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Association analysis for resistance 
to Striga hermonthica in diverse 
tropical maize inbred lines
A. E. Stanley1,2, A. Menkir2*, B. Ifie1, A. A. Paterne2, N. N. Unachukwu2, S. Meseka2, 
W. A. Mengesha2, B. Bossey2, O. Kwadwo1, P. B. Tongoona1, O. Oladejo2, C. Sneller3 & 
M. Gedil2

Striga hermonthica is a widespread, destructive parasitic plant that causes substantial yield loss to 
maize productivity in sub-Saharan Africa. Under severe Striga infestation, yield losses can range from 
60 to 100% resulting in abandonment of farmers’ lands. Diverse methods have been proposed for 
Striga management; however, host plant resistance is considered the most effective and affordable to 
small-scale famers. Thus, conducting a genome-wide association study to identify quantitative trait 
nucleotides controlling S. hermonthica resistance and mining of relevant candidate genes will expedite 
the improvement of Striga resistance breeding through marker-assisted breeding. For this study, 
150 diverse maize inbred lines were evaluated under Striga infested and non-infested conditions 
for two years and genotyped using the genotyping-by-sequencing platform. Heritability estimates 
of Striga damage ratings, emerged Striga plants and grain yield, hereafter referred to as Striga 
resistance-related traits, were high under Striga infested condition. The mixed linear model (MLM) 
identified thirty SNPs associated with the three Striga resistance-related traits based on the multi-
locus approaches (mrMLM, FASTmrMLM, FASTmrEMMA and pLARmEB). These SNPs explained up to 
14% of the total phenotypic variation. Under non-infested condition, four SNPs were associated with 
grain yield, and these SNPs explained up to 17% of the total phenotypic variation. Gene annotation of 
significant SNPs identified candidate genes (Leucine-rich repeats, putative disease resistance protein 
and VQ proteins) with functions related to plant growth, development, and defense mechanisms. The 
marker-effect prediction was able to identify alleles responsible for predicting high yield and low Striga 
damage rating in the breeding panel. This study provides valuable insight for marker validation and 
deployment for Striga resistance breeding in maize.

Maize (Zea mays L.) is an important cereal that plays a crucial role in alleviating food insecurity in sub-Saharan 
Africa (SSA) due to its high yield potential, ease in processing and low  cost1. However, its production is constantly 
hampered by a plethora of biotic stresses, including the parasitic weed Striga. Among the numerous Striga species 
endemic to Africa, Striga hermonthica (Del.) Benth is the most destructive and widespread, affecting cereals, 
including maize and sorghum (Sorghum bicolor L.)2. Yield losses attributed to Striga infestation in maize range 
from 60 to 100% under severe field infestation, especially in marginal production areas where smallholder farm-
ers cannot afford high inputs and other control  measures3.

Striga hermonthica is an obligate root hemiparasite, which depends on its host for survival, notwithstanding 
its photosynthetic capacity after emergence from the  soil4. The parasite’s lifecycle is intimately associated with 
its host to ensure its  survival5. The interaction between the parasitic plant and its host is initiated immediately a 
chemical compound known as strigolactone is released from the host plant. This chemical compound stimulates 
the germination of Striga seeds. Once the Striga seeds germinates, it establishes a connection with the roots of 
its host, extracting water, carbon and essential nutrients for its growth. The parasitic plant inflicts more damage 
on its host underground before its emergence from the soil, and this damage is accentuated in areas affected by 
sub-optimal soil fertility and recurrent  drought6. Striga hermonthica parasitism is characterized by chlorosis, 
firing of leaves around margins, wilting, stunting, poorly filled ears, and death under severe  infestation7. Striga 
resistance is a complex quantitative trait controlled by multiple genes/polygenes, and it is highly affected by 
environmental  factors8.
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Several control methods have been proposed for Striga management, including host plant resistance, cultural, 
chemical and manual control options. However, integrated Striga management approach is considered the most 
economical and affordable for small-scale farmers who cannot afford high inputs control options. The approach 
involves the combination of two or more control options. Host plant resistance is considered a cost effective, 
environmental feasible and affordable option for smallholder farmers. It is also an essential component of any 
successful integrated approach for controlling Striga parasitism. Several studies have shown progress in breeding 
for natural genetic resistance to Striga in  maize5. In addition, extensive research has been done to map quantita-
tive trait loci (QTLs) for Striga resistance in maize using molecular markers. QTL mapping and genome-wide 
association study (GWAS) are two methods widely used to discover genetic loci controlling complex traits. 
Quantitative trait loci (QTLs) associated with Striga hermonthica have been identified in maize using QTL 
mapping  approach9–11. Badu-Apraku et al.9 identified 12 QTLs associated with four Striga resistance/tolerance 
traits in maize and these QTLs explained 3.2 to 34.9% of the phenotypic variation. However, the QTL mapping 
approach have several limitations, for example, it has limited allelic diversity, and limited mapping resolution 
due to limited recombination  events12. On the other hand, GWAS explores ancestral recombination in natural 
genetically diverse population to dissect complex  traits13. GWAS is an improvement over QTL mapping in that 
it improves the resolution of QTLs due to accumulated meiotic events and reduces the time taken in develop-
ing mapping  populations14. GWAS is a powerful tool for detecting QTLs associated with important complex 
quantitative traits, as well as predicting or identifying causative  genes15.

Many statistical models have been developed to improve the power of identifying QTNs with the GWAS 
approach. The single-locus mixed-linear model (MLM) is the most common method used for GWAS. The 
method uses several algorithms such as the compressed  MLM16, enriched  MLM17, however, all these models per-
form single dimensional genome scan and require multiple correction. These models also have major limitations 
in mapping QTNs with small effects. Wang et al.18 proposed a new model based on multi-locus random-SNP-
effect MLM (mrMLM). The methods include polygenic-background control-based least angle regression plus 
empirical Bayes (pLARmEB), fast multi-locus random-SNP-effect efficient mixed model association (FASTm-
rEMMA), iterative-sure independence screening expectation–maximization (EM)-Bayesian LASSO (ISIS EM-
BLASSO) and fast multi-locus random-SNP-effect mixed linear model (FASTmrMLM)18–22. These methods can 
effectively detect small-effect QTNs and improve the efficiency and accuracy of GWAS. Recently, few studies 
have implemented the above GWAS methods to detect important loci controlling different traits in  maize23.

Genome-wide association study (GWAS) for S. hermonthica resistance has been conducted in maize. Ade-
wale et al.24 identified 24 SNPs that were significantly associated with four Striga resistance-related traits in early 
maturing maize inbred lines using compressed MLM, these lines captured only the genetic variation existing 
in the extra early and early maturing maize germplasm developed at IITA. However, genomic regions govern-
ing Striga resistance in many intermediate and late-maturing maize inbred lines with consistent expression of 
polygenic resistance to S. hermonthica have not been identified. This germplasm offers an excellent resource for 
discovering functional genes underlying the genetic variation in the Striga resistance-related traits. This study 
was thus conducted; to evaluate diverse intermediate and late maturing maize inbred line for Striga resistance 
under Striga infested and non-infested conditions and identify genomic regions and candidate genes related to 
Striga resistance.

Results
Phenotypic diversity. In the combined analyses of variance (ANOVA), environments and lines had sig-
nificant (p < 0.001) effects on the three Striga resistance-related traits under Striga infested conditions and for 
grain yield under non-infested condition (Tables 1 and 2). The line x environment interaction mean squares 
were also significant for most of the traits measured under the two conditions.

Further assessment of the line x environment interaction using rank correlation analyses between pairs of 
environments found highly significant (p < 0.0001) correlations for the Striga resistance-related traits (Supple-
mentary Table S1). The broad-sense heritability estimates for the Striga resistance-related traits varied from 81 
to 85% (Supplementary Table S2).

Table 1.  Mean squares from the combined ANOVA for traits recorded under Striga infestation across four 
environments. *, **, ***, §Significant at p ≤ 0.05, p ≤ 0.01, p ≤ 0.001 and 0.0001 levels, respectively, ns = not 
significant. Blk, Block; Env, Environment; Rep, Replication; CV, Coefficient of Variation; WAP, weeks after 
planting.

Source DF Yield (kg/ha)
Striga damage score at 8 WAP 
(1–9)

Striga damage score at 10 WAP 
(1–9) Emerged Striga count at 8 WAP

Emerged Striga count at 10 
WAP

Env (E) 3 104128033** 172.75§ 445.94§ 5792.54§ 39,237.32§

Rep(Env) 4 2831059** 1.26 ns 4.05 ns 91.92 ns 301.57 ns

Blk(Rep*E) 112 524846*** 1.11§ 1.33*** 451.34§ 1112.03§

Lines (L) 149 2559095§ 7.00§ 7.81§ 1528.28§ 2435.87§

L x E 446 483792§ 1.18§ 1.40§ 268.44** 530.09**

Error 483 321643 0.63 0.83 204.33 416.2

CV (%) 35.95 19.62 15.45 61.34 58.53
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Grain yield under Striga infestation varied from 13 to 3299 kg/ha with an average of 1580 kg/ha, while grain 
yield under non-infested condition varied from 706 to 4171 kg/ha with an average of 2098 kg/ha (Supplementary 
Table S2). Relative to the non-infested condition, the resistant benchmark (9450) suffered 46% yield loss, whereas 
the susceptible benchmark (5057) suffered 77% yield loss indicating the inbred lines used in this study were 
exposed to severe Striga infection. In addition, 86 maize inbred lines supported significantly fewer emerged Striga 
plants at 8 and 10 weeks after planting (WAP). These lines, on average, suffered 19% yield reduction relative to 
the non-infested conditions, produced significantly higher grain yields than the resistant benchmark (9450), and 
were categorized as resistant lines. In contrast, 44 inbred lines supported as many Striga plants as the susceptible 
benchmark (5057) but produced significantly higher grain yields than the susceptible line, and were categorized 
as tolerant. The remaining 20 inbred lines, supported as many Striga plants as the susceptible benchmark and did 
not differ significantly from the susceptible line in their grain yields, and were regarded as susceptible. All paired 
traits showed statistically significant differences at p-value < 0.01. A negative correlation was observed between 
grain yield and Striga damage rating and emerged Striga plants at 8 and 10 WAP. However, there was a positive 
correlation between Striga damage rating and emerged Striga plants at 8 and 10 WAP (Supplementary Fig. S1).

Genotyping. Population structure and linkage disequilibrium. For the genotypic analysis, 16,735 SNPs dis-
tributed across the ten maize chromosomes were identified after the quality control process. A minimum of 1208 
SNPs (7.2%) were mapped on chromosome 10, whereas a maximum of 2532 SNPs (15.2%) were mapped on 
chromosome 1. The Admixture analysis using tenfold cross-validation from k = 1 to k = 10 showed a sharp elbow 
at k = 3, indicating the inbred lines can be grouped into three subgroups (Fig. 1A,B). The principal component 
analysis (PCA) also grouped the inbred lines into three subgroups and this is consistent with the Admixture 
results. A scree plot generated to visualize the fraction of variance represented by each of the ten principal com-
ponents showed that two (PC1 and PC2) explained the largest proportion (42.3%) of the total variance (Fig. 1C). 
Furthermore, the phylogeny tree clustering also grouped the inbred lines into three distinct subgroups; 22, 27 
and 101, derived from ZDIP, IWDS and Mixed groups, respectively (Fig. 1D). The assignment of the inbred lines 
into the three subgroup based on the phylogeny tree were in good agreement (98%) with those revealed by PCA 
The inbred lines were grouped based on their genetic background/pedigree and maturity. The LD estimates (r2) 
showed a slight increasing and then consistent pattern of LD decay was observed with an increase in the physical 
distance of SNP markers mapped on the 10 chromosomes (Supplementary Fig. S2). The average linkage disequi-
librium decay varied from 2.73 kb on chromosome 6 to 3.68 kb on chromosome 8 (Supplementary Table S3).

Genome‑wide association analysis. The GWAS multiple-locus models used in this study identified 30 signif-
icant SNPs that were significantly associated with the three Striga resistance-related traits. These SNPs were 
distributed on all maize chromosomes but chromosome 8. The highest number of SNPs was found on Chromo-
some 1, and the least on chromosomes 3, 6 and 7 (Table 3). The results of the Manhattan plot and the quantile–
quantile plots revealed reasonable data adjustment and a few significant SNPs above the interval of the expected 
values of the null hypothesis (Fig. 2). This study employed four multi-locus methods, mrMLM, FASTmrMLM, 
FASTmrEMMA, and pLARmEB to perform comprehensive GWA mapping in our diversity panel. Among the 
four methods mrMLM identified the highest number of SNPs (19) while, FASTmrEMMA identified the least (5). 
In addition, FASTmrMLM identified the most codetected SNPs among the four GWAS models used. Four SNPs 
were associated with grain yield under Striga infested condition. These SNPs are located on three chromosomes, 
and each SNP explained between 3.21 to 13.36% of the phenotypic variation. One of the SNPs (S4_164335765) 
associated with grain yield was detected by two GWAS multi-locus methods (FASTmrMLM and mrMLM) and 
they explained 6.7 and 13.4% of the phenotypic variation. The LOD score of the significant SNPs ranged from 
7.18 (S4_164335765) to 7.39 (S10_1784894). 

Eleven SNPs were associated with Striga damage rating at 8 WAP. These SNPs are located on seven chro-
mosomes and the proportion of phenotypic variation explained by each SNP ranged from 0.14 to 14.19%. The 
LOD values of the identified SNPs ranged from 6.06 (S4_160459526) to 11.80 (S10_68324912). Nine SNPs 
were associated with Striga damage rating at 10 WAP. These SNPs were located on five chromosomes, and they 
explained 4.13 to 11.60% of the phenotypic variation. Four SNPs (S1_284192573, S1_10576247, S2_99667127, 

Table 2.  Mean squares from the combined ANOVA for traits recorded under non-infested conditions across 
four environments. *, **, ***, §Significant at p ≤ 0.05, p ≤ 0.01, p ≤ 0.001 and 0.0001 levels, respectively, ns = not 
significant. Blk, Block; Env, Environment; Rep, Replication; CV, Coefficient of Variation; WAP, weeks after 
planting.

Source DF Yield (kg/ha)

Env (E) 3 175723422.1§

Rep(Env) 4 2428705***

Blk(Rep*Env) 112 1281736.9§

Lines (L) 149 3287995§

L x E 446 732612.7§

Error 483 470085

CV (%) 32.73
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and S7_10795659) associated with Striga damage rating at 10 WAP were detected by two or more of the GWAS 
multi-locus (mrMLM, and FASTmrMLM, and FASTmrEMMA) methods.

The LOD values of the identified SNPs ranged from 6.02 (S2_190557148) to 13.76 (S2_188120710). In gen-
eral, two SNPs (S2_160791711 and S10_25285761) were simultaneously associated with Striga damage rating 
at 8 and 10 WAP.

Eight SNPs were associated with emerged Striga plants at 8 WAP. These SNPs are located on five chromo-
somes and the proportion of phenotypic variation explained by each SNP ranged from 5.03 to 13.58%. Five 
SNPs (S2_208978140, S2_135038935, S5_148751913, S9_7727167, and S10_90133328) associated with emerged 
Striga plants at 8 WAP were detected by two or more of the GWAS multi-locus (mrMLM, FASTmrMLM, FAST-
mrEMMA, and pLARmEB) methods. The LOD values of the identified SNPs ranged from 6.14 (S1_298950342) 
to 9.28 (S10_125571525). Four SNPs were associated with emerged Striga damage plants at 10 WAP. These SNPs 
are located on three chromosomes and the proportion of phenotypic variation explained by each SNP ranged 
from 6.33 to 12.21%. Three SNPs (S2_135038935, S5_148751913, and S5_204969099) associated with emerged 
Striga plants at 10 WAP were detected by two GWAS multi-locus (mrMLM, and FASTmrMLM) methods. The 
LOD values of the identified SNPs ranged from 6.83 (S2_135038935) to 8.65 (S5_148751913). In general, three 
SNPs (S2_135038935, S5_148751913, and S10_12557152) were simultaneously associated with emerged Striga 
plants at 8 and 10 WAP.

Under non-infested conditions, four SNPs were associated with grain yield (Table 4). These SNPs are 
located on three chromosomes and the proportion of phenotypic variation explained by each SNP ranged from 
5.63 to 17.40%. Furthermore, one of the SNPs on chromosome 1 (S4_189154251) was detected by two of the 
GWAS multi-locus methods (mrMLM, and FASTmrMLM). The LOD score of these SNPs ranged from 6.52 
(S1_26517984) to 9.72 (S4_189154251).

Markers effect prediction. The frequencies and marker prediction effects of various alleles associated with the 
three Striga resistance-related traits are presented in Table 5. Two of the SNPs (S4_164335765 and S9_1994432) 
associated with grain yield under Striga infestation displayed high segregation among the inbred lines. For SNPs 
on chromosome 4, alleles AA and CA were associated with genotypes with higher grain yield, while alleles CC 
were associated with lower grain yield. For the second SNP on chromosome 9, alleles GG were associated with 
genotypes with higher grain yield, while alleles AA were associated with lower grain yield (Fig. 3). For Striga 
damage ratings at 8 and 10 WAP, three SNPs (S1_284192573, S4_160459526, and S5_5623740) displayed high 
segregation among the inbred lines. For two of the SNPs on chromosomes 1 and 4, alleles TT and TG were asso-

Figure 1.  (A) Cross-validation plot showing the optimal number of clusters. (B) Population structure plot of 
the inbred lines (k = 3). C) Principal component analysis based on 150 maize inbred lines using the 16,735 SNP 
markers. D) Phylogenetic tree showing the genetic relationship among 150 diverse maize inbred lines.
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ciated with high Striga damage ratings, while alleles GG and CC were associated with low Striga damage rating. 
For the SNP on chromosome 5, alleles AA and AC were associated with high Striga damage ratings, while alleles 
CC were associated with low Striga damage ratings at 8 and 10 WAP (Fig. 3). For emerged Striga plants, four 
SNPs (S1_298950342, S3_74335447, and S5_204969099) displayed high segregation among the inbred lines. 
For the two SNPs on chromosomes 1 and 3, variants GG and AG supported the emergence of more Striga 
plants whereas, alleles AA supported little emerged Striga plants. For the SNP on chromosome 5, variants CC 
supported the emergence of more Striga plants, while alleles AA and AC supported little emerged Striga plants 
(Fig. 3).

Identifying putative genes. According to the genomic information of B73 Ref Gen_V4, thirty-one puta-
tive genes/proteins, including two uncharacterized proteins were found in the intervals adjacent to the signifi-
cant SNPs detected for the three Striga hermonthica resistance-related traits (Table 6). Remarkably, most of the 
gene models identified encode transcription factors, disease resistance proteins, zinc-finger domain proteins, 
leucine-rich repeats protein kinase and some pathogenesis-related proteins. Most of the identified genes were 
located on chromosomes bins 1.10, 2.05, 2.06, 3.04, 6.01, 7.01. 9.01, 10.00. 10.01, and 10.03.

Five gene models were identified around three SNPs associated with grain yield under Striga infestation. Two 
gene models each were found on chromosomes 4 and 9 and they encode adenylyltransferase, sulfurtransferase 
(MOCS3 2), U-box domain-containing protein 39, and NLR family CARD domain-containing protein 3. The 

Table 3.  Significant SNPs identified under Striga infested condition. Methods: Numbers 1 to 4 represents 
different GWAS methods: 1: mrMLM; 2: FASTmrMLM; 3: FASTmrEMMA; 4 pLARmEB Chr, Chromosome; 
YLDIN_G, Grain yield; WAP, weeks after planting.

Trait name SNP Chr Position (bp) LOD PVE (%) Favorable allele Methods

YLDIN_G

S4_164335765 4 164335765 7.18 13.36 A 1, 2

S9_1994432 9 1994432 7.21 3.21 G 4

S10_1784894 10 1784894 7.39 3.58 C 4

Striga damage rating at 8 WAP

S1_18512344 1 18512344 10.76 14.19 T 1

S2_14081759 2 14081759 8.26 7.89 A 1

S2_160791711 2 160791711 7.28 3.35 A 1

S2_219240910 2 219240910 11.31 8.05 G 3

S4_160459526 4 160459526 6.07 3.83 C 1

S5_70442824 5 70442824 6.76 3.22 C 2

S5_216138908 5 216138908 6.81 6.67 C 4

S6_25428338 6 25428338 6.58 0.142 A 4

S10_25285761 10 25285761 11.87 6.57 G 2

S10_2743583 10 2743583 9.86 0.24 C 4

S10_68324912 10 68324912 11.79 1.32 C 4

Striga damage rating at 10 WAP

S1_284192573 1 284192573 8.54 10.40 G 1, 2, 3

S1_10576247 1 10576247 6.45 10.00 A 1, 2

S2_190557148 2 190557148 6.02 4.13 T 1

S2_99667127 2 99667127 7.82 4.82 A 1, 2

S2_160791711 2 160791711 6.18 4.37 A 3

S2_188120710 2 188120710 13.76 6.47 A 4

S5_5623740 5 5623740 6.06 13.97 C 1

S7_10795659 7 10795659 6.71 7.99 A 1, 2

S10_25285761 10 25285761 6.56 5.04 G 3

Emerged Striga plants at 8 WAP

S1_298950342 1 298950342 6.15 6.58 A 1

S2_135038935 2 135038935 6.67 6.66 G 3, 4

S2_208978140 2 208978140 6.82 6.97 C 3, 4

S3_74335447 3 74335447 6.21 5.54 A 1

S5_148751913 5 148751913 6.41 6.21 A 3, 4

S9_7727167 9 7727167 8.32 11.51 G 1, 2

S10_125571525 10 125571525 9.28 13.08 G 1, 2, 4

S10_90133328 10 90133328 7.75 13.58 T 1, 2, 4

Emerged Striga plants at 10 WAP

S2_135038935 2 135038935 6.83 12.22 G 1, 2

S5_148751913 5 148751913 8.65 7.91 A 1, 2

S5_204969099 5 204969099 6.93 10.22 T 1, 2

S10_125571525 10 125571525 7.00 6.33 G 4
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remaining gene model on chromosome 10 encodes VQ proteins. These putative genes/proteins are mainly 
involved in developmental processes including responses to biotic and abiotic stress, seed development and 
photo-morphogenesis. The LD heat-map of significant SNPs (S9_1994432 and S10_1784894) identified on 
chromosomes 9 and 10 were highly correlated (0.5 to 0.8) with regions adjacent to the identified putative genes 
(U-box domain-containing protein 39, NLR family CARD domain-containing protein 3 and VQ proteins) (Sup-
plementary Fig. S3).

Nineteen gene models were identified around seventeen SNPs associated with Striga damage ratings at 8 and 
10 WAP. Two gene models each were associated with SNPs S10_25285761 and S10_2743583 located on chromo-
some 10. These gene models encode leucine-rich repeat extension-like protein, disease resistance protein RPM1, 
disease resistance RPP13-like protein1 and an uncharacterized protein. Other genes models associated with 
Striga damage ratings encode putative cytochrome P450 superfamily protein, xyloglucan endotransglycosylase, 
basic helix-loop-helix (bHLH7 and bHLH20) transcription factors, knotted related homeobox 5, ubiquitin-
protein ligase, and zinc-finger domain proteins. Most of these genes/proteins identified are involved in different 
development and plant defense mechanism. Plant resistance genes allow plants recognize the presence of specific 
pathogens and initiate defense responses. The LD heat-map of significant SNPs (S5_70442824, S7_10795659 and 
S10_25285761) identified on chromosomes 5, 7 and 10 were highly correlated (0.5 to 0.8) with regions adjacent 

Figure 2.  Manhattan plot indicating SNPs associated with (A) Grain yield, (B) Striga damage score at 10 WAP 
(C) Emerged Striga plants at 10 WAP. The graph refers to the quantile–quantile (Q-Q) plot of the P-values 
observed and expected from the association analysis under Striga infestation. 

Table 4.  Significant SNPs identified under non-infested condition. Methods: Numbers 1 to 4 represents 
different GWAS methods: 1: mrMLM; 2: FASTmrMLM; 4 pLARmEB Chr = Chromosome, YLDIN_G = Grain 
yield, WAP = weeks after planting.

Trait name SNP Chr Position (bp) LOD score PVE (%) Favorable allele Methods

YLDUN_G

S1_14334790 1 14334790 7.0841 10.2684 C 1

S1_26517984 1 26517984 6.5272 5.6321 G 2

S4_189154251 4 189154251 9.7264 17.4015 A 1, 2

S8_17462112 8 17462112 6.5008 7.0482 G 4
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Table 5.  Frequencies and marker prediction effects of various alleles associated with the Striga resistance-
related traits.

Trait Marker name Allele1 Allele2 Sequence Frequency Adjusted probability
Adjusted 
significance

Grain yield
S4_164335765

AA AC AAAC 0.34 4.19E-01 ns

AA CC AACC 0.47 4.47E-07 ****

AC CC ACCC 0.21 1.52E-01 ns

Ch9_1994432 AA GG AAGG 1.00 ***

Striga damage rating

Ch1_284192573

GG GT GGGT 0.42 2.46E-01 ns

GG TT GGTT 0.48 1.23E-04 ***

GT TT GTTT 0.10 2.47E-01 ns

Ch4_160459526 CC TT CCTT 1.00 **

Ch5_5623740

AA AC AAAC 0.12 1.68E-01 ns

AA CC AACC 0.49 5.25E-04 ***

AC CC ACCC 0.39 7.20E-02 ns

Ch5_216138908 AA CC AACC 1.00 ***

Emerged Striga plants

Ch1_298950342

AA AG AAAG 0.23 7.50E-02 ns

AA GG AAGG 0.46 1.62E-05 ****

AG GG AGGG 0.31 6.10E-01 ns

Ch3_74335447

AA AG AAAG 0.06 7.10E-02 ns

AA GG AAGG 0.45 2.00E-03 **

AG GG AGGG 0.49 2.45E-07 ****

Ch5_148751913

AA AC AAAC 0.36 3.29E-01 ns

AA CC AACC 0.16 4.60E-02 *

AC CC ACCC 0.48 4.60E-02 *

Ch5_204969099

CC CT CCCT 0.13 7.04E-01 ns

CC TT CCTT 0.48 4.56E-04 ***

TT TC TTTC 0.39 7.04E-01 ns

Figure 3.  Allelic effects of haplotype blocks associated with Grain yield (A,B) blue colour, Striga damage ratings 
(C–E) green colour, emerged Striga plants (F,G) gray colour under Striga infestation.
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to the identified putative genes (putative cytochrome P450 superfamily protein, Transcription factor bHLH7, 
uncharacterized LOC100381459 and leucine-rich repeat extensin-like protein 3) (Supplementary Fig. S4).

Nine gene models were identified around nine SNPs associated with emerged Striga plants at 8 and 10 WAP. 
These gene models encode Dof zinc finger protein, protein accelerated cell death 6, peroxidase 70, hapless, basic-
domain leucine-zipper (bZIP46) and WRKY14 transcription factor. Transcription factors are usually involved in 
diverse plant processes including, growth, development and stress signaling. In addition, protein accelerated cell 
death is a positive regulator of programmed cell death and it is a mechanism used by plants for defense against 
pathogen infection. The LD heat-map of significant SNPs (S3_74335447 and S9_7727167) identified on chro-
mosomes 3 and 9 were highly correlated (0.4 to 0.8) with regions adjacent to the putative genes (uncharacterized 
LOC100382572, bZIP transcription factor 46) (Supplementary Fig S5).

Table 6.  Significant SNPs associated with the Striga resistance-related traits and putative genes identified for 
the 150 maize inbred lines.

Trait SNP Position (bp) Gene ID Putative Gene

Grain yield

S4_164335765 164335765 GRMZM2G157836; GRMZM5G881641 adenylyltransferase and sulfurtransferase (MOCS3 2)

S9_1994432 1994432 GRMZM2G406758; GRMZM2G110289 U-box domain-containing protein 39; NLR family CARD 
domain-containing protein 3

S10_1784894 1784894 GRMZM2G180262 VQ

Striga damage score at 8 and 10 WAP

S1_18512344 18512344 GRMZM2G024099 Aspartyl protease AED3

S1_284192573 284192573 GRMZM2G351582 ZPR1 zinc-finger domain protein (uaz7c01h10)

S1_10576247 10576247 GRMZM2G028521 citrate transporter family protein (pco091082)

S2_14081759 14081759 GRMZM2G092128 E3 ubiquitin-protein ligase PUB23

S2_160791711 160791711 GRMZM2G102242 meiotic nuclear division protein 1 homolog

S2_190557148 190557148 GRMZM2G414252 bHLH transcription factor (bHLH20)

S2_99667127 99667127 GRMZM2G171830 Protein TIFY 10B

S2_219240910 219240910 GRMZM2G162781 putative leucine-rich repeat protein kinase family protein

S4_160459526 160459526 GRMZM2G081285 RING-H2 finger protein ATL1R

S5_5623740 5623740 GRMZM2G112548 transcription factor JUNGBRUNNEN 1

S5_216138908 216138908 GRMZM2G113418 glutaredoxin 2

S5_70442824 70442824 GRMZM2G035073 putative cytochrome P450 superfamily protein

S6_25428338 25428338 GRMZM5G832409 knotted related homeobox 5 (lg4b)

S7_10795659 10795659 GRMZM2G162382 Transcription factor bHLH7

S10_25285761 25285761 GRMZM2G300965; GRMZM2G300969 uncharacterized LOC100381459; leucine-rich repeat 
extensin-like protein 3

S10_2743583 2743583 GRMZM5G873586; GRMZM2G356817 Disease resistance protein RPM1; putative disease resist-
ance RPP13-like protein 1

S10_68324912 68324912 GRMZM2G364748 Xyloglucan endotransglycosylase (gpm554)

Emerged Striga plants at 8 and 10 WAP

S1_298950342 298950342 GRMZM2G017470 Dof zinc finger protein

S2_135038935 135038935 GRMZM2G088778 Protein ACCELERATED CELL DEATH 6

S2_208978140 208978140 GRMZM2G179505 hydrolase/ protein serine/threonine phosphatase

S3_74335447 74335447 GRMZM2G701566 uncharacterized LOC100382572

S5_148751913 148751913 GRMZM2G129543 peroxidase 70

S5_204969099 204969099 GRMZM5G823157 probable WRKY transcription factor 14

S9_7727167 7727167 GRMZM2G033413 bZIP transcription factor 46

S10_125571525 125571525 GRMZM2G006948 hapless 8

S10_90133328 90133328 GRMZM2G063575 Pentatricopeptide repeat-containing protein

Table 7.  Quantitative trait nucleotides (QTNs) associated with grain yield under non-infested condition and 
putative genes identified for the 150 maize inbred lines.

Trait SNP Position Gene ID Putative Gene

Grain yield

S1_14334790 14334790 GRMZM2G424020, GRMZM2G464363 IQ domain-containing protein IQM5, uncharac-
terized protein LOC100277298

S4_189154251 189154251 GRMZM2G174834, GRMZM2G174938 WRI1 transcription factor 2, ENTH/VHS family 
protein

S1_26517984 26517984 GRMZM2G098714 Replication protein A 70 kDa DNA-binding

S8_17462112 17462112 GRMZM2G026015 Photosystem 1 reaction center subunit XI
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Under non-infested conditions, six gene models were identified around four SNPs associated with grain yield 
(Table 7). Most of the identified genes were located on chromosomes bins 1.02, 4.08 and 8.02. These gene models 
encode IQ domain-containing protein IQM5, uncharacterized protein LOC100277298, WRI1 transcription 
factor 2, ENTH/VHS family protein, Replication protein A 70 kDa DNA-binding and Photosystem I reaction 
center subunit XI. IQ-domain proteins are common in land plants and they are known for critical roles in host 
defense, cell shaping and drought resistance.

Discussion
The marked reduction in grain yield observed in the resistant and susceptible benchmark indicates the occur-
rence of severe parasite infestation across the test environments, eliciting significant differences in resistance 
or susceptibility reactions among the inbred lines. The diversity panel used in our study displayed considerable 
phenotypic variation for the three Striga resistance-related traits recorded under Striga infestation, and this is 
consistent with the findings in other  studies25. The significant line x environment interaction observed for traits 
measured under Striga infestation can be attributed to varying seasonal factors, soil pH, and nutrient  levels26. 
Also, the significant rank correlations among environments for the major Striga resistance-related traits indicates 
that the lines maintained consistent resistance or susceptibility reactions to Striga seeds collected from different 
locations and years. More than 55% of the lines evaluated in this study were resistant to S. hermonthica, and this 
is due to the severe selection pressure imposed by the breeders during the development of these inbred lines 
from diverse source populations.

Heritability estimates were high for the Striga resistance-related traits, indicating the predominant role of 
genetic factors for these traits. Traits with high heritability increase the power of detecting SNPs in an association 
panel and thus allow the identification of a true association between a marker and a putative  gene15. The high 
heritability estimates observed for Striga damage ratings and emerged Striga plants in this study is consistent 
is consistent with the results reported by Najar et al.27 and Shayanowako et al.25. These findings, however, differ 
from those of Badu-Apraku et al.28, who recorded low heritability estimates  (h2 < 50) for emerged Striga plants 
and Striga damage ratings. .

The efficiency of association mapping largely depends on population size and population structure, which 
infers the ancestry of lines based on their genotypic  information29. The diversity panel used in this study are 
inbred lines derived from broad-based populations containing tropical and temperate germplasm, backcrosses 
containing Z. diploperennis adapted to tropical environments, and some lines that are tolerant to  drought30. The 
two complementary approach used to infer the population structure grouped the inbred lines into three sub-
populations based on their genetic backgrounds/pedigree and maturity information. It is worth noting that there 
was high agreement in the assignment of the inbred lines into the three subgroups based on the two approaches 
(Admixture and PCA). The phylogeny tree also grouped the inbred lines into three subgroups.

LD is an important factor that determines the power of marker-trait association analysis. In this study, more 
than 60% of the SNP pairs across the genome exhibit LD at  r2 > 0.1. In addition, the high  r2 value observed on 
chromosomes 4 and 8 in this study can be attributed to fewer recombination events on these chromosomes; 
this is consistent with the findings of Thirunavukkarasu et al.31 and Dinesh et al.32, who reported high  r2 value 
on chromosome 4 and 8 of maize. Reports have shown that the effectiveness of recombination is limited by the 
high level of  homozygosity33. In this study, faster decay of LD with increasing distance between markers was 
observed, which agrees with Doa et al.34 and Dinesh et al.32.

Several studies have been conducted to dissect the genetic architecture of Striga resistance in maize, and many 
QTLs associated with Striga resistance have been detected using bi-parental  populations9–11. Badu-Apraku et al.10 
identified 116 QTLs associated with four Striga resistance-related traits (grain yield, Striga damage ratings, ear 
aspect and emerged Striga plants) using bi-parental  (F2:3) population derived from two early maturing maize lines. 
In another study, Badu-Apraku et al.9 identified 14 QTLs that were associated with three Striga resistance-related 
traits (grain yield, ears per plant and Striga damage rating at 10 WAP). However, QTL mapping only exploits 
only a small fraction of available genetic diversity and exhibits limited capacity to detect polygenic  resistance12. 
However, only a few GWAS has been conducted to identify genomic regions associated with Striga hermonthica 
resistance in maize. Genome-wide association study exhibits high mapping resolution and abundant genetic 
variation due to the high ancestral recombination events in natural  populations35. Thus, it has been identified as 
a useful tool for detecting QTNs associated with complex quantitative traits, as well as predicting or identifying 
causative  genes15.

Different statistical models have been used for GWAS, the multi-locus model exhibits a higher distinctive 
power and a lower false-positive rate for detecting QTNs compared with the single-locus GWAS  model18,36. The 
adjustments of single-locus GWAS model improves its detection accuracy to an extent, however, the multiple-
testing correction (Bonferroni correction) of significance thresholds for single-locus model is too strict. This 
leads to the exclusion of important loci, especially when large experimental errors occur in field trials of crop 
genetics. To solve this problem, the application of multi-locus mrMLM is essential. Previous study on GWAS 
have used the single-locus model to identify quantitative trait nucleotides (QTNs) controlling Striga resistance 
in maize. Adewale et al.24 identified 24 SNPs associated with four Striga resistance-related traits in early maturing 
maize inbred lines using single-locus GWAS model. Further annotation analysis identified three putative genes 
that explained 9 to 42% of the phenotypic variation. The high phenotypic variation explained can be attributed 
to the single-locus GWAS model used. However, the genomic regions identified by Adewale et al.24 differs from 
those discovered in this study.

In this study, the four multi-locus GWAS models used identified thirty significant SNPs associated the three 
Striga resistance-related traits. This study is the first to use multi-locus GWAS model to identify SNPs associated 
with S. hermonthica resistance in maize. Comparing our GWAS results with previous studies on S. hermonithica 



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24193  | https://doi.org/10.1038/s41598-021-03566-4

www.nature.com/scientificreports/

resistance in  maize9–11, there were no similar genomic regions detected, however, additional genomic regions 
associated with Striga hermonthica resistance were identified. The annotation analysis identified gene models 
with potential involvement in plant growth, development, and defense mechanism. Intriguingly, some of the 
gene models identified encode transcription factors (TFs) including WRKY14, basic helix-loop-helix (bHLH7), 
bHLH20, basic-domain leucine-zipper (bZIP46), JUNGBRUNNEN 1 and zinc finger proteins. Transcription 
factors (TFs) are critical regulators of gene expression in all living organisms. They are involved in plant develop-
ment, cell signaling, and plant defense response.

Studies have shown that most WRKY TFs respond to pathogen attack and act as both positive and negative 
regulators in complex defense response  network37. Studies have associated WRKY TFs with S. hermonthica 
resistance mechanism in rice. Swarbrick et al.38 reported the up-regulation of genes encoding WRKY TFs in the 
roots of Nipponbare, a rice variety with resistance to S. hermonthica. Also, Mutuku et al.39 reported the knock-
down of WRKY45 (WRKY45-kd) by RNA interference in rice plants resulted in susceptibility to S. hermonthica 
infestation. bHLH is another TF, they are commonly expressed in response to drought stress and they have been 
reported in  rice40. The bHLH family TFs in Populus, PebHLH35 from Populus euphratica, has been reported as an 
essential gene in response to drought by regulating stomatal development and photosynthesis in  Arabidopsis41.

In addition, the Ring zinc-finger domain superfamily proteins are the most significant TFs known for their fin-
ger-like structure and ability to bind to zinc. These proteins have been reported in plants such as wheat (Triticum 
aestivum), soybean (Glycine max), and rice (Oryza sativa)42. Cao et al.43 indicated that Ring zinc-finger domain 
superfamily proteins are involved in resistance to blast fungus infection in rice. The DNA binding with one finger 
proteins (dofs) also regulate the expression of genes involved in plant development and defense  processes44. In 
maize, ZmDof1 has been isolated and connected with C4  photosynthesis45, which makes it thrive more than the 
C3 plants under warmer harsh climates because they are known to be drought resilient. In maize, there are no 
information on the roles of most of these TFs in S. hermonthica resistance; thus, further transcriptomic study 
will give a better understanding on the role of these TFs in S. hermonthica resistance in maize.

Plants generally lack specific cells to defend themselves against attack, but they possess the necessary com-
ponents for detecting invasion and building up defense response. Xyloglucan endotransglucosylase/hydrolases 
(XTHs) are cell wall enzymes that are able to graft xyloglucan chains to  oligosaccharides46. One of its functions 
in plants is defense reaction against parasitic  plants47. In tomato, xyloglucan endotransglycosylase/hydrolase 
(XTH) plays a major role in defense reactions against plant parasite Cuscuta  reflexa47.

Plants have evolved a series of mechanisms to resist pathogens infection. Most plant disease resistance (R) 
genes contain nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. NBS domains could bind 
and hydrolyze ATP or GTP, while LRR domains are critical for the formation of protein–protein  interactions48. 
NBS-LRR proteins have been suggested as the largest class of known R proteins that can either directly or indi-
rectly recognize the presence of  pathogens49. R gene proteins are involved in pathogen detection and disease 
 resistance50. The Recognition of Peronospora Parasitica 13-like (RPP13-like) genes also play important roles in 
the resistance of various plant diseases including the downy mildew caused by Peronospora parasitica. In Arabi-
dopsis, the RPP13-Nd, cloned from an ecotype (Niederzenz (Nd-1)), was characterized to resist the infection of 
various isolates of P. parasitica51.

Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are the largest group of receptor-like kinases 
in plants and play vital roles in development and defense-related processes including cell proliferation, hormone 
perception, host-specific defense response, wounding response and  symbiosis52. In Arabidopsis two LRR were 
identified to regulate cell death and innate  immunity53. According to Yuan et al.54, LRR-RLK can positively regu-
late plant biotic resistance but negatively regulate plant abiotic tolerance in Arabidopsis . Interestingly, several 
RLKs were found to possess dual or multiple roles during plant growth and development. For example, ERECTA 
is involved in both plant development and pathogen defense  responses55.

U-box proteins significantly contribute to the ability of plants to respond to diverse environmental stresses, 
due to plant  immobility56. The ubiquitination pathway regulates growth, development, and stress responses 
in plants, and the U-box protein family of ubiquitin ligases plays important role in this pathway. In higher 
plants, U-box-ARM proteins are associated with regulation of cell death and  defense57. In addition, VQ proteins 
regulate diverse developmental processes, including responses to biotic and abiotic stresses, seed development, 
and  photomorphogenesis58. Members of the VQ family either play a positive or negative role in plant immune 
response. Plants with loss of function of VQ23 lack resistance to both Botrytis cinerea and Pseudomonas syrin‑
gae. While lines, which overexpresses VQ23, showed reduced disease symptoms upon infection with either 
 pathogen58.

Cytochrome P450 superfamily proteins were also associated with emerged Striga plants, they are often 
involved in phytoalexin synthesis and the scavenging of toxins. Plants utilize a wide array of cytochrome P450 
monoxygenases (P450s) in biosynthetic and detoxification pathways. Several genes encoding P450s were 
observed to be highly up-regulated during the resistance response to S. hermonthica in  rice38. From this study, it 
was observed that the genomic regions controlling grain yield under Striga infestation differs from the genomic 
region controlling grain yield under non-infested condition. Genomic regions identified to be associated with 
plant defense mechanisms will be developed into kompetitive allele-specific PCR (KASP) genotyping assay and 
this will be validated in independent populations to improve Striga resistance breeding in maize before deploy-
ment for use in marker-assisted selection. Identified SNPs will also help expedite the use of molecular markers 
in Striga resistance improvement through the use of marker-assisted backcrossing (MABC) to advance the 
effectiveness of breeding for superior and desirable qualities but susceptible to Striga infestation.

In conclusion, most of the significant SNPs discovered in this study encode genes associated with plant defense 
mechanism. Most of the QTLs identified have not been documented in maize, indicating they are novel and are 
addition to the already identified QTLs for Striga resistance in maize from other studies. QTNs identified in this 
study can be potentially used to expedite the use of marker-assisted selection (MAS) in breeding for durable 
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resistance to S. hermonthica in maize. The chromosomal regions controlling the Striga resistance-related traits 
can also be exploited for selection and effective pyramiding of favorable alleles in Striga improvement. Since 
most of the maize lines used in this study were developed at IITA and have a diverse response to Striga infesta-
tion, this study will contribute to molecular-marker based transformation of Striga resistance breeding in maize.

Materials and methods
Genetic materials. A diversity panel of 150 maize inbred lines used in this study was developed by the 
Maize breeding program of the International Institute of Tropical Agriculture (IITA-Ibadan). The maize inbred 
lines in this panel were at  S7:9 stages of inbreeding and had varying reactions to S. hermonthica (Supplementary 
Table S4). Summaries of the genetic backgrounds of source populations of these inbred lines are provided in 
Table 8. Ten inbred lines with either known resistance (9450), tolerance (5012, 1393, 1368, 4001, 9030, 9071, 
KU1414-SR, and MMB90) and susceptibility (5057) reactions to S. hermonthica were included as benchmarks 
to assess the performance of the 150 lines. 

Phenotypic evaluation and trait measurements. The inbred lines were evaluated under Striga 
infested and non-infested conditions at Abuja (9° 15ʹ N, 7° 20ʹ E; 490 m asl) and Mokwa (9° 21ʹ N, 5° 10ʹ E; 210 m 
asl) in Nigeria during the main rainy seasons of 2017 and 2018. The experiment was laid out in a 15 X 10 alpha 
lattice design with two replications planted in a crisscross arrangement. Each experimental unit was planted in 
adjacent infested and non-infested strips, located opposite each other and separated by a 1.5 m alley. An inbred 
line was planted within each strip in a 4 m long row, with 0.75 m inter-row spacing and 0.25 m intra-row spacing. 
Ethylene gas was sprayed two weeks before planting to induce suicidal germination of Striga seeds in the soil.

Two maize seeds were planted in a 6 cm deep hole inoculated with 8.5 g of sand mixed with Striga seeds. The 
sand-Striga mixture contains approximately 3000 germinable Striga seeds. The Striga seeds used in this study 
were collected from sorghum field from the previous planting season in Mokwa and Abuja with farmers’ consent 
before usage. Two weeks after planting, maize plants were thinned to one plant per hill to attain a population 
density of 53,333 plant/ha. Fertilizer was applied at the rate of 30 kg/ha of nitrogen, 60 kg/ha each of phosphorus 
and potassium at planting and an additional 30 kg/ha nitrogen was applied four weeks later. Weeds other than 
Striga were removed from plots manually throughout the planting season. Data were taken under both infested 
and non-infested conditions, except for Striga damage score and Striga emergence, recorded only under Striga 
infestation. Data recorded under the two environments included plant height, ear aspect, and grain yield (Sup-
plementary Table S5). Ears were collected separately from each line and shelled to estimate per cent moisture 
in the grain. Grain yield was then calculated from grain weight adjusted for 15% moisture. This study is geared 
towards improving IITA maize breeding, and it complies with the country’s local and national regulations.

Data analysis. Phenotypic analysis. Analysis of variance combined across the four year-location, which 
were hereafter referred to as environments, were computed for all traits measured under Striga infested and non-
infested conditions based on a mixed-model analysis with restricted maximum likelihood procedure in SAS 
version 9.459. In this analysis, genotypes were considered fixed while all other factors were random.

Separate analyses were conducted for traits measured under infested and non-infested conditions. The mixed 
model analysis generated the best linear unbiased estimates (BLUEs), the variance components and broad-sense 
heritability estimates. In addition, Spearman rank correlations between pairs of environments were computed 
for the Striga resistance-related traits using SAS version 9.4. Also, correlation analysis among the different traits 
was performed using R software, and results were displayed as heat map.

Genotyping and filtering. Genomic DNA was extracted from young leaf samples of the 150 maize inbred lines 
using the modified cetyltrimethylammonium bromide (CTAB)  protocol60. Purified DNA was sent to Elshire 
facility in New Zealand for genotyping-by-sequencing (GBS)61. Genomic DNA was digested with the restric-
tion enzyme (ApeK1), and genotyping-by-sequencing (GBS) of the libraries were constructed in 96-plex and 
sequenced on Illumina HiSeq2500 following manufacturer’s protocol. Raw flow cell output was processed to 
genotype calls using the TASSEL-GBS pipeline. Reads and tags found in each sequencing result were aligned 
with the Zea mays L. genome reference, version AGPV3 (B73 Ref Gen v4 assembly). SNPs with minor allele 

Table 8.  List of  source populations for the 150 inbred lines used in this study.

Source population Genetic backgrounds of inbred source population No of lines evaluated

ZDIP Inbred lines derived from a backcross (BC4) containing a Zea diploperennis accession as a donor parent plus lines derived from bi-
parental crosses involving one parent derived from the same BC4 39

TZLC Lines derived from a late-maturing composite formed by crossing TZB-SR with seven field resistant maize inbred lines against S. 
hermonthica plus lines derived from bi-parental crosses involving one parent derived from the same source populations 44

TZEC Lines developed from an early maturing composite formed by crossing TZESR-W C3 with eight field resistant maize inbred lines 
against S. hermonthica plus lines derived from bi-parental crosses involving one parent derived from the same composite 13

IWDS Lines extracted from a synthetic formed from medium maturing white inbred lines and improved for resistance to Striga and 
drought plus lines derived from bi-parental crosses involving one parent derived from these synthetic 30

MIXED Lines derived from diverse source populations plus tolerant lines extensively used as donors of field resistance to form resistance 
source populations 24
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frequency (MAF) of < 0.05 and missing rate of > 10% were excluded from the genotyping dataset using PLINK 
1.9  beta62.

Population structure and linkage disequilibrium. To explore the genetic relationship among the inbred lines, 
principal component analysis (PCA) was conducted using factorMiner package in  R63. The pairwise genetic dis-
tance was calculated through identity-by-state (IBS), and the phylogenetic tree was generated using analysis of 
phylogenetics and evolution (ape) R  package64. The population stratification among the inbred lines was assessed 
using Admixture  software65. The method uses maximum likelihood estimation on data from many loci to esti-
mate individual ancestries among the inbred lines. The analysis was performed using a cross-validation error (k) 
varying from 2 to 10. The most appropriate k-value selected exhibit low cross-validation error compared to other 
k-values. LD among markers was calculated using PLINK software. The window size for LD calculation was set 
based on the number of SNPs located in the genome. Pairwise linkage disequilibrium was measured using the 
squared allele frequency correlations, according to Weir,66, and assessed by calculating  r2 for pairs of SNP loci.

Marker‑trait association analysis. All the phenotypic and genotypic information from the 150 diverse maize 
inbred lines were used to detect SNPs using four of the GWAS multi-locus models, multi-locus random-SNP-
effect MLM (mrMLM), fast multi-locus random-SNP-effect mixed linear model (FASTmrMLM), fast multi-locus 
random-SNP-effect efficient mixed model association (FASTmrEMMA) and polygenic-background-control-
based least angle regression empirical Bayes (pLARmEB), implemented in mrMLM v4.0 (https:// cran.r- proje ct. 
org/ web/ packa ges/ mrMLM. GUI/ index. html). The unified parameter settings for the four methods were as fol-
lows; the Q + K model was used, where the population structure value Q was calculated by Admixture  software65 
and the kinship value K was analyzed by the “mrMLM” software package. The limit of detection (LOD) score 
was set to 6 for robust QTNs for all measured trait. The Manhattan and QQ plots for GWAS were displayed using 
the R package CMplot.

Gene annotation. SNPs detected for Striga hermonthica resistance-related traits by the four mrMLM methods 
were mapped to the maize reference genome B73 RefGen_V4 to identify associated candidate genes. The genes 
corresponding to each QTN was determined in MaizeGDB according to its physical position. The functional 
annotations of the candidate genes were predicted in NCBI. The Pairwise LD estimates in the region of interest 
for significantly associated markers were investigated using Haploview 4.2. Finally, LD plotting was done based 
on base pairs (bp) distance, using “ggplot2” package in R 67.

Marker effect prediction and variants comparison. Variants (ref/alt) associated with significant SNPs were iden-
tified using rstatix package implemented in R, and their effect were compared using ANOVA p < 0.05. The nature 
of the SNP marker (favorable and unfavorable) was defined based on the direct contribution to the traits using 
rstatix and visualized using ggplot2.

Data availability
Phenotypic data presented are within this document and the genotypic data can be provided upon request.
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