. Doroski.

Project administration: Rosita R. Asawa, Daniel A. Schmitt, Elizabeth M. Hernandez, Ann E.

Babcock, Christina K. Lochner, Derek M. Doroski.

Supervision: Derek M. Doroski.

Writing – original draft: Rosita R. Asawa, Jessica C. Belkowski, Daniel A. Schmitt, Elizabeth

M. Hernandez, Ann E. Babcock, Christina K. Lochner, Jace J. VanSteenburg, Derek M.

Doroski.

Writing – review & editing: Rosita R. Asawa, Jessica C. Belkowski, Daniel A. Schmitt, Eliza-

beth M. Hernandez, Ann E. Babcock, Christina K. Lochner, Holly N. Baca, Colleen M.

Rylatt, Isaac S. Steffes, Karina E. Diaz, Derek M. Doroski.

References

1. Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in clinical repair of

articular cartilage. Biomaterials. 2016; 98:1–22. https://doi.org/10.1016/j.biomaterials.2016.04.018

PMID: 27177218

2. Horch RE. Future perspectives in tissue engineering. J Cell Mol Med. 2006; 10(1):4–6. https://doi.org/

10.1111/j.1582-4934.2006.tb00286.x PMID: 16563217

3. Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen

Med. 2016;(Epub ahead of print).

4. Hiobb MA, Crouch GW, Weiss AS. Elasotomers in vascular tissue engineering. Curr Opin Biotechnol.

2016; 40:149–54. https://doi.org/10.1016/j.copbio.2016.04.008 PMID: 27149017

5. van Rijn JM, Schneeberger K, Wiegerinck CL, Nieuwenhuis EE, Middendorp S. Novel approaches: Tis-

sue engineering and stem cells—In vitro modelling of the gut. Best Pr Res Clin Gastroenterol. 2016; 30

(2):281–93.

6. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell

Physiol. 2007; 213(2):341–7. https://doi.org/10.1002/jcp.21200 PMID: 17620285

7. Kim N, Cho SG. Clinical applications of mesenchymal stem cells. Korean J Inern Med. 2013; 28

(4):387–402.

8. F Y, Williams CG, Wand DA, Lee H, Manson PNEJ. The effect of incorporating RGD adhesive peptide

in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials.

2005; 26(30):5991–8. https://doi.org/10.1016/j.biomaterials.2005.03.018 PMID: 15878198

9. Lin-Gibson S, Bencherif S, Cooper JA, Wetzel SJ, Antonucci JM, Vogel BM, et al. Synthesis and char-

acterization of PEG dimethacrylates and their hydrogels. Biomacromolecules. 2004; 5(4):1280–7.

https://doi.org/10.1021/bm0498777 PMID: 15244441

10. Papadopoulos A, Bichara DA, Zhao X, Ibusuki S, Randolph MA, Anseth KS, et al. Injectable and photo-

polymerizable tissue-engineered auricular cartilage using poly(ethylene glycol) dimethacrylate copoly-

mer hydrogels. Tissue Eng Part A. 2011; 17(1–2):161–9. https://doi.org/10.1089/ten.TEA.2010.0253

PMID: 20695772

11. Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue

resurfacing. J Biomed Mater Res. 1998; 39(2):266–76. PMID: 9457557

12. Antony GJ, Jarali CS, Aruna ST, Raja S. Tailored poly(ethylene) glycol dimethacrylate based shape

memory polymer for orthopedic applications. J Mech Behav Biomed Matr. 2017; 65:857–65.

13. Hutanu D, Frishbery MD, Guo L, Darie CC. Recent applications of polyethylene glycols (PEGs) and

PEG derivatives. Mod Chem Appl. 2014; 2(2):1–6.

14. Pakulska MM, Ballios BG, Shoichet MS. Injectable hydrogels for central nervous system therapy.

Biomed Matr. 2012; 7(2):024101.

Transient adhesion on PEG-DMA for a stem cell bandage approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0202825 August 23, 2018 19 / 20

https://doi.org/10.1016/j.biomaterials.2016.04.018
http://www.ncbi.nlm.nih.gov/pubmed/27177218
https://doi.org/10.1111/j.1582-4934.2006.tb00286.x
https://doi.org/10.1111/j.1582-4934.2006.tb00286.x
http://www.ncbi.nlm.nih.gov/pubmed/16563217
https://doi.org/10.1016/j.copbio.2016.04.008
http://www.ncbi.nlm.nih.gov/pubmed/27149017
https://doi.org/10.1002/jcp.21200
http://www.ncbi.nlm.nih.gov/pubmed/17620285
https://doi.org/10.1016/j.biomaterials.2005.03.018
http://www.ncbi.nlm.nih.gov/pubmed/15878198
https://doi.org/10.1021/bm0498777
http://www.ncbi.nlm.nih.gov/pubmed/15244441
https://doi.org/10.1089/ten.TEA.2010.0253
http://www.ncbi.nlm.nih.gov/pubmed/20695772
http://www.ncbi.nlm.nih.gov/pubmed/9457557
https://doi.org/10.1371/journal.pone.0202825


15. Sepantafar M, Maheronnaghsh R, Mohammadi H, Radmanesh F, Hassani-Sadrabadi MM, Ebrahimi M,

et al. Engineered hydrogels in cancer therapy and diagnosis. Trends Biotechnol. 2017; 35(11):1074–

87. https://doi.org/10.1016/j.tibtech.2017.06.015 PMID: 28734545

16. Suggs LJ, Mikos AG. Development of poly(propylene fumarate-co-ethylene glycol) as an injectable car-

rier for endothelial cells. Cell Transpl. 1999; 8(4):345–50.

17. Yu H, Adesia AB, Jomha NM. Meniscus repair using mesenchymal stem cells—a comprehensive

review. Stem Cell Res Ther. 2015; 6(1):86.

18. Becker AD, Riet I V. Homing and migration of mesenchymal stromal cells: How to improve efficacy of

cell therapy? World J Stem Cells. 2016; 8(3):73–87. https://doi.org/10.4252/wjsc.v8.i3.73 PMID:

27022438

19. Hassan W, Dong Y, Wand W. Encapsulation and 3D culture of human adipose-derived stem cells in an

in-situ crosslinked hybrid hydrogel composed of PEG-bbased hyperbranched copolymer and hyaluronic

acid. Stem Cell Res Ther. 2013; 4(2):32. https://doi.org/10.1186/scrt182 PMID: 23517589

20. Adiguzel Z, Sagnic SA, Aroguz AZ. Preparation and characterization of polymers based on PDMS and

PEG-DMA as a potential scaffold for cell growth. Mater Sci Eng C Mater Biol Appl. 2017; 78:942–8.

https://doi.org/10.1016/j.msec.2017.04.077 PMID: 28576070

21. Doroski DM, Levenston ME, Temenoff JS. Cyclic tensile culture promotes fibroblastic differentiation of

marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels. Tissue Eng Part A. 2010;

16(11):3457–66. https://doi.org/10.1089/ten.tea.2010.0233 PMID: 20666585

22. Temenoff JS, Athanasiou KA, LeBaron RG, Mikos AG. Effect of poly(ethylene glycol) molecular weight

on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue

engineering. J Biomed Mater Res. 2002; 59(3):429–37. PMID: 11774300

23. Hubbell JA. Biomaterials in Tissue Engineering. Biotechnology. 1995; 13(6):565–76. PMID: 9634795

24. Keselowsky BG, Collard DM, Garcı́a AG. Surface chemistry modulates fibronectin conformation and

directs integrin binding and specificity to control cell adhesion. Biomed Mater Res A. 2003; 66(2):247–

59.

25. Yang PJ, Levenston ME, Temenoff JS. Modulation of mesenchymal stem cell shape in enzyme-sensi-

tive hydrogels is decoupled from upregulation of fibrobblast markers under cyclic tension. Tissue Eng

Part A. 2012; 18(21–22):2365–75. https://doi.org/10.1089/ten.TEA.2011.0727 PMID: 22703182

26. Qiu Y, Lim JJ, Scott L Jr, Adams RC, Bui HT, Temenoff JS. PEG-based hydrogels with tunable degra-

dation characteristics to control delivery of marrow stromal cells for tendon overuse injuries. Acta Bio-

mater. 2011; 7(3):959–66. https://doi.org/10.1016/j.actbio.2010.11.002 PMID: 21056127

27. McLaughlin M, Gagnet P, Cunningham E, Yeager R, D’Amico M, Guski K, et al. Allogenic platelet relea-

sate preparations derived via a novel rapid thrombin activation process promote rapid growth and

increased BMP-2 and BMP-4 expression in human adipose-derived stem cells. Stem Cells Int. 2016;1–

9.

28. Shin H, Jo S, Mikos AG. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly

(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethyleneglycol)

spacer. J Biomed Mater Res. 2002; 61(2):169–79. PMID: 12061329

29. Chondrogenic Differentiation and Analysis of MSC. PromoCell. PromoCell; 2015. [Application Note].

30. Alizarin Red S Staining Kit. ScienCell Research Laboratories; 2018. [Product Sheet].

31. Oil Red O Staining Kit. ScienCell Research Laboratories; 2018. [Product Sheet].

32. Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG. Modulation of differentiation and

mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp con-

taining peptides. J Biomed Mater Res A. 2004; 69(3):535–43. https://doi.org/10.1002/jbm.a.30027

PMID: 15127400

33. Temenoff JS, Park H, Jabbar E, Conway DE, Sheffield TL, Ambrose CG, et al. Thermally cross-linked

oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated mar-

row stromal cells in vitro. Biomacromolecules. 2004; 5(1):5–10. https://doi.org/10.1021/bm030067p

PMID: 14715001

Transient adhesion on PEG-DMA for a stem cell bandage approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0202825 August 23, 2018 20 / 20

https://doi.org/10.1016/j.tibtech.2017.06.015
http://www.ncbi.nlm.nih.gov/pubmed/28734545
https://doi.org/10.4252/wjsc.v8.i3.73
http://www.ncbi.nlm.nih.gov/pubmed/27022438
https://doi.org/10.1186/scrt182
http://www.ncbi.nlm.nih.gov/pubmed/23517589
https://doi.org/10.1016/j.msec.2017.04.077
http://www.ncbi.nlm.nih.gov/pubmed/28576070
https://doi.org/10.1089/ten.tea.2010.0233
http://www.ncbi.nlm.nih.gov/pubmed/20666585
http://www.ncbi.nlm.nih.gov/pubmed/11774300
http://www.ncbi.nlm.nih.gov/pubmed/9634795
https://doi.org/10.1089/ten.TEA.2011.0727
http://www.ncbi.nlm.nih.gov/pubmed/22703182
https://doi.org/10.1016/j.actbio.2010.11.002
http://www.ncbi.nlm.nih.gov/pubmed/21056127
http://www.ncbi.nlm.nih.gov/pubmed/12061329
https://doi.org/10.1002/jbm.a.30027
http://www.ncbi.nlm.nih.gov/pubmed/15127400
https://doi.org/10.1021/bm030067p
http://www.ncbi.nlm.nih.gov/pubmed/14715001
https://doi.org/10.1371/journal.pone.0202825

