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Abstract: Respiratory disease in horses is caused by a multifactorial complex of infectious agents and
environmental factors. An important pathogen in horses is equine herpesvirus type 1 (EHV-1). During
co-evolution with this ancient alphaherpesvirus, the horse’s respiratory tract has developed multiple
antiviral barriers. However, these barriers can become compromised by environmental threats. Pol-
lens and mycotoxins enhance mucosal susceptibility to EHV-1 by interrupting cell junctions, allowing
the virus to reach its basolateral receptor. Whether bacterial toxins also play a role in this impairment
has not been studied yet. Here, we evaluated the role of α-hemolysin (Hla) and adenylate cyclase
(ACT), toxins derived from the facultative pathogenic bacterium Staphylococcus aureus (S. aureus) and
the primary pathogen Bordetella bronchiseptica (B. bronchiseptica), respectively. Equine respiratory
mucosal explants were cultured at an air–liquid interface and pretreated with these toxins, prior
to EHV-1 inoculation. Morphological analysis of hematoxylin–eosin (HE)-stained sections of the
explants revealed a decreased epithelial thickness upon treatment with both toxins. Additionally,
the Hla toxin induced detachment of epithelial cells and a partial loss of cilia. These morpholog-
ical changes were correlated with increased EHV-1 replication in the epithelium, as assessed by
immunofluorescent stainings and confocal microscopy. In view of these results, we argue that the
ACT and Hla toxins increase the susceptibility of the epithelium to EHV-1 by disrupting the epithelial
barrier function. In conclusion, this study is the first to report that bacterial exotoxins increase the
horse’s sensitivity to EHV-1 infection. Therefore, we propose that horses suffering from infection by
S. aureus or B. bronchiseptica may be more susceptible to EHV-1 infection.

Keywords: mucosal barriers; cell junctions; equine respiratory mucosal explants; EHV-1; α-hemolysin
toxin; adenylate cyclase toxin; Staphylococcus aureus; Bordetella bronchiseptica

1. Introduction

The appearance of respiratory symptoms in horses is greatly influenced by many
environmental factors, including respiratory hazards [1]. These factors can impair the
integrity of the horse’s respiratory mucosa and thereby can drive the infection and invasion
of pathogens. Specifically, several respirable threats have already been described to impair
and predispose the epithelium to viral infection in horses. For instance, it was demonstrated
that pollen proteases could selectively and irreversibly alter cell junctions of columnar
equine respiratory epithelial cells (EREC) and facilitate the invasion of equine herpesvirus

Viruses 2022, 14, 149. https://doi.org/10.3390/v14010149 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v14010149
https://doi.org/10.3390/v14010149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0003-1598-3057
https://orcid.org/0000-0001-6683-5658
https://orcid.org/0000-0001-5470-0713
https://doi.org/10.3390/v14010149
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v14010149?type=check_update&version=2


Viruses 2022, 14, 149 2 of 13

type 1 (EHV-1) [2]. Moreover, it was shown that pretreatment of ex vivo respiratory mucosal
explants and EREC with deoxynivalenol, a mycotoxin mainly present in equine feeds, dam-
ages respiratory epithelial integrity and also predisposes these cells to EHV1 infection [3].
So far, exotoxins originating from bacteria have not been investigated regarding their
predisposing influence on EHV-1 infection. In this respect, Staphylococcus aureus (S. aureus)
and Bordetella bronchiseptica (B. bronchiseptica) are particularly interesting bacteria. S. aureus
is part of the normal equine nasal microbiome [4]. In Belgium and the Netherlands, the
prevalence of S. aureus in equine nasal mucosa is estimated to be approximately 10% [5].
This facultative pathogenic and opportunistic bacterium will colonize the upper respiratory
tract upon immunosuppression [6]. B. bronchiseptica is a free-living bacterium. Soil consti-
tutes an environmental niche where the bacterium can proliferate and persist, which makes
it omnipresent in the horse’s environment [7]. As a primary pathogen, B. bronchiseptica
causes respiratory infection in the absence of a preceding viral infection [8,9]. Both bacteria
produce and secrete a vast array of exotoxins upon colonization. Two of which are the
α-hemolysin toxin (Hla) (originating from S. aureus) and the adenylate cyclase toxin (ACT)
(produced by B. bronchiseptica) [10,11]. Various studies have pointed out the detrimental
effect of these exotoxins on epithelial integrity in continuous cell lines. More precisely, both
exotoxins cause the disruption of cell junctions [12–15].

EHV-1 is one of the major infectious agents affecting horses worldwide. The virus
is responsible for respiratory disorders, abortion, neonatal foal death, and equine herpes
myeloencephalopathy [16]. The main portal of EHV-1 entry is the upper respiratory tract.
Efficient infection of the respiratory epithelium is a prerequisite for EHV-1 invasion through
the basement membrane [17]. Following infection of the respiratory epithelium, EHV-1
exploits the local immune response by infecting monocytic cells and T-lymphocytes that are
diapedizing through the infected epithelium [18–20]. Hereby, the virus crosses the basement
membrane without being recognized. Subsequently, a cell-associated viremia is rapidly
established, which allows the virus to spread to target organs such as the central nervous
system or the uterus in gestating horses. Secondary replication in these organs often causes
severe reproductive and neurological disorders in horses [21,22]. During invasion of the
respiratory mucosa, the virus can also infect sensory nerve endings innervating the infected
epithelium. Viral particles can therefore travel along axons to the trigeminal ganglia, where
the virus establishes latency [23]. During periods of stress, the virus reactivates from its
latent state and viral particles can travel back to the initial site of infection, where progeny
virus is excreted [24]. The cycles of EHV-1 latency/reactivation contribute to a constant
source of infection for potential new hosts.

Interestingly, Van Cleemput and colleagues demonstrated that the disruption of cell
junctions results in enhanced EHV-1 binding to explant basolateral surfaces [25]. Conse-
quently, the authors hypothesized that EHV-1 targets a receptor located at the basolateral
surface of the respiratory epithelial cells, which is only exposed when the integrity of the
epithelium is compromised.

Currently, no successful therapies are available against EHV-1 infection, and the
control of EHV-1 infection mainly relies on management. Based on our current knowledge
on the mechanisms of EHV-1 pathogenesis, it is clear that efficiently restricting EHV-1
replication in the respiratory mucosa might be a key strategy to fight the infection. In
this regard, the control of environmental factors at the main portal of EHV1 entry might
represent a promising approach to control primary viral infection. In this study, we aim to
demonstrate whether bacterial exotoxins from B. bronchiseptica and S. aureus can similarly
enhance EHV-1 replication in the equine respiratory mucosa, as previously shown with
other respirable hazards. Specifically, we will investigate the effect of the Hla and ACT
toxin on the morphology of the epithelium and its susceptibility to EHV-1 infection by using
an in-house-developed ex vivo explant model. A better understanding and subsequent
management of the plethora of respirable hazards that influence the horse’s environment
and facilitate EHV1 infection might lead to the design of new and more effective therapeutic
option to fight this infection.
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2. Materials and Methods
2.1. The Equine Respiratory Explant Model

The proximal tracheas of six different healthy horses were collected at the slaughter-
house. An approval from the Ethical Committee from Ghent University was obtained to
collect the horse tracheas from the slaughterhouse. The tracheas were immediately sub-
merged in 500 mL of transport medium consisting of phosphate-buffered saline (PBS) with
calcium and magnesium and supplemented with 100 U/mL penicillin (ThermoFisher Scien-
tific, Paisley, UK), 0.1 mg/mL streptomycin (ThermoFisher Scientific), 0.1 mg/mL gentam-
icin (ThermoFisher Scientific), 0.1 mg/mL kanamycin (Merck, Darmstadt, Germany), and
0.25 µg/mL amphotericin B (ThermoFisher Scientific). An approval from the Flemish Food
Safety Authority was obtained for transportation of horse tracheas from the slaughterhouse
towards the laboratory. In the laboratory, the tracheas were rinsed once with approximately
200 mL of transport medium and the respiratory mucosa was cautiously removed from the
underlying cartilage using sterile tweezers and a surgical blade. The mucosa was carefully
placed in a Petri dish containing transport medium, and ciliary beating was assessed using
an Olympus IX50 light microscope. After confirming sufficient ciliary beating, square tissue
pieces of approximately 25 mm2 were prepared. Immediately afterwards, one explant per
trachea was embedded in methocel and quick-frozen to assess the viability of the mucosa.
By means of a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling
(TUNEL) staining (Roche, Basel, Switzerland), it was confirmed that transportation of
the tracheas to the laboratory did not negatively affect the viability of the mucosal ex-
plants. For cultivation, the explants were placed epithelium upwards onto fine-meshed
gauzes within 6-well plates, containing serum-free medium (50% DMEM (ThermoFisher
Scientific)/50% RPMI (ThermoFisher Scientific)) supplemented with 100 U/mL penicillin,
0.1 mg/mL streptomycin (ThermoFisher Scientific), 0.1 mg/mL gentamicin (ThermoFisher
Scientific), and 0.25 µg/mL amphotericin B (ThermoFisher Scientific). The explants were
cultivated in an air–liquid interface, as previously described by Vandekerckhove et al. [26],
for 18 h at 37 ◦C with 5% CO2.

2.2. Pretreatment with Bacterial Toxins (Hla and ACT)

After 18 h of cultivation, the explants were removed from their gauzes and placed
in a 24-well plate. To remove the mucus layer, the explants were thoroughly washed
with serum-free medium, by flushing them with a P1000 pipette. Successful removal of
mucus was evaluated with a light microscope. Additionally, sufficient ciliary beating was
confirmed. Next, treatment with the bacterial toxins was carried out using the agarose
model as previously published by Vairo et al. [27]. The apical surface of the epithelium was
submerged in 1 mL serum-free medium containing either 0.1 µg/mL α-hemolysin toxin
from S. aureus (Merck) or 0.5 µg/mL adenylate cyclase toxin from B. bronchiseptica (Merck)
for 24 h at 37 ◦C. These concentrations were based on previous studies that showed cell
junction disruption by the Hla and ACT toxins in CaCo-2 and VA10 cell lines [12,15]. As a
positive control for the disruption of cell junctions, the epithelium was exposed to 8 mM
of the calcium chelator ethylene glycol tetra-acetic acid (EGTA) (Merck) in PBS for 1 h at
37 ◦C. Explants were submerged in 1 mL of serum-free medium or PBS (negative control).
After treatment with the bacterial toxins, the explants were carefully washed three times
in serum-free medium within the agarose model. Afterwards, the explants were either
fixed in 3.6% formaldehyde for 24 h, in preparation of morphological analysis by staining
the sections with hematoxylin–eosin (HE), or embedded in methocel and quick-frozen for
viability studies, or the explants remained in the agarose for subsequent EHV-1 inoculation.
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2.3. Assessment of Mucosal Morphology and Viability

Immediately after the 24 h treatment with the bacterial toxins, the explants were
washed and fixed in 3.6% formaldehyde for 24 h for morphological analysis. Paraffin
embedding of the explants was carried out using an automated system (STP 420D, Micron,
Praran, Merelbeke, Belgium). Consecutive sections of 8 µm thick were cut, deparaffinized
in xylene, rehydrated in descending grades of alcohol, stained with HE, dehydrated in
ascending grades of alcohol and xylene, and finally mounted with DPX (DPX mountant,
BDH Laboratory Supplies, Poole, UK). To evaluate the effect of the bacterial toxins on
epithelial integrity and morphology, several parameters were evaluated by light microscopy.
The percentage of intercellular space between the epithelial cells and the thickness of the
epithelial layer were measured using Image J software (Image J, U.S. National Institutes of
Health, Bethesda, ML, USA).

For the determination of the percentage of intercellular space, a region of interest
(ROI, i.e., the epithelium) was drawn manually in the “ROI manager tool”. Next, the
threshold value to distinguish blank spaces from epithelial cells was determined, and the
percentage of blank spaces between the cells (i.e., the intercellular space) was calculated.
The thickness of the epithelium was measured using the Image J line-tool function. Further,
the overall appearance of the epithelium (detachment of cells and presence of cilia) was
visually assessed using light microscopy.

To evaluate the viability of the explants upon treatment with the bacterial toxins,
the explants were embedded in methocel immediately after treatment, quick-frozen, and
stored at −70 ◦C until further processing. Cryosections of 16 µm were cut and fixed with
4% paraformaldehyde for 20 min at room temperature. Next, the sections were washed in
PBS for 30 min. Afterwards, a TUNEL staining was performed following the manufacturer’s
guidelines. TUNEL-positive cells were counted in five randomly chosen ROIs of 100 cells
in the epithelium as well as the lamina propria, using a fluorescence microscope (Leica DM
RBE microscope, Leica Microsystems GmbH, Heidelberg, Germany).

2.4. EHV-1 Inoculation

In this study, we used the Belgian EHV-1 isolate 97P70. The virus was isolated from
the lungs of an aborted fetus in 1997 [28]. The virus was grown and passaged on rabbit
kidney 13 cells and was used in this study at its 6th passage. The explants were inoculated
within the agarose model by exposing them to 1 mL of serum-free medium containing
106.5 TCID50/mL of the 97P70 for 1 h at 37 ◦C. After 1 h incubation, the explants were
washed three times with serum-free medium and removed from the agarose. The explants
were transferred back to their gauzes and incubated in serum-free medium in an air–liquid
interface for 24 h, until collection.

2.5. Evaluation of EHV-1 Infection by Immunofluorescent Stainings and Confocal Microscopy

After 24 h of incubation, the EHV-1 infected explants were frozen in methocel and stored
at −70 ◦C until further processing. With a cryostat at −20 ◦C, 50 consecutive sections of 16 µm
were cut per explant. The cryosections were loaded onto 3-aminopropyltriethoxysilane-coated
(Merck) glass slides and fixed using 4% paraformaldehyde for 15 min at 4 ◦C. Afterwards,
the tissue sections were washed three times in PBS. Permeabilization of the tissue was
achieved by adding 0.1% Triton X-100 diluted in PBS for 10 min at room temperature. After
washing the sections three times in PBS, an immunofluorescent staining to detect EHV-1
late proteins was performed, as previously described [29]. A biotinylated polyclonal horse
anti-EHV-1 antibody was used as a primary antibody (dilution 1:20). The horse polyclonal
anti-EHV-1 antibody was obtained by hyperimmunization of a horse [30]. Afterwards, the
sections were incubated with streptavidin-FITC® (ThermoFisher Scientific) (dilution 1:200).
Hoechst 33342 (ThermoFisher Scientific) (dilution 1:100) was used to counterstain the
nuclei. Finally, the slides were mounted with glycerol mounting medium, containing
DABCO, and analyzed with a fluorescent microscope. The total number of plaques was
counted on 50 cryosections (i.e., 4 mm2 epithelium) and the plaque diameter was measured
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using the Image J line-tool. Additionally, the percentage of EHV-1 late protein expression
in the epithelium was determined using Image J software. The epithelium was defined
as a region of interest by manually selecting it in the “ROI manager tool”. Next, the
threshold value to distinguish the FITC-positive signal (i.e., EHV-1 late proteins detected
by immunofluorescence) from the background signal was determined. Afterwards, the
percentage of the ROI (i.e., the epithelium) that was positive for EHV-1 late proteins
was calculated.

2.6. Statistical Analysis

Data are represented as mean values + SD of triplicate independent experiments.
The data were analyzed for statistical significance using a one-way analysis of variance
(ANOVA). The Tukey test was used as a post hoc test for multiple comparisons. Differences
in results were considered statistically significant when the p-values were <0.05. Data were
statistically evaluated with Prism 9 for macOS, version 9.3.0 (345).

3. Results

First, we confirmed that treatment with 0.1 µg/mL of the Hla toxin or with 0.5 µg/mL
of the ACT toxin did not induce cell death of respiratory epithelial cells or cells within
the lamina propria, by means of TUNEL stainings (details are given in the Supplementary
Information in Figure S1).

3.1. The Hla and ACT Toxins Cause Morphological Changes in the Respiratory Mucosa,
Characterised by a Reduction in Epithelial Thickness
3.1.1. Treatment with the α-Hemolysin Toxin Causes a Reduction in Epithelial Thickness in
Equine Respiratory Mucosal Explants

As shown in Figure 1A, treatment of the respiratory mucosal explants with 0.1 µg/mL
Hla toxin did not result in a significant disruption of the cell junctions between the epithelial
cells. The percentage of intercellular space in the epithelium after Hla treatment was
3.8 ± 0.6%, compared to 2.4 ± 1.5% in the untreated control. In contrast, the percentage
of intercellular space was approximately 5-fold higher (14 ± 3.2%) in the positive control
(EGTA treatment) than in the untreated control. A normal thickness of the epithelium
(in nontreated control explants) is 58 ± 3.6 µm. The epithelial thickness decreased almost
2-fold to 34 ± 2.7 µm in Hla-treated explants compared to untreated ones (p-value < 0.001).
Exposure to EGTA had no notable effect on the thickness of the epithelium (61 ± 4.6 µm
compared to 58 ± 3.6 µm without treatment). Further, Hla treatment resulted in the
detachment of single cells at the apical surface of the epithelium. Additionally, a partial loss
of cilia was observed in explants upon Hla treatment when compared to untreated controls.
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Figure 1. Treatment with the Hla and ACT toxins causes morphological changes in equine respiratory
mucosa. (A) Effect of the Hla toxin on the morphology of equine respiratory mucosa. Hematoxylin-
eosin (HE) stainings of paraffin-embedded sections of respiratory mucosal explants treated with Hla
toxin or serum-free medium (upper panel). Central tendencies for intercellular space and epithelial
thickness are indicated by the left and right bar plots, respectively (lower panel). (B) Effect of the ACT
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toxin on the mucosal morphology, as assessed by HE stainings (upper panel). The left and right bar
plots show the percentage of intercellular space and the thickness of the epithelium, respectively
(lower panel). Black dots in the bar plots represent independent replicates. Differences between
means of the treatments were considered significant if the p-values were <0.05 (ns = not significant,
*** = p-value < 0.001).

3.1.2. Treatment with the Adenylate Cyclase Toxin Causes a Reduction in Epithelial
Thickness in Equine Respiratory Mucosal Explants

The influence of the ACT toxin on mucosal morphology is shown in Figure 1B. Sim-
ilarly to the Hla toxin, treatment with the ACT toxin did not induce an increase in in-
tercellular spaces in the epithelium (2 ± 1%, compared to 1.5 ± 0.6% in the serum-free
medium-treated control), while EGTA treatment clearly resulted in a disruption of the CJ
(21 ± 3.6% intercellular space in the epithelium). Again, treatment with the bacterial toxin
ACT resulted in a significant decrease in epithelial thickness from 64 ± 3.6 µm in normal
mucosa to 39.3 ± 2.0 µm in ACT-treated mucosa (p-value < 0.001). The thickness of the
epithelium was not altered upon EGTA treatment (65.6 ± 5.9 µm). Contrary to the Hla
toxin, the ACT toxin did not induce any cell detachment, or loss of cilia.

3.2. Treatment with the Hla or ACT Toxins Predisposes the Equine Respiratory Epithelium to
EHV-1 Infection
3.2.1. Infection of EHV-1 in the Respiratory Epithelium following α-Hemolysin
Toxin Treatment

Figure 2A shows the effect of Hla pretreatment on EHV-1 infection at 24 h post
inoculation (hpi).

Number of plaques: In nontreated control explants (i.e., submerged in serum-free
medium), the number of viral plaques observed was 20 ± 11 per 4 mm2 epithelium. In
Hla-treated explants, this number increased almost 4-fold to 78 ± 25 viral plaques per
4 mm2 epithelium (p-value < 0.05). EGTA pretreatment resulted in a significant increase in
the number of plaques, compared to no treatment (84 ± 22).

Plaque diameter: As for the plaque diameter, a similar trend was observed. Treatment
with the Hla toxin increased the plaque diameter from 81 ± 9 µm in untreated explants to
118 ± 24 µm. Exposure to EGTA prior to EHV-1 inoculation led to a plaque diameter of
136 ± 7 µm.

Percentage of infection: The overall percentage of EHV-1 infection in the epithelium
is a combination of the total number of plaques and the average plaque diameter. The
percentage of infection increased from 1.3 ± 0.4% in normal epithelium to 7.8 ± 3.7% after
Hla treatment. In positive control explants (i.e., EGTA treated), the percentage of infection
amounted to 11.1 ± 4.0%.
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Figure 2. The effect of Hla and ACT toxin treatment on subsequent EHV-1 replication in the res-
piratory epithelium at 24 hpi. EHV-1 infection in the epithelium was evaluated by performing an
immunofluorescent staining against EHV-1 late proteins on 50 consecutive cryosections/explants.
The infection was evaluated by determining (1) the number of plaques/4 mm2 epithelium, (2) the
average plaque diameter, and (3) the percentage of infection in the epithelium. (A) Effect of the Hla
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toxin on EHV-1 replication. Immunofluorescent stainings against EHV-1 late proteins in respiratory
mucosal explants treated with Hla toxin or serum-free medium (upper panel). The left bar plot
indicates central tendencies for the number of plaques. The plaque diameter is indicated by the
middle bar plot. The bar plot on the right shows the percentage of infection in the epithelium
(lower panel). (B) Effect of the ACT toxin on EHV-1 infection. The upper panel shows immunofluo-
rescent stainings against EHV-1 late proteins in respiratory mucosal explants treated with the ACT
toxin or with serum-free medium. The bar plots in the lower panel indicate central tendencies for
the number of plaques (left), the plaque diameter (middle), and the percentage of infection in the
epithelium (right). Black dots in the bar plots represent independent replicates. Differences between
means of the treatments were considered significant if the p-values were <0.05 (ns = not significant,
* = p-value < 0.05, ** = p-value < 0.01, *** = p-value < 0.001).

3.2.2. Infection of EHV-1 in the Respiratory Epithelium following Adenylate Cyclase
Toxin Treatment

Similarly to Hla treatment, exposure to the ACT toxin resulted in an upturn in EHV-1
infection in the epithelium at 24 hpi (Figure 2B).

Number of plaques: ACT toxin treatment led to a noticeable elevation in the number
of plaques, as compared to the untreated control (34 ± 5.9 plaques in pretreated epithelium
versus 11 ± 2.9 in the nontreated control; p-value < 0.05).

The number of plaques in the positive control explant, treated with 8 mM EGTA,
was markedly elevated as compared to the untreated explant (74 ± 9.9 plaques post
EGTA treatment).

Plaque diameter: As for the plaque diameter, we observed a more than 2-fold incline
after toxin treatment (148 ± 19.3 µm compared to 64 ± 8.0 µm; p-value < 0.01). In the
positive control, a considerable incline in plaque diameter was noted, compared to the
nontreated explant (190 ± 20.0 µm after EGTA exposure).

Percentage of infection: Clearly, the overall percentage of infection in the epithelium
followed a similar trend as that of the number of plaques and plaque diameter. An
elevation in the percentage of infection was noted after pretreatment with the ACT toxin.
The percentage of infection after toxin treatment amounted to 5.1 ± 0.7%, as compared
to 0.7 ± 0.3% in the untreated control (p-value = 0.06). In the positive control explant, we
observed 14.2 ± 3.2% of infection in the epithelium.

4. Discussion

The respiratory tract constitutes a primary portal of entry for many pathogens, includ-
ing alphaherpesviruses. Consequently, it is not surprising that several innate barriers exist
against these invading pathogens. Previously, our research group showed that the respira-
tory mucus layer is a crucial initial barrier to be overcome during the early pathogenesis of
pseudorabies virus infection [31]. Whether mucus similarly acts as a first impediment for
the closely related EHV-1 is not known. The key hurdle to be conquered by EHV-1 was
shown to be the cell junctions. Indeed, Van Cleemput et al. recently demonstrated that EHV-
1 targets a basolateral receptor, shielded from the apical environment by cell junctions [25].
However, the integrity of these junctions can be compromised by several environmental
factors. When this happens, the basolateral receptor becomes freely accessible to the virus.
Recently, it was demonstrated that respirable hazards, such as the mycotoxin deoxyni-
valenol, interfere with the structural integrity of cell junctions and thus predispose to EHV-1
infection [3]. Further, pollen proteases selectively and irreversibly destroy these epithelial
junctions [2]. Finally, even the mucolytic drug lysomucil, often used in case of recurrent
airway obstruction and severe pneumonia in horses, proves to have a similar disruptive
effect on the epithelial barrier function [25]. Until now, exotoxins originating from bacterial
pathogens were not investigated in this context. The present study aimed to investigate
whether exotoxins originating from two respiratory bacteria in horses, Staphylococcus aureus
and Bordetella bronchiseptica, could have a similar detrimental effect on epithelial integrity
and EHV-1 infection. The question whether bacterial infections can predispose to viral in-
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fections may initially strike one as odd. After all, it is generally accepted that viral infections
precede and promote bacterial colonization [32,33]. While a considerable amount of litera-
ture exists on the predisposing influence of viral infections on the occurrence of bacterial
superinfections, substantially less literature is available on the reverse phenomenon [34].
Nevertheless, in the case of facultative pathogenic bacteria (such as S. aureus), or in the case
of primary bacterial pathogens (B. bronchiseptica), it is relevant to question their potential
to increase susceptibility to viral infection. The exotoxins that were investigated in this
study include the α-hemolysin toxin from S. aureus and the adenylate cyclase toxin from
B. bronchiseptica. Interestingly, previous studies pointed out that they disrupt cell junctions
between epithelial cells of continuous cell lines (including Caco-2 and VA10 cells) [12,15].
Our hypothesis stated that these toxins have a similar effect on epithelial junctions in equine
respiratory epithelium and thereby facilitate subsequent EHV-1 infection in the epithelium.
To investigate our hypothesis, we used an in-house-developed ex vivo model: the equine
respiratory mucosal explant model. Morphological analysis of the respiratory mucosa,
based on HE staining of tissue sections, revealed that the integrity of the cell junctions
remained unaltered upon treatment with both bacterial toxins. This is in striking contrast to
previous studies performed on continuous cell lines, such as Caco-2 and VA10 cells, where
treatment with the Hla and ACT toxins respectively caused a substantial impairment of the
junctional proteins [12,15]. A possible explanation may rely on the fact that cell junctions
in a monolayer of immortalized cells would adopt a more primitive form, as compared to
the ex vivo explant situation, where epithelial cells and cell junctions are contained in a
three-dimensional tissue structure. Both toxins induced a remodeling of the epithelium,
characterized by a decrease in epithelial thickness. This finding is in agreement with results
of an in vitro study that showed that the ACT toxin induces a reorganization of the actin
skeleton in rat alveolar epithelial cells, resulting in an altered cell shape [35]. The cells lost
their elongated appearance and instead acquired a round and compact shape. Remodeling
of the actin skeleton in airway epithelial cells has also been described for the Hla toxin [14].

Analysis of the percentage of EHV-1 infection in the epithelium showed that the
epithelium was predisposed to EHV-1 infection upon treatment with both bacterial toxins.
An incline in the number of plaques as well as the plaque diameter was observed. An
explanation for this observation could be that the compaction of epithelial cells might lead
to a predisposition to EHV-1 infection (Figure 3). Certain junctional proteins, which are part
of the cytoskeleton and are affected by the bacterial toxins, also modulate the localization
of the tight junctions [36]. One of the main functions of these tight junctions is to prevent
the migration of transmembrane proteins from the basolateral side of the cell membrane to
the apical side [37]. Their altered localization might potentially result in the availability
of the main EHV-1 receptor near the apical side of the respiratory epithelium. Future
studies should investigate the latter hypothesis by performing direct virus-binding studies.
Furthermore, in vivo experiments will need to be performed in the future to validate these
results obtained with the respiratory mucosal explant system.
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Figure 3. A hypothetical model on how exposure to Hla and ACT toxins might drive subsequent
EHV-1 infection in the equine respiratory epithelium. Left: in normal healthy epithelium, EHV-1
replication is restricted due to the fact it targets a receptor located at the basolateral surface of
the epithelial cells. This receptor is shielded from the apical environment by cellular junctions.
Middle: after treatment with the Hla or ACT toxin, the epithelium undergoes morphological changes,
characterized by a decrease in epithelial thickness. It may be that due to a remodeling of the actin
cytoskeleton, the EHV-1 receptor becomes available near the apical side of the epithelium. This may
explain the more efficient EHV-1 replication. Right: treatment with EGTA was included in this study
as a positive control and leads to the disruption of cell junctions. Destruction of epithelial junctions
drives EHV-1 infection by providing the virus free access to its basolateral receptor.

5. Conclusions

In conclusion, we are the first to demonstrate that two bacterial toxins, the α-hemolysin
from Staphylococcus aureus and adenylate cyclase toxin from Bordetella bronchiseptica, sensi-
tize the horse’s respiratory mucosa to EHV-1 infection. We propose that in the event a horse
suffers from an infection with S. aureus or B. bronchiseptica, these bacteria may pave the way
for a primary EHV-1 infection to occur. Our findings are directly relevant for the veterinary
practitioner. So far, no successful curative therapies are available against EHV-1, and the
current commercial vaccines have not been overly effective in the prevention of clinical
disease. We therefore argue that the prevention of EHV-1 infections should always be
combined with the control of environmental factors that may promote the onset of EHV-1
replication. Acknowledging the importance of predisposing factors and identifying them is
a prerequisite in the prevention of EHV-1. Based on our findings, it should be recognized
that bacterial infections with S. aureus or B. bronchiseptica could possibly precede an EHV-1
infection. These bacteria should thus at least be incorporated early on in the diagnostic
approach of clinical respiratory disease. Upon diagnosing a predisposing infection with
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these bacteria, it may be beneficial to administer antimicrobial therapy early on in the
course of the disease.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/v14010149/s1, Figure S1: Cell viability in respiratory mucosal explants.
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