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ABSTRACT
Major immunotherapy challenges include a limited number of predictive biomarkers and the unusual 
imaging features post-therapy, such as pseudo-progression, which denote immune infiltrate- 
mediated tumor enlargement. Such phenomena confound clinical decision-making, since the cancer 
may eventually regress, and the patient should stay on treatment. We prospectively evaluated serial, 
blood-derived cell-free DNA (cfDNA) (baseline and 2–3 weeks post-immune checkpoint inhibitors 
[ICIs]) for variant allele frequency (VAF) and blood tumor mutation burden (bTMB) changes (next- 
generation sequencing) (N = 84 evaluable patients, diverse cancers). Low vs. high cfDNA-derived 
average adjusted ΔVAF (calculated by a machine-learning model) was an independent predictor of 
higher clinical benefit rate (stable disease ≥6 months/complete/partial response) (69.2% vs. 22.5%), 
and longer median progression-free (10.1 vs. 2.25 months) and overall survival (not reached vs. 
6.1 months) (all P < .001, multivariate). bTMB changes did not correlate with outcomes. Therefore, 
early dynamic changes in cfDNA-derived VAF were a powerful predictor of pan-cancer immunother
apy outcomes.
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Liquid biopsy to predict immunotherapy response.
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Background

As a transformative cancer treatment, immunotherapies, 
especially checkpoint inhibitors, such as antibodies against 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or 
the programmed death receptor 1 (PD-1) and its ligand (PD- 
L1), have achieved salutary anti-cancer effects among 
patients, even those suffering from advanced, metastatic 
disease.1–5 However, across different solid tumors, the efficacy 
of checkpoint inhibitors is limited to a relatively small portion 
of patients. Recently, the Food and Drug Administration 
(FDA) authorized two tumor-agnostic approvals for the 
checkpoint inhibitor pembrolizumab,6,7 based on deficient 
mismatch repair/microsatellite instability-high (dMMR/ 
MSI-H) and tumor mutational burden (TMB) ≥10 muta
tions/Mb, respectively, because these two parameters predict 
better outcomes with immunotherapy.6–12 Still, patients with 
MSI-H have a response rate of only about 40% across solid 
cancers with pembrolizumab.7 The only other approved bio
marker for predicting anti-PD-1/PD-L1 inhibitor response is 
PD-L1 expression by immunohistochemistry.13,14

Since most patients do not achieve durable benefit from 
the checkpoint inhibitors, even in the presence of approved 
response biomarkers, additional investigation is warranted. 
Liquid biopsy is a noninvasive method that captures circulat
ing cell-free DNA (cfDNA) released into the bloodstream 
from tumor cells. With techniques such as next-generation 
sequencing (NGS), liquid biopsies can be exploited to detect 
somatic mutations in tumors. Mutation profile measured 
from cfDNA can help in selecting the right treatment for 
patients and assist in monitoring cancer progression and 
recurrence.15–23

To better predict immune response and resistance markers 
for anti-PD-1/PD-L1 inhibitors, especially in the early course 
of the treatment, we prospectively evaluated serial plasma 
samples for cfDNA in order to assess dynamic changes in 
variant allele frequency (VAF) and in blood TMB (bTMB), 
and the implication of these changes for checkpoint blockade 
responsiveness. Our results suggest that VAF changes in 
cfDNA provide an early forecast of outcomes after immu
notherapy and therefore that implementation of early liquid 
biopsy may facilitate drug development in this field.
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Methods

Study design and patient treatment

We prospectively enrolled 104 patients with diverse metastatic 
malignancies who received anti-PD-1/PD-L1-based therapies 
and obtained serial plasma to measure variants from tumor- 
derived cfDNA. Blood samples from timepoint A were 
obtained on the day of therapy, prior to the first treatment 
cycle. Subsequent blood samples prior to the second cycle of 
therapy (~3 weeks after the first treatment cycle) were collected 
as timepoint B samples. Blood samples were processed at 
Ambry Genetics (https://www.ambrygen.com/). The study 
was conducted under the UCSD IRB-approved PREDICT pro
tocol (NCT02478931) and investigational therapies for which 
patients gave consent.

Next-generation sequencing

cfDNA was extracted from whole blood collected in 10 mL 
Streck tubes. Briefly, plasma was isolated from 10 to 20 mL of 
blood by centrifugation at 1,600 g for 10 minutes. cfDNA was 
extracted from plasma using QIAamp Circulating Nucleic Acid 
Kit (Qiagen) and quantified by Bioanalyzer (Agilent). 
Sequencing libraries were prepared using 10–30 ng of cfDNA 
with KAPA HyperPrep kits (Roche) according to manufac
turer’s instructions. Sequencing was conducted on the 
HiSeq2500 (Illumina Inc.) using 100 bp paired-end sequencing 
according to the manufacturer’s workflow. Genomic altera
tions including single nuclear variations (SNVs), insertions 
and deletions from cfDNA samples were detected using 
a targeted NGS-based panel with 89 genes (Supplementary 
Table 1), including genes participating in antigen processing 
and presentation, immune response, and genes associated with 
cancer.12 Germline variants are detected from whole blood 
samples using whole-exome sequencing as described 
previously.24 Variants identified in cfDNA samples are used 
to calculate the changes in VAF and TMB.

Statistical analysis and outcome evaluation

A t-test was used for continuous data, and a logistic regression 
test was used for categorical data. OS was calculated from the 
start of treatment to last follow-up. PFS was calculated from the 
start of treatment until progression or death, whichever came 
first. Survival analyses were assessed by Kaplan–Meier analysis, 
and Cox’s proportional hazard model was used to estimate 
hazard ratios (HRs) with 95% confidence intervals (CIs). 
Patients still alive (for OS) or still progression-free (for PFS) 
at last follow-up were censored at that point. Response was 
assessed by RECIST criteria per the physician. For multivariate 
analysis, variables with P values < .1 in univariate analysis were 
included in the multivariate regression model.

Average adjusted ΔVAF
With NGS, VAF is measured as the percentage of sequencing 
reads observed matching the variants divided by the overall 
coverage at that locus. Change in VAF (ΔVAF) after immu
notherapy is calculated as ΔVAF = VAFtimepointB – 
VAFtimepointA. To improve the prediction accuracy for patient 

response, we applied a machine learning algorithm to adjust 
ΔVAF calculation. We used an equation adjusted 
ΔVAF = VAFtimepointB – alpha*VAFtimepointA by adding an 
alpha value (weight) to VAFtimepointA. Average adjusted 
ΔVAF was defined as the average of each of the adjusted 
ΔVAFs for each alteration in any one patient (see 
Supplemental Methods for additional details).

ΔBlood TMB (ΔbTMB) calculation
TMB of blood (bTMB) was defined as the number of SNVs, 
insertions and deletions (indels) from coding regions per 
megabase of targeted regions. All base substitutions and indels 
in the coding region of targeted genes, including synonymous 
alterations, are counted. To calculate the TMB per megabase, 
the total number of mutations counted is divided by the size of 
the targeted regions (179 kb). ΔbTMB between timepoints 
A and B is calculated as ΔbTMB = bTMBB – bTMBA.

Results

Patient characteristics

In this study, blood samples were collected from 104 patients to 
isolate cfDNA from plasma (Materials and Methods). DNA 
was isolated from 198 blood samples obtained from a total of 
104 patients and sequenced with NGS. Twenty patients were 
excluded from the analysis: (i) 10 patients did not have blood 
samples from timepoint B and (ii) cfDNA samples from the 
other 10 patients failed NGS quality control. In total, a sample 
cohort of 168 distinct plasma samples obtained from 84 evalu
able, immunotherapy-treated patients was included in this 
study (Figure 1 and Supplementary Table 2).

Patient characteristics of the treated patients are described 
in Table 1. The most common primary tumor sites were 
gastrointestinal (30.8%), genitourinary (16.3%) and gynecolo
gic (13.5%), and head and neck (11.5%) cancers. All 104 
patients were treated with immunotherapy, either as mono
therapy, or in combination with a targeted agent, chemother
apy, or other immunotherapy. Overall, 102 patients received an 
anti-PD-1/PD-L1 agent in their regimen and two patients 
received anti-CTLA-4 monotherapy. Of the 84 evaluable 
patients, the best response from 79 patients was available at 
the time of data cutoff (Figure 1). Patients were considered as 
having clinical benefit if they showed stable disease (SD) for 
≥6 months, partial response (PR), or complete response (CR). 
Patients with SD for <6 months or progressive disease were 
considered as non-responders (Table 1). Patients with ongoing 
SD for <6 months were considered too early to evaluate for 
response assessment. All 84 patients were evaluable for pro
gression-free survival (PFS) and overall survival (OS).

Prediction of clinical benefit (SD ≥6 months/CR/PR) after 
immunotherapy with average adjusted ΔVAF in cfDNA

Cancer patients with higher tumor burden or more aggressive 
disease also have a higher concentration of cfDNA in their 
blood.18–21 Drops in cfDNA level have also been shown to 
correlate with patient response to immune checkpoint 
inhibitors.22,23,25 In cancer patients, cfDNA level can be 
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measured with techniques such as NGS and droplet digital 
PCR. It is quantified by determining the allelic fraction of 
cfDNA fragments that contains cancer-associated variants.

In this study, we proposed that change in the VAF 
(which itself reflect the percent circulating tumor DNA) 
of the genomic profile of cfDNA from tumor is associated 
with patient response to immunotherapy. In order to mea
sure the change, blood samples from timepoint A were 
obtained on the day of therapy, prior to the first treatment 
cycle. Subsequent blood samples prior to the second cycle 
of therapy (~3 weeks after the first treatment cycle) were 
collected as timepoint B samples. Variants with VAF ≥0.1% 
including single nuclear variations (SNVs) and indels from 
cfDNA were detected using NGS (Methods). When com
paring variants between timepoint A and timepoint 
B samples from each patient, we observed dynamic changes 
of VAF after the first treatment cycle, reflecting the change 
of both cfDNA level in blood and tumor burden in patients 
(Supplementary Tables 3–5).

Using timepoint A samples as baseline, we calculated 
VAF changes (ΔVAF = VAFtimepointB – VAFtimepointA) 
between timepoint A and timepoint B for each variant. 
For each patient, an average of ΔVAF values from all 
variants (including somatic, synonymous, and variants of 
unknown significance) from the patient was calculated. 
Based on the data, patients with complete response are 
likely to have average ΔVAF < 0, while patients with pro
gressive disease are likely to have average ΔVAF > 0. 
Variants from patient #67 and #81 were used as examples 

for complete response and progressive disease, respectively 
(Supplementary Tables 3 and 4), with average ΔVAF of 
−0.32 and 3.35.

For patients who partially respond to immunotherapy, we 
began with the hypothesis that it is plausible that some tumor 
subclones respond to immunotherapy and reduce in size, 
while other subclones do not respond to treatment, so they 
do not shrink or keep growing. In this scenario, average 
ΔVAF may not be an optimal predictor for patient response, 
as ΔVAF for each variant may decrease or increase. 
Therefore, we developed a machine-learning model to adjust 
the calculation of average ΔVAF in order to improve its 
prediction accuracy for patient response. We applied max
imum likelihood estimation (MLE) approach to find the best 
weighted difference to adjust ΔVAF calculation (Adj 
ΔVAF = VAFtimepointB – 0.37 × VAFtimepointA). For each 
patient, average adjusted ΔVAF was calculated by averaging 
Adj ΔVAF values from all variants from the patient. Further 
details of the average adjusted ΔVAF calculation are 
described in the Supplementary Methods. Average adjusted 
ΔVAF was examined per patient, and the median value was 
then calculated for all 84 patients (median = 0.11; ≤median 
[low] versus >median [high]). Patients with a low average 
adjusted ΔVAF (≤0.11) were predicted to have clinical benefit 
(SD ≥6 months/CR/PR) and patients with a high average 
adjusted ΔVAF (>0.11) were predicted to have no benefit 
from immunotherapy (SD <6 months/PD). As an example, 
there were a total 15 variants detected from patient #69 
(Supplementary Table 5). Adj ΔVAF was calculated for each 

Figure 1. Consort diagram of cancer patients who were evaluated for progression-free survival (PFS) and overall survival (OS) (N = 84), and with response assessment 
(N = 79).  
Abbreviations: OS, overall survival; PFS, progression-free survival.
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of the 15 variants. Average adjusted ΔVAF was 2.25 from the 
15 variants. The average adjusted ΔVAF of 2.25 is higher than 
the median value (0.11) from 84 patients, and patient #69 was 
predicted to be a non-responder of immunotherapy (and 
indeed the patient had progressive disease).

Patients with low cfDNA-derived average adjusted ΔVAF 
(≤0.11) have higher rate of clinical benefit (SD ≥6 months/ 
CR/PR) from immunotherapy

We checked average adjusted ΔVAF distribution in 79 evalu
able patients for response assessment. Average adjusted 
ΔVAF in patients with clinical benefit showed a range 
between –1.98 and 0.52, with a median value of 0.031; in 
contrast, average adjusted ΔVAF in patients without clinical 
benefit showed a range between −0.019 and 6.6, with 
a median value of 0.38 (P < .001) (Figure 2(a)). Checking 
patients with low average adjusted ΔVAF (≤0.11), there were 
69.2% patients with clinical benefit (SD ≥6 months/CR/PR) 
as compared to 22.5% with clinical benefit (SD ≥6 months/ 
CR/PR) among patients with high average adjusted ΔVAF 

(>0.11) (P value from logistic regression test <0.001) 
(Figure 2(b,c)). In multivariable Cox regression models, 
after adjusting for age, gender, cancer subtypes, treatment 
line, changes in blood TMB (ΔbTMB), tissue TMB, tissue 
MSI, and tissue PD-L1 status, low average adjusted ΔVAF 
remained as the most significant variable associated with 
patient clinical benefit (SD ≥6 months/CR/PR) (odds ratio 
[OR] for low versus high average adjusted ΔVAF, 9.65 [95% 
confidence intervals [CI]: 2.74–41.71, P value < .001]) 
(Table 2).

Patients with low versus high cfDNA-derived average 
adjusted ΔVAF have statistically better progression-free 
survival and overall survival after immunotherapy

Low average adjusted ΔVAF (≤0.11) was a predictor of 
longer PFS (Figure 3(a) and Table 3) and OS (Figure 3b 
and Table 3) according to the Kaplan–Meier analysis. All 
treated patients (N = 84) were included in the PFS and OS 
analyses of the low average adjusted ΔVAF (≤0.11) versus 
high average adjusted ΔVAF (>0.11) (median PFS, 10.1 
versus 2.25 months, P value < .001; median OS, not reached 
after a median follow-up of 9.75 months versus 6.1 months, 
P value < .001) (Figure 3). In multivariable Cox regression 
models, including variables such as ∆bTMB, TMB from 
tissue, MSI and PD-L1 status, low average adjusted ΔVAF 
(≤0.11) remained as the most significant variable associated 
with a prolonged PFS (hazard ratio [HR] for low [≤0.11)] 
versus high [>0.11], 0.35 [95% CI 0.19–0.64, P value < .001]) 
and with a prolonged OS (HR for low [≤0.11] versus high 
[>0.11], 0.35 [95% CI 0.19–0.63, P value < .001]) (Table 3).

Serial changes in blood TMB (∆bTMB) were not associated 
with clinical outcome

Since tissue and blood-based TMB have been implicated as 
markers to predict response to checkpoint inhibitors,10,26 we 
checked whether serial changes in blood TMB 
(ΔbTMB = bTMBtimepointB – bTMBtimepointA) after treatment 
are associated with clinical outcomes. As shown in 
Supplementary Figure 1, there were no significant difference 
in the PFS and OS analyses between patients with decrease/no 
change (ΔbTMB ≤ 0) versus increase (ΔbTMB > 0) (N = 84) 
(median PFS, 6.7 versus 3.4 months, P value = .42; median OS, 
not reached after a median follow-up of 7 months versus 
9.5 months, P value = .22). ΔbTMB was not used for multi
variate analysis since P values from univariate analysis were not 
significant (Table 3). Similarly, baseline blood TMB (cutoff of 
20 mutations/megabase) did not predict the outcome from 
immunotherapy.

Discussion

The introduction of immune checkpoint inhibition into the 
treatment arena for advanced cancers has provided significant 
clinical benefit and improved treatment outcomes for a subset 
of patients with cancer. Unfortunately, though, most patients 
do not respond to these agents. Various markers exist and 
continue to be developed in efforts to predict which tumors 

Table 1. Patient characteristics (N = 104).*

Basic characteristics N (%)

Age, median (range) (years) 61.5 (21.0– 
91.5)

Sex, N (%)
Women 41 (39.4%)
Men 63 (60.6%)

Type of cancer, N (%)
Gastrointestinal 32 (30.8%)
Genitourinary 17 (16.3%)
Gynecologic 14 (13.5%)
Head and neck 12 (11.5%)
Skin/melanoma 7 (6.7%)
Lung 6 (5.8%)
Breast 5 (4.8%)
Hematologic 4 (3.8%)
Central nervous system 3 (2.9%)
Others** 4 (3.8%)

Anti-PD-1/PD-L1-based therapy administered as, N (%)
First line 36 (34.6%)
Second line 38 (36.5%)
Third line 13 (12.5%)
≥Fourth line 17 (16.3%)

Type of immunotherapy, N (%)
Anti-PD-1/PD-L1 alone 51 (49.0%)
Anti-PD-1/PD-L1 with targeted agents 25 (24.0%)
Anti-PD-1/PD-L1 with chemotherapy 7 (6.7%)
Anti-PD-1/PD-L1 with anti-CTLA-4 15 (14.4%)
Anti-PD-1/PD-L1 with anti-CTLA-4 and targeted agents 2 (1.9%)
Anti-PD-1/PD-L1 with chemotherapy and targeted agents 2 (1.9%)
Anti-CTLA-4 alone 2 (1.9%)

Best response, N (%)
Complete response 4 (3.8%)
Partial response 22 (21.2%)
Stable disease ≥6 months 12 (11.5%)
Stable disease <6 months 12 (11.5%)
Progressive disease 43 (41.3%)
Response assessment unavailable or too early to be 

evaluated***
11 (10.6%)

*The characteristics were curated on all 104 patients. N = 84 patients had 
treatment follow-up and passed cfDNA NGS quality control. 

**Others: includes patients with sarcoma (N = 1), myxofibrosarcoma (N = 1), 
thymus squamous cell carcinoma (N = 1), and adrenal cortical carcinoma 
(N = 1). 

***N = 8 had stable disease at the time of data cutoff; however, follow-up was less 
than 6 months and thus not included in the response analysis. N = 3 without 
adequate clinical information to assess the response.
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may be more susceptible to these drugs: PD-L1, TMB high, and 
MSI-high.9,10,13 Despite these efforts, there are limited markers 
able to predict treatment responses early in the clinical time 
course. Striving to fill this unmet need, we investigated serial 
cfDNA samples among patients with diverse cancers treated 
with anti-PD-1/PD-L1 therapies.

Our patients who had serial cfDNA with lower average 
adjusted ΔVAF reflected the change in percent cfDNA in the 
blood post-treatment as compared to baseline and had signifi
cantly improved clinical outcomes (SD ≥6 months/PR/CR 
rates, PFS, and OS) (Tables 2, 3, Figures 2 and 3). These results 
are consistent with prior reports suggesting that serial cfDNA 
measurements can provide an early readout of outcome for 

immunotherapy which could aid the radiographic 
assessment.23,25,27 Radiographic evaluation of benefit from 
checkpoint inhibitors can occasionally be challenging, espe
cially in the setting of pseudoprogression, since it is difficult 
to impossible to determine in such patients whether the tumor 
will eventually respond (and hence therapy should continue) or 
whether it is indeed growing (and therefore therapy should be 
stopped).28 Our results suggest that the use of a second blood 
sample for cfDNA at weeks 2–3 after therapy can provide early 
assessment of the response. Therefore, serial cfDNA assess
ment may guide clinical decision that may allow patient to 
transition to the next line of therapy early on in case of 
progression.23,27

Figure 2. Patients with low average adjusted ΔVAF (≤0.11) show higher rate of clinical benefit (SD ≥6 months/CR/PR) (N = 79). (a) Boxplot showing distribution of 
average adjusted ΔVAF from patients with SD ≥6 months/CR/PR (N = 36) and patients with SD <6 months or PD (N = 43). Line across the box = median, upper and lower 
edges of box = interquartile range of the average adjusted ΔVAF, upper and lower whisker = maximum and minimum average adjusted ΔVAF, dots = average adjusted 
ΔVAF from each patient. P values were computed using a t-test. (b) Bar graph showing the percentage of patients with SD ≥6 months/CR/PR versus SD <6 months/PD 
with average adjusted ΔVAF low (N = 39) versus average adjusted ΔVAF high (N = 40). P values were computed using logistic regression test. Patients (N = 79) with 
response assessment available and NGS data from timepoint A and B samples who passed sequencing quality control were included in the analysis. (c) Violin plot of 
average adjusted ΔVAF from patients with response assessment (N = 79). Patients with CR, PR, or SD ≥6 months are shown as green color. Patients with SD <6 months 
or PD are shown as red color. Patients are ordered by the average adjusted ΔVAF value (red lines) from low to high and dichotomized by the median (black dash line). 
Black dots represent adjusted ∆VAF.  
Abbreviations: CR, complete response; NGS ,next-generation sequencing; PR, partial response; SD, stable disease; PD, progressive disease.
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Although higher tissue TMB can predict response to 
immune checkpoint inhibition as shown in the current report 
(Tables 2 and 3) as well as in previous literature,10,29,30 and 
there is a pan-cancer FDA-approval for the anti-PD1 antibody 
pembrolizumab for patients with TMB ≥10 mutations/mb,31 

serial TMB dynamics in cfDNA in our study was not predictive 
of clinical outcome (Tables 2, 3 and Supplementary Figure 1). 
This might be due to the inherent mechanism of action of 
immune checkpoint inhibitors. These drugs are generally 
believed to cause tumor apoptosis via immune-mediated cell 

death and caspase initiation, not via DNA alkylation, methyla
tion, or other intranuclear/intracellular mechanisms that may 
lead to increases in TMB.32

There are several limitations to this study. First, the 
patients enrolled were heterogeneous (though this could also 
point to the generalizability of the results across cancers) and 
the sample size was moderately small. Thus, larger samples 
size will be required for further validation. Additionally, 
a variable treatment regimen with immunotherapies could 
be a confounder. Furthermore, the pattern of tumor DNA 

Figure 3. Patients with reduced average adjusted ΔVAF show better progression-free survival (PFS) and overall survival (OS) (N = 84). Kaplan–Meier curves displaying (a) 
PFS and (b) OS for patients with average adjusted ΔVAF low versus average adjusted ΔVAF high. Patients (N = 84) with timepoint A and B samples who passed NGS 
quality control criteria were used in the analysis. P values were calculated by the two-sided log-rank test. *Median overall survival not reached after a median follow-up 
of 9.75 months.

Table 3. Univariate and multivariate analyses for progression-free survival and overall survival after immunotherapy (N = 84).

Status N

Progression-free survival Overall survival

Univariate Multivariate* Univariate Multivariate*

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

∆bTMB ≤0 mutation/Mb 59 0.79 (0.44–1.4) 0.42 0.61 (0.27–1.35) 0.23
>0 mutation/Mb 25

Average adjusted ΔVAF Low (≤0.11) 42 0.35 (0.2–0.62) <0.001 0.35 (0.19–0.64) <0.001 0.11 (0.04–0.33) <0.001 0.35 (0.19–0.63) <0.001
High (>0.11) 42

Age (years)** ≤60.5 43 1.24 (0.73–2.14) 0.43 1.01 (0.46–2.21) 0.98
>60.5 41

Gender Female 34 0.9 (0.52–1.56) 0.7 0.88 (0.39–1.95) 0.75
Male 50

GI cancers YES 29 0.95 (0.55–1.66) 0.87 1.04 (0.46–2.36) 0.92
NO 55

GU cancers YES 12 2.79 (1.39–5.62) 0.0096 2.47 (1.16–5.25) 0.011 2.06 (0.77–5.51) 0.18
NO 72

Treatment line <2 26 0.85 (0.47–1.55) 0.6 0.69 (0.27–1.72) 0.41
≥2 58

Tissue TMB high*** Yes (baseline) 10 <0.001 <0.001 0.0069 <0.001
No 41 5.30 (1.62–17.31) 4.36 (1.17–16.16) 6.75 (0.90–50.74) 4.96 (1.43–17.16)
Unknown 33 1.80 (0.52–6.24) 2.24 (0.48–10.47) 2.19 (0.26–18.23) 2.17 (0.48–9.85)

Tissue MSI high Yes (baseline) 5 0.0081 0.49 0.032 0.64
No 44 2.24 (0.68–7.34) 0.71 (0.18–2.83) 3.29 (0.44–24.83) 0.73 (0.2–2.69)
Unknown 35 0.93 (0.27–3.19) 0.46 (0.09–2.47) 1.11 (0.13–9.22) 0.5 (0.11–2.36)

Tissue PD-L1 positive Yes (baseline) 17 0.051 0.97 0.19
No 28 1.23 (0.61–2.47) 0.97 (0.46–2.06) 2.47 (0.70–8.67)
Unknown 39 0.58 (0.28–1.22) 0.88 (0.32–2.40) 1.29 (0.35–4.76)

Patients (N = 84) with timepoint A and B samples who passed NGS quality control criteria were used in the analysis. 
All P values ≤ 0.05 are listed in bold. 
*Variables with P value < 0.1 in the univariate analyses were entered into the multivariate analysis. 
**Median age of the 84 patients is 60.5 years. 
*** Tissue TMB high was defined by the laboratory; for instance, Foundation Medicine defined tissue TMB high as ≥20 mutations per megabase. 
See Supplementary Table 6 for the vendor used to assess TMB, MSI, and PD-L1. 
Abbreviations: ∆bTMB, serial changes in blood TMB; GI, gastrointestinal; GU, genitourinary; MSI, microsatellite instability; TMB, tumor mutational burden; VAF, variant 

allele frequency.
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shedding can vary among different histologies and requires 
further investigation. Lastly, ideal timing of serial cfDNA 
analysis is not established. Future evaluation with longitudi
nal study and different timepoints of blood sampling is 
required.

In conclusion, in a prospective study, we have shown 
that dynamic changes in VAF from cfDNA during the first 
2 ~ 3 weeks of anti-PD-1/PD-L1 therapies were predictive 
of clinical outcomes. Therefore, these cfDNA changes may 
reflect a “molecular response”23 that appears well before 
radiologic changes are measured. Implementation of early 
blood-derived liquid biopsy response markers from immu
notherapy may facilitate drug development in this field.
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