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Abstract

Early childhood asthma diagnosis is common; however, many children diagnosed before
age 5 experience symptom resolution and it remains difficult to identify individuals whose
symptoms will persist. Our objective was to develop machine learning models to identify
which individuals diagnosed with asthma before age 5 continue to experience asthma-
related visits. We curated a retrospective dataset for 9,934 children derived from electronic
health record (EHR) data. We trained five machine learning models to differentiate individu-
als without subsequent asthma-related visits (transient diagnosis) from those with asthma-
related visits between ages 5 and 10 (persistent diagnosis) given clinical information up to
age 5 years. Based on average NPV-Specificity area (ANSA), all models performed signifi-
cantly better than random chance, with XGBoost obtaining the best performance (0.43
mean ANSA). Feature importance analysis indicated age of last asthma diagnosis under 5
years, total number of asthma related visits, self-identified black race, allergic rhinitis, and
eczema as important features. Although our models appear to perform well, a lack of prior
models utilizing a large number of features to predict individual persistence makes direct
comparison infeasible. However, feature importance analysis indicates our models are con-
sistent with prior research indicating diagnosis age and prior health service utilization as
important predictors of persistent asthma. We therefore find that machine learning models
can predict which individuals will experience persistent asthma with good performance and
may be useful to guide clinician and parental decisions regarding asthma counselling in
early childhood.

1. Introduction

Asthma is a chronic inflammatory disease of the airways characterized by recurrent wheezing
that affects 7.1 million American children [1]. While early diagnosis of asthma may be
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beneficial for those with treatment responsive phenotypes, there is a large population of chil-
dren that receive an incident asthma diagnosis who ultimately do not experience chronic (or
persistent) asthma symptoms [2]. In such cases, early diagnosis may lead to unnecessary treat-
ment, potential associated side-effects, and alterations in quality of life for both children and
their families [3]. As such, upon initial diagnosis of early childhood asthma, it is important to
parents and clinicians to have an accurate prognosis as to whether asthma will persist as a
chronic condition. The ability to better distinguish, on an individual basis, children likely to
experience persistent diagnosis from those with a transient diagnosis would, therefore, be
valuable.

Prior research of asthma-related predictive models is primarily focused on incidence and
progression. Asthma incidence prediction models provide risk estimates for a future asthma
diagnosis in individuals without a prior diagnosis. Early models [4-6] were rule based systems
based on the occurrence of early childhood wheezing episodes. More recently, statistical mod-
els [1,3] have been developed that identify pre-school children with asthma-like symptoms
who are at high risk of future asthma diagnosis. Asthma progression models predict exacerba-
tion of symptoms and physiological characteristics that lead to adverse outcomes such as emer-
gency department (ED) visits. Researchers have used electronic questionnaire responses,
patient telemonitoring data [7,8], and administrative data in conjunction with patient attri-
butes and environmental variables [9,10] to develop progression prediction models.

Asthma persistence refers to continuation of symptoms, with or without exacerbations.
Progression implies persistence, however the converse is not necessarily true [2]. Research on
asthma persistence prediction models is, to our knowledge, limited to a 2007 birth cohort
study [11]. In that study, the authors estimated univariate correlations of covariates with
asthma persistence and covariate-adjusted risks of persistence, respectively. Both analyses
yielded population-level estimates that found hospitalization to be an important determinant
of asthma persistence.

None of the aforementioned studies presented models expressly designed to provide indi-
vidualized prediction of asthma persistence. In this study, we developed and analyzed multiple
machine learning models designed to predict individual asthma persistence. Specifically, given
clinical input for a child under the age of 5 years with an incident asthma diagnosis, our mod-
els predict whether subsequent asthma diagnosis will occur by age 10 years. We trained and
evaluated models on electronic health record (EHR) data for 9,934 children. We show that the
models are able to distinguish between individuals who will experience persistent asthma and
those who will not with good performance. We additionally provide an examination of the
important model input features to ensure clinical relevance and plausibility. To the best of our
knowledge, ours is the first study to describe a comprehensive investigation of modern
machine learning algorithms for persistent asthma diagnosis prediction in children using
large-scale EHR data.

2. Materials and methods
2.1. Study setting

We implemented a retrospective, cohort study using data derived from the Pediatric Big Data
(PBD) resource at the Children’s Hospital of Philadelphia (CHOP) (a pediatric tertiary aca-
demic medical center). The PBD resource includes data collected from the CHOP Care Net-
work (a primary care network of over 30 sites), and CHOP Specialty Care and Surgical
Centers. The PBD resource contains demographic, encounter, medication, procedure, and
measurement (e.g. vital signs, laboratory results) elements for a large, unselected population of
children who utilize the CHOP healthcare system. All data in the PBD resource were extracted
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from the CHOP EHR by non-study staff personnel. All PHI identifiers except for encounter
dates were removed from the dataset prior to transfer to the study database. The Institutional
Review Board at the Children’s Hospital of Philadelphia approved this research study and
waived the requirement for consent.

2.2. Inclusion criteria

The study cohort included children with an incident asthma diagnosis between the ages of 2
and 5 years, recorded during a face-to-face healthcare encounter (inpatient stay, ambulatory
visit, or emergency department visit) between January 1, 2005 and December 31, 2016. We
defined an asthma diagnosis as the presence in the medical record of any sub-code of the Inter-
national Classification of Diseases, Ninth Revision (ICD-9) code 493 or ICD-10 code j45. To
ensure individuals were not lost to follow-up, individuals must also have had at least one
healthcare visit with a recorded ICD diagnosis (not necessarily asthma related) every year post
5 years of age up until 11 years of age. Our inclusion criterion yielded a dataset with 9,934 chil-
dren (See Fig 1).

For the purpose of this study, we considered an individual to have persistent asthma if all of
the following conditions are satisfied:

1. Initial asthma diagnosis occurred between ages 2 and 5 years (based on presence of an
asthma ICD9/10 code as described above)

2. Atleast one additional asthma diagnosis occurred between ages 5 and 10 years

3. An asthma-related medication (see S1 File) was prescribed at least once at a visit that (a)
coincided with or followed the first asthma diagnosis visit, and (b) occurred after the age of
2 years.

Our cohort contains two groups: (1) children with persistent asthma diagnosis (n = 8802),
i.e. those who satisfied the condition for persistence; and (2) children with transient asthma
diagnosis (n = 1132), i.e. those with an initial diagnosis prior to age 5 years who did not satisfy
the condition for persistence. This resulted in an analysis dataset with approximately 89% posi-
tive instances and 11% negative instances (see Table 1). Our rationale for developing predictive
models for asthma diagnosis over the age of 5 years was guided by the National Heart Lung
Blood Institute’s Expert Report Panel’s asthma guidelines [12] which divides childhood asthma
diagnosis and management recommendations into three age groups 04, 5-11, and 12-17.
Although asthma diagnosis in children aged 0-4 years may be appropriate, it is controversial,
as, many children who don’t have classic asthma (recurrent chronic airway obstruction inde-
pendent of viral triggers) wheeze in the setting of viral illnesses [13] and are diagnosed with
asthma. From an epidemiological perspective, this “recurrent viral-associated wheezing” is far
less common in children aged 5 years and older and the diagnosis of asthma becomes more
reliable.

2.3. Feature selection

We considered 648 features (4 numerical, 644 categorical) including demographics, geo-
graphic location, care site information, insurance information, and clinical history. Demo-
graphic features include self-reported race, ethnicity, gender, and language spoken.
Geographic location is characterized by the patient state of residency at the time of the first
asthma diagnosis. Care site information features include place of service (e.g. office visit, emer-
gency room), care site specialties, and provider specialties at the time of first asthma diagnosis.
Insurance information features include a binary variable indicating Medicaid enrollment at
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Fig 1. Study flow diagram. Excluded patients that were lost to follow up between age of 5 and 10 years.

https://doi.org/10.1371/journal.pone.0247784.9001

any time before or during the first visit with an asthma diagnosis. Finally, clinical history fea-
tures include patient age (in years) at first and last asthma diagnoses prior to age 5 years, num-
ber of visits with an asthma related ICD9 or ICD 10 code, number of visits with a non-asthma
related ICD9 or ICD10 code, and binary variables encoding the presence of a condition
described by their EDC (Expanded Diagnostic Clusters) codes from the Adjusted Clinical
Group (ACG) System [14,15] recorded during a visit. Additionally, within the clinical history
features, we included indicator (yes/no) variables for procedures, medications, and measure-
ments recorded in the EHR up to age 5 years. We used indicator variables (e.g. presence of a
heart rate measurement) rather than numerical values (e.g. measured heart rate) because data
may not be missing completely at random which precludes the use of imputation. We included
30 procedures for which at least 5% of the study cohort had the procedure at least once prior
to age 5 years, all medications as identified by their Anatomical Therapeutic Chemical (ATC)
Classification [16] codes prescribed to the patient prior to age 5 years, and lab measurements
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Table 1. Study cohort demographics at the time of first asthma diagnosis.

Category Variable Name Positive Negative
Clinical
Number of children 8802 1132
Age (years) Median (3.07) . Median (3.17)
Range (0.15, 4.99) Range (0.29, 4.99)
Number of asthma related visits Median(5) | Median(2)
Range (1, 179) Range (1, 25)
Number of non-asthma visits Median (24) | Median (25)
Range (0, 1360) Range (0, 394)
Race (Percent)
White 46% [4077] 72% [818]
Black 44% [3921] 17% [191]
Unknown 6% [534] 8% [88]
Asian 2% [195] 2% [26]
Multiple 1% [69] <1% [7]
American Indian/ Alaska Native <1% [5] <1% [2]
Native Hawaiian/ Other Pacific Islander <1% [1] 0% [0]
Gender (Percent)
Male 60% [5282] 54% [611]
Female 40% [3520] 46% [521]
Ethnicity (Percent)
Non-Hispanic 93% [8208] 93% [1058]
Hispanic 6% [529] 6% [65]
Unknown/No information 1% [65] 1% [9]

Percentages are relative to positive and negative groups. Values in brackets indicate number of individuals.

https://doi.org/10.1371/journal.pone.0247784.t001

deemed plausibly predictive of persistent asthma diagnosis by our physician expert collabora-
tors (see S2 and S3 Files).

To address potential model over-fitting due to noisy or correlated features, we evaluated fil-
ter and embedded feature selection methods [17,18] in our cross-validation training proce-
dure. Among filter methods, we considered the chi square, ANOVA F-value and relief
algorithms. For Chi Square and Anova F-value methods, we retained features where the uni-
variate test statistic of association between the feature and the target label had a p-value <0.01.
For the ReliefF and MultiSUREF relief algorithms [19], we retained features with a positive fea-
ture importance score. Additionally, we considered embedded feature selection with our logis-
tic regression, random forest and XGBoost models. We also considered the following novel
combinations—(1) Chi Square followed by ReliefF, (2) Chi Square followed by MultiSURF, (3)
Anova-F followed by Relief and (4) Anova-F followed by MultiSURF. Finally, we considered
the filter methods and their combinations described above followed by embedded feature
selection for the logistic regression, random forest and XGBoost models.

2.4. Class balance

Our study data consists of imbalanced data, in that a supermajority of individuals are in the
persistent asthma group, which often degrades machine learning performance. To address this
concern, we applied under sampling techniques that balance the training set (no change to the
validation sets) and attempt to remove noisy instances from the training data. We specifically
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considered: (1) random under sampling, (2) edited nearest neighbors (ENN), (3) repeated
edited nearest neighbors (R-ENN), (4) Tomek links. In random under sampling, class
instances are balanced by randomly selecting a subsample of majority class instances equal in
size to the minority class dataset. The resulting class balance with this method was 50/50. The
ENN [20] method removes instances (of the majority class) whose class label differs from a
majority of its k-nearest neighbors. We selected k = 5 in our study. The R-ENN method [21]
repeats the ENN procedure until the majority of the k-nearest neighbors for every data point
(of the majority class) have the same class label as the data point. Finally, a Tomek link is
defined as a pair of instances which are each other’s nearest neighbor but are in different clas-
ses [22]. We identified Tomek links in the dataset and removed the corresponding majority
class instances. The resultant class balance after employing either ENN, R-ENN or Tomek link
removal cannot be predefined and depends on the initial class distribution and structure of the
dataset. We also tried two combinations of under sampling techniques—(1) Tomek link
removal followed by edited nearest neighbors and (2) Tomek link removal followed by
repeated edited nearest neighbors. We also attempted to address class imbalance by modifying
model training loss functions to weight instances inversely proportional to class frequencies.

2.5. Model training

We trained five machine learning algorithms to discriminate between persistent and transient
asthma diagnoses: naive Bayes, logistic regression, k-nearest neighbors, random forest and gra-
dient boosted trees (XGBoost). We selected these modeling methods to allow for varying
model capacity ranging from linear to highly non-linear in order to address potential model
under-fitting. The experimental workflow is outlined in Fig 2. The performance of each of
these algorithms depends heavily on the choice of hyperparameters (i.e. model tuning parame-
ters) [23]. As a step in the model training procedure, we used Bayesian optimization, also
known as sequential-model-based optimization (SMBO) [24], to select near-optimal hyper-
parameters using the tree-structured Parzen estimator modeling strategy [25]. Hyperpara-
meters can be used to modify model behavior including regularization terms which seek to
control model over-fitting. Recent studies show that SMBO is more efficient at identifying
near optimal hyperparameters than methods like grid search [26,27]. As required by the
SMBO technique, we first defined a search space for each hyperparameter of a given model.
This search space was then used by the SMBO algorithm to intelligently select hyperparameter
combinations based on model performance. The hyperparameter search space for each of the
machine learning algorithms is summarized in S1 Table.

We define P as the set of all combinations of feature selection and class-balance techniques
described in Section 2.3 and Section 2.4. For each element in P, we trained the machine learn-
ing models with a stratified cross validation (CV) approach that included the class balance and
feature selection routines embedded in the CV procedure (see S1 Fig). First, we randomly
divided the training set into K-folds (K = 5) in a stratified fashion. For each iteration, class bal-
ance and feature selection routines were performed on K-1 (training) folds. Numerical vari-
ables in the training folds were standardized to zero mean and unit standard deviation (with
the exception of Naive Bayes, for which feature standardization was not performed because
the feature space must be non-negative values for Bernoulli and Multinomial Naive Bayes clas-
sifiers.). Numerical variables in the k™ validation fold were standardized using the correspond-
ing mean and standard deviation from the training folds. The machine learning algorithm was
trained on the K-1 folds and evaluated on the k™ validation fold. The entire process was
repeated twice resulting in a total of 10 unique validation folds. The hyperparameter optimiza-
tion scheme uses the average of the evaluation metric for the 10 CV folds to select the next
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Fig 2. Experimental workflow. Data was obtained from the Pediatric Big Data (PBD) resource at CHOP. Physician domain expertise was used to identify the initial
feature set. Model training and evaluation was performed using K-fold cross-validation (K = 5 in our study) twice to generate 10 unique validation folds and a
corresponding set of training folds (K-1 folds). For each set of training folds, class balance, algorithmic feature selection and standardization of continuous variables was
performed before training the model using particular hyperparameters. Thereafter, the trained model was evaluated on the corresponding validation fold. This process
was repeated to scan the hyperparameter space using Bayesian optimization to find near optimal hyperparameters. Finally, inter-model performance was compared using

statistical significance tests.

https://doi.org/10.1371/journal.pone.0247784.9002

hyperparameter candidate values. We ran this hyperparameter tuning process for 2000 itera-
tions. However, we found that hyperparameter selection converged in less than 300 iterations
for the machine learning algorithms considered (see Fig 3).

2.6. Model evaluation

Receiver Operating Characteristic (ROC) curve analysis is commonly used to assess machine
learning model performance, however studies have shown that in the presence of high class
imbalance the precision-recall (PR) curve is more informative [28]. The area under the PR
curve can be used as a point metric to summarize performance, however, numerical integra-
tion accuracy is generally poor when there are a limited number of precision-recall measure-
ments. In such situations, average precision (AP) provides a more accurate performance
assessment. As our study involved an imbalanced dataset where the negative class is the major-
ity, we used the NPV-Specificity curve, where NPV indicates negative predictive value, instead
of the PR curve. The NPV-Specificity curve is the equivalent of the PR curve when the negative
class is the majority. We then used the area under the NPV-Specificity curve, denoted ANSA
(Average NPV-Specificity Area), computed in an analogous manner to average precision as
our evaluation metric. The null hypothesis of equal inter-model ANSA distributions was tested
using Friedman’s Rank Sum test and post-hoc analysis of pair-wise comparison using the
Exact Permutation test.

All of the models used in the study produce a numeric output which can be interpreted as
the probability of experiencing persistent asthma. A positive or negative label is assigned by
setting a threshold (0.5 by default) on the numeric output. We further compared model perfor-
mance by setting a decision threshold for each model independently to yield a fixed specificity
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Fig 3. Hyperparameter convergence. HyperOpt iteratively chooses candidate hyperparameter combinations from a large hyperparameter space based on model
performance on the prior iteration. The plot represents the highest performance up to a given iteration. For the ML algorithms in this study, there was no
performance improvement after the 300" iteration.

https://doi.org/10.1371/journal.pone.0247784.9003

across all models and then computing standard point metrics: NPV, precision, sensitivity, and
accuracy.

Finally, we performed a permutation feature importance analysis on our best performing
model to better understand the model’s behavior. The feature importance is computed by
measuring the change in the ANSA on the test set when the values in the dataset for a given
feature are randomly shuffled among samples. Feature importance is reflected by a decrease in
ANSA as compared to when the feature is not permuted, with higher importance indicated by
alarger decrease.

We used Python’s imbalanced-learn [29] module to perform the class balancing routines,
scikit-rebate [19] and scikit-learn’s [30] feature_selection module to perform feature selection,
hyperopt [27] to tune the hyperparameters and ELI5 [31] to compute feature importance.
XGBoost [32] was used to train the XGBoost model and scikit-learn’s implementation of ML
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NPV

models for all the other algorithms. All code is available at https://github.com/masino-lab/
asthma-persistence-prediction.

3. Results

We trained and evaluated five machine learning classifier models to predict future asthma diag-
nosis persistence given patient data up to age 5 years. Representative NPV-Specificity curves
(see Fig 4) indicate that each model performed significantly better than random chance, though
the Naive Bayes model had notably poorer performance. Similarly, the mean and median
ANSA also indicate that the models performed well (see Table 2) with the exception of Naive
Bayes. Additional performance metrics at a fixed specificity of 70% on the validation folds are
reported in Table 2. For completeness, we also present representative ROC curves (see Fig 5).
The optimal class balance and feature selection methods for each model are presented in S2
Table. The corresponding optimal hyperparameters for each model are summarized in S3

NPV-Specificity Curves

1.0

0.8}

---Random Classifier
Naive Bayes
—— KNN
Logistic Regression
—— Random Forest
—— XGBoost

0.0

0.0

0.4 0.6 0.8 1.0
Specificity

Fig 4. NPV-specificity curves. The curves correspond to the validation fold that yielded the median ANSA.
https://doi.org/10.1371/journal.pone.0247784.9004
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Table 2. Performance metrics.

Algorithm

Naive Bayes

K-Nearest Neighbors

Mean ANSA
0.29 [0.25, 0.33]
0.40 [0.32, 0.43]

Median ANSA
0.27
0.41

NPV
0.25 [0.22, 0.29]
0.29 [0.26, 0.32]

Precision
0.95 [0.95, 0.95]
0.95 [0.95, 0.95]

Recall
0.72 [0.69, 0.78]
0.78 [0.74, 0.81]

F1 Score
0.82 [0.80, 0.86]
0.85[0.83, 0.87]

Accuracy
0.72 [0.69, 0.77]
0.77 [0.74, 0.80]

Logistic Regression 0.42 [0.35, 0.45] 0.42
0.42 [0.34, 0.45] 0.44

0.43 [0.38, 0.45] 0.43

[
0.32[0.31,0.33] | 0.95 [0.95, 0.96]
0.33[0.30,0.35] | 0.95 [0.95, 0.96]
0.34[0.32,0.35] | 0.95 [0.95, 0.96]

0.81 [0.80, 0.81]
0.82 [0.79, 0.83]
0.82 [0.81, 0.83]

0.87 [0.87, 0.88]
0.88 [0.86, 0.89]
0.88 [0.87, 0.89]

0.80 [0.78, 0.80]
0.81 [0.78, 0.82]
0.81 [0.80, 0.82]

Random Forest
XGBoost

Values in the second and third columns are the mean and median of the evaluation metric (ANSA), respectively across all 10 cross-validation folds. Values in last five
columns represent mean evaluation metrics at fixed specificity of 0.7. The probability of asthma persistence threshold was adjusted individually for each model in each
cross validation run to achieve 0.7 specificity. Each metric value is computed as the mean over 10 iterations of cross-validation. Values in brackets indicate the range of
the values. Values in bold indicate highest performance for the metric in the given column.

https://doi.org/10.1371/journal.pone.0247784.t1002

ROC Curves
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Fig 5. ROC curves. The curves correspond to the validation fold that yielded the median ANSA.
https://doi.org/10.1371/journal.pone.0247784.9005
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Table 3. Comparison of class-balance routines.

Table. A comparison of model performance between the optimal class-balance routine and no

class-balancing is presented in Table 3. If the optimal class balance routine was found to be no

class balance, then a comparison with the next best class-balance routine is presented. The fea-
ture selection routine is held constant for each comparison. A similar comparison between fea-
ture selection methods holding class balance routine fixed is presented in Table 4.

The null hypothesis that all of the machine learning models in this study have the same
ANSA distributions over the 10 CV folds was rejected based on the Friedman Rank Sum test
with p < 0.001. Post-hoc analysis using the exact permutation test (see S4 Table) indicated that
all five models had a higher ANSA compared to a random classifier (p < 0.001) and Naive
Bayes had a lower ANSA compared to the other four models (p < 0.001). Additionally, there
was some evidence that XGBoost performed better than K-Nearest Neighbors (p < 0.05).

Finally, we attempted to gain insight into the model behavior for XGBoost, which was one
of our most complex and most accurate models. We performed a permutation feature impor-
tance analysis [33] based on the validation set that yielded the median ANSA over the CV
folds. The top 15 features in descending order of their importance are summarized in Fig 6.

4. Discussion

We developed machine learning models that effectively predict persistent and transient asthma
diagnoses. Of the five algorithms considered, XGBoost, random forest and logistic regression
performed the best with no statistically significant pairwise differences in ANSA, however the
Naive Bayes classifier had demonstrably lower performance. This is likely because the algorithm
makes conditional independence assumptions between the features that may not hold in our
dataset. The K-Nearest Neighbor (KNN) algorithm performed better than Naive Bayes but not
as well as the other algorithms. This may result from the high dimensionality of the feature
space. The KNN algorithm classifies instances based on a majority voting scheme of nearest
neighbors. It has been shown that as dimensionality increases distance between neighbors
approaches a constant which degrades nearest neighbor algorithms [34]. Additionally, we
examined learning curves (not shown) for XGBoost to evaluate the presence of model over-fit-
ting or under-fitting. This analysis indicated that model over-fitting was not present suggesting
that additional training samples using the current feature set will not improve model perfor-
mance. However, this analysis did indicate the presence of bias which may exist because of
insufficient model capacity or because the current feature set does not fully delineate persistent
and transient asthma. Since XGBoost is capable of modeling very complex class boundaries, we
believe that the likely explanation for the observed bias is inadequate feature parameterization.

Despite having good predictive performance, complex machine learning models like
XGBoost often face criticism for their black-box nature. We attempted to alleviate some of
these concerns through a permutation analysis to examine feature importance. The

Algorithm Optimal Class-Balance None/Suboptimal Difference
Naive Bayes None (0.289) Tomek (0.286) 0.003
K-Nearest Neighbors Random under sampling (0.396) None (0.369) 0.027
Logistic Regression Random under sampling (0.417) None (0.411) 0.006
Random Forest Tomek (0.42) None (0.419) 0.001
XGBoost Class weight (0.4272) None (0.4271) 0.0001

Values in parenthesis represent the mean ANSA values over cross-validation folds. The far-right column indicates the difference in mean ANSA reported in the second

and third columns.

https://doi.org/10.1371/journal.pone.0247784.t003
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Table 4. Comparison of feature-selection routines.

Algorithm Optimal Feature-Selection None/Suboptimal Difference
Naive Bayes Anova-F (0.289) None (0.265) 0.024
K-Nearest Neighbors MultiSURF (0.396) None (0.394) 0.002
Logistic Regression Chi squared + ReliefF + Embedded feature selection (0.417) None (0.285) 0.132
Random Forest Embedded feature selection (0.42) ReliefF + Embedded feature selection (0.419) 0.001
XGBoost Embedded feature selection (0.427) ReliefF + Embedded feature selection (0.426) 0.001

Values in parenthesis represent the mean ANSA values. The far-right column indicates the decrease in mean ANSA reported in the second and third columns.

https://doi.org/10.1371/journal.pone.0247784.t1004

permutation feature scores (see Fig 6) revealed that the XGBoost model strongly utilized clini-
cally relevant features. The model picked up on age of last asthma diagnosis under 5 years and
total number of asthma-related visits as the most important features. Other features that the
model identified, such as self-identified black race and diagnoses of allergic rhinitis, have been
demonstrated as asthma risk factors in many studies [35], while others may reflect increased
use of the health system for non-asthma respiratory conditions or other reasons (capillary
blood lead testing, number of non-asthma visits, acetaminophen use).

The NPV-Specificity curves (see Fig 4) indicate that model performance can vary with the
choice of decision threshold which can be tuned to either increase the NPV or the specificity.

Permutation Feature Importance for XGBoost

Age at last asthma diagnosis *

Number of asthma related visits - S ° e mme e

Noninvasive pulse oximetry |-~ P R T

Number of non-asthma related visits ®

Capillary blood lead test - b °

Black (Race) 1--—---- O
Age at first asthma diagnosis —e

White (Race) '

Cetirizine Hydrochloride {------ et IIooooooooooIIIioiiossooooooooooo

Allergic Rhinitis ----+—e— T B

Montelukast - ®

Acetaminophen - e s

Inpatient Consultation - e

Nonfungal infections of skin t------ @ oo

Dermatitis and eczema |- @t

000 0.02 0.04 0.06 008 010 012 0.14 0.16
Feature Importance

Fig 6. Permutation feature importance scores. The feature importance on the x-axis represents the mean decrease in model performance measured by ANSA when a
feature is removed.

https://doi.org/10.1371/journal.pone.0247784.9006
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Arbitrarily decreasing the threshold decreases the number of false negatives but at the same
time increases the number of false positives. This could lead to unnecessary treatment for chil-
dren who would not end up experiencing persistent symptoms, the potential risk of side-
effects, and limitations in child and caregiver quality of life. On the other hand, arbitrarily
increasing the threshold decreases the number of false positives but increases the number of
false negatives. This could lead to children who are at risk of experiencing persistent asthma
missing the right treatments resulting in preventable morbidity and even death. Further, in the
absence of the model, given an early diagnosis of asthma, long-term and short-term prognoses
are equally likely resulting in a sub-optimal outcome. Thus, for the model to really be useful, it
is important to find the right threshold and strike a balance between the accepted number of
false positives and false negatives. When we considered model performance at a high specific-
ity of 70%, the best performing models were able to identify the positive cases at least 81% of
the time with 95% precision.

Although it was difficult to compare our quantitative findings (e.g. ANSA and AUC values)
due to the lack of existing literature, our qualitative findings compared favorably with the 2007
birth cohort study [11] by To T. et. al. Consistent with our findings (see Fig 6), the authors of
that paper found age of diagnosis and health service utilization to be statistically significant
risk factors of persistent asthma. To T. et. al. also found that socioeconomic status was not sta-
tistically associated with asthma persistence which was corroborated by our finding of Medic-
aid enrollment (used as a proxy for socioeconomic status) not being a significant risk factor.
However, we did find capillary blood lead testing as an important predictor. Since the test is
more routinely performed and recommended in neighborhoods with older housing and
higher prevalence of positive tests, the prescription of such a test could be a marker of socio-
economic disadvantage. However, establishing such an association warrants further research.
Interestingly, in contrast to their study, we did not find patient sex as an important determi-
nant of asthma persistence. We also found that prescription of the asthma controller medica-
tion, Montelukast, prior to the age of 5 was an important feature to the prediction model.
Inhaled corticosteroids were simultaneously not found as important. We suspect this is an arti-
fact of representing medications by their ATC codes. Specifically, in our data, all Montelukast
variants are represented by a single ATC code, whereas inhaled corticosteroids (e.g. Flutica-
sone) are represented by several ATC codes which likely diluted their impact.

When dealing with an imbalanced dataset like ours, class balancing techniques have been
quite popular in the machine learning research community. Nevertheless, there has been con-
trasting evidence about their efficacy. While some studies indicate balancing a dataset
improves performance, others show that classifiers induced from imbalanced datasets have
comparable performance [36]. We tested many well-established under sampling techniques
and their combinations. We observed that the efficacy of class balance routines varied with the
choice of the ML model (see S2 Table). However, improvements in the model performance by
using class balance techniques when compared with no class balancing was very small (statisti-
cal test not performed; See Table 3). It is unclear if this is a consequence of our particular clas-
sification task and dataset, or a more general result and is a question we will investigate in
future research.

When dealing with datasets with a large feature space, feature selection is typically used to
eliminate noisy features and avoid model overfitting. We tested many filter methods based on
univariate statistical tests as described in Section 2.3. However, univariate statistical tests by
their very nature are incapable of handling feature interactions. In contrast, relief based algo-
rithms (RBAs) such as the ReliefF algorithm and its derivatives like the MultiSURF algorithm
are capable of detecting feature dependencies [37]. However, these RBAs are nearest neighbor
based methods and their performance suffers in large feature spaces. We proposed a novel way
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to counter this limitation by combining the statistical tests with RBAs. Performing a prelimi-
nary feature selection using a statistical test before subjecting the dataset to an RBA based fea-
ture selection routine reduces the feature dimension encountered by the RBA thereby
potentially improving its efficacy. Similar to class balancing, we found that the choice of the
optimal feature selection routine varied with the choice of the ML algorithm (see Tables 4 and
S2). Interestingly, filter methods had little impact on the performance of the tree-based models
that implicitly use embedded feature selection.

There are some important limitations to our models. Notably, our patients were concentrated
in the North-Eastern region of the United States. As a result, the exact models developed in this
study may not be generalizable to other geographic regions. However, the model development
pipeline outlined in the study is fully reproduceable and can serve as a blueprint for retraining the
model on new data. Moreover, we note that the machine learning models developed in this study
can only identify correlations, and not causations in the dataset. Although identifying causal path-
ways may be clinically more relevant, such an analysis was out of the scope of this study. We do
think however, that augmenting a dataset like ours with allergen sensitization, genetic, and envi-
ronmental data and supplementing the ML models with causal analyses can support generation
of new knowledge. This is a frontier that we wish to pursue in future research.

5. Conclusion

Our results demonstrate that machine learning models can be trained on EHR data to effec-
tively distinguish between persistent and transient asthma cases. Specifically, XGBoost, a tree-
based model, was found to be one of the best performing models in this study. It was also
found that the model was reliant on clinically relevant features to make predictions; partially
addressing model interpretability concerns. However, we note that before the model is
deployed as a clinical decision support tool, further research is warranted to test and poten-
tially improve model generalizability by adding other input features as described earlier and
evaluating the model on external datasets. We also think that further work on studying the
models’ interpretability will play an important role in translating them into clinical practice.

Supporting information

S1 Fig. Pseudo code for the model training procedure. The outer loop picks the class balance
and feature selection technique for the cross-validation procedure. The inner loop performs
cross-validation for a given choice of hyperparameters and the middle loop scans the hyper-
parameter space using Bayesian optimization.

(TIFF)

S1 Table. Hyperparameter search space. The search space is used as an input by the SMBO
algorithm. Details about the hyperparameters can be found in the scikit-learn (https://scikit-
learn.org/stable/modules/classes.html) and XGBoost (https://xgboost.readthedocs.io) docu-

mentations.

(DOCX)

$2 Table. Optimal pre-processing routines. The class balance and feature selection methods
that yielded the highest mean ANSA score over the 10 cross validation folds, for each machine
learning model are presented. The far-right column indicates the average number of features
selected across the CV folds. Values in brackets represent the range.

(DOCX)

§3 Table. Optimal hyperparameters. Hyperparameters that yielded the highest mean ANSA
score over the 10 cross validation folds, for each machine learning model are presented.
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Detailed definitions of the hyperparameters can be found in the scikit-learn (https://scikit-
learn.org/stable/modules/classes.html) and XGBoost (https://xgboost.readthedocs.io) docu-
mentations.

(DOCX)

$4 Table. Pairwise model performance comparison. Any symbol & at location (i,j) implies
the relationship i®j, i.e. > in (i,j) position indicates model in row i performed significantly
(p<0.05) better than model in column j as indicated by the exact permutation test. Common
acronyms for the algorithms have been used as follows: XGB-XGBoost, RF-random forest,
LR-logistic regression, KNN-K-nearest neighbor, NB-naive Bayes, RC-random classifier.
(DOCX)

S1 File. Asthma related medication. CSV file containing asthma-related medication names

used to define asthma persistence.
(XLSX)

S2 File. Lab measurements. CSV file containing lab measurement names deemed plausibly
predictive of persistent asthma diagnosis by our clinician collaborators.
(XLSX)

S$3 File. Procedures. CSV file containing clinical procedures used as features for model train-
ing for which at least 5% of the study cohort had the procedure at least once prior to age 5

years.
(XLSX)
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