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Abstract 

Background: Ecologic health studies often rely on outcomes from health service utilization data that are limited 
by relatively coarse spatial resolutions and missing geographic information, particularly neighborhood level identi-
fiers. When fine-scale geographic data are missing, the ramifications and strategies for addressing them are not well 
researched or developed. This study illustrates a novel spatio-temporal framework that combines a geographic identi-
fier assignment (i.e., geographic imputation) algorithm with predictive Bayesian variable selection to identify neigh-
borhood factors associated with disparities in emergency department (ED) visits for asthma.

Methods: ED visit records with missing fine-scale spatial identifiers (~ 20%) were geocoded using information from 
known, coarser, misaligned spatial units using an innovative geographic identifier assignment algorithm. We then 
employed systematic variable selection in a spatio-temporal Bayesian hierarchical model (BHM) predictive framework 
within the NIMBLE package in R. Our novel methodology is illustrated in an ecologic case study aimed at identifying 
neighborhood-level predictors of asthma ED visits in South Carolina, United States, from 1999 to 2015. The health 
outcome was annual ED visit counts in small areas (i.e., census tracts) with primary diagnoses of asthma (ICD9 codes 
493.XX) among children ages 5 to 19 years.

Results: We maintained 96% of ED visit records for this analysis. When the algorithm used areal proportions as prob-
abilities for assignment, which addressed differential missingness of census tract identifiers in rural areas, variable 
selection consistently identified significant neighborhood-level predictors of asthma ED visit risk including phar-
macy proximity, average household size, and carbon monoxide interactions. Contrasted with common solutions of 
removing geographically incomplete records or scaling up analyses, our methodology identified critical differences 
in parameters estimated, predictors selected, and inferences. We posit that the differences were attributable to 
improved data resolution, resulting in greater power and less bias. Importantly, without this methodology, we would 
have inaccurately identified predictors of risk for asthma ED visits, particularly in rural areas.
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Background
Geographic data in ecologic health studies
Understanding the influence of contextual factors on 
health, such as surrounding neighborhood characteris-
tics, is an ongoing challenge further complicated by lever-
aging and integrating multiscale geographic information 
[1–4]. Geographic health effects studies have been con-
ducted at multiple spatial scales using a variety of spatial 
units in analyses. But, commonly used administrative 
units (e.g., states, counties in the United States, US) are 
coarse, and mail-delivery units (e.g., ZIP codes) are irreg-
ular, often delimit heterogeneous population groups, and 
change frequently over time [5, 6]. Conversely, neighbor-
hoods tend to delineate demographically homogenous 
subpopulations [7], improving the differentiation of pop-
ulation level risk factors. Yet, neighborhoods are chal-
lenging to incorporate in health studies.

Neighborhood units, or proxies for them (e.g., US cen-
sus tracts), are often spatially misaligned with common 
administrative units. In addition, accurately geocoding an 
individual’s address to the proper neighborhood unit for 
use in large scale health studies presents challenges. For 
example, many people have non-standard address struc-
tures, particularly those living in rural areas [8, 9]. Often, 
researchers will either remove records from analyses 
that could not be geocoded to a small area, or “scale-up” 
entire analyses to larger spatial units at a coarser spatial 
scale. These decisions can introduce bias (e.g., geographic 
selection bias, and “cartographic confounding”) and 
reduce precision of the estimated associations [9]. When 
health studies use areal units in analyses, they must also 
contend with the modifiable areal unit problem (MAUP), 
in which the delineation of boundaries affects the values 
(e.g., percent of  the population living in poverty) within 
the unit [10, 11]. There are additional limitations in areal 
analyses, including coarse spatial resolution, assumptions 
about distributions within spatial units, temporal bound-
ary changes, and boundaries that are arbitrary for health 
research [12]. As such, health researchers often prefer 
point process or grid-based analyses that can overcome 
areal unit limitations. However, researchers are often 
limited by data format availability, making transitions to 
continuous or grid-based analyses inefficient or infeasi-
ble. In such cases when ideal data are not available, there 

is a need to develop methodologies that improve the util-
ity of common, existing health service utilization data 
sources.

Geographic missingness
Geographic missingness, or missing geographic identifi-
ers, is different than other types of missing information, 
such as missing covariates. While many researchers have 
addressed covariate missingness easily and efficiently in 
Bayesian hierarchical models (BHM) [13–16], the prob-
lem of having a lack of information to properly assign a 
person’s residence to a discrete spatial unit has only been 
addressed by a few researchers [17–19]. Researchers have 
previously assigned geographic identifiers based on pro-
portions of population centroids within larger spatial 
units [17], regressed areal sociodemographic measures 
on proportions of cases with missing geographic identi-
fiers [9], and various other deterministic and stochastic 
allocation methods [19]. Few health researchers, how-
ever, have assessed how geographic missingness affects 
the identification accuracy of neighborhood risk factors 
that are predictive of adverse health outcomes.

Spatio‑temporal Bayesian frameworks
Continued computational improvements have allowed 
researchers to build increasingly sophisticated spatial 
or spatio-temporal models [20–23]. Recent studies have 
employed Bayesian small-area statistical methods that 
can improve flexibility of models to incorporate struc-
tured and unstructured random effects in a hierarchi-
cal framework, such as a BHM [24–26]. Controlling 
for unmeasured confounding by assigning variation in 
the outcome to either spatial, temporal, and/or spatio-
temporal effects, rather than to an error term, has two 
important benefits: (1) the overall model fit improves, 
and (2) covariate coefficient estimates  in the model are 
more precise [27–30]. Yet, few health researchers have 
leveraged a Bayesian predictive framework to conduct 
a systematic variable selection procedure for correlated 
neighborhood covariates. Fortunately, Bayesian variable 
selection approaches automatically adjust for multiplic-
ity, or multiple comparisons [31]. Furthermore, schol-
ars have recently called for only strategic use of health 
indices (e.g., neighborhood deprivation indices), instead 

Conclusions: Our approach innovatively addressed several issues in ecologic health studies, including missing small-
area geographic information, multiple correlated neighborhood covariates, and multiscale unmeasured confound-
ing factors. Our methodology could be widely applied to other small-area studies, useful to a range of researchers 
throughout the world.

Keywords: Bayesian spatio-temporal modeling, Geographic imputation, Respiratory diseases, Social determinants of 
health, Air pollution, Hospitalization record data, Rural health, Urban health, SEA-AIR Study
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lobbying for measuring specific neighborhood compo-
nents with potential for public health intervention [32].

Research gaps addressed
In this context, “neighborhoods” are understood as the 
physical and environmental conditions in which a person 
lives, and the ways in which neighborhoods effect health 
outcomes are complex [3, 33, 34]. Common limitations of 
using administrative health data are missing geographic 
information and identifying important neighborhood 
predictors of adverse health outcomes. Addressing such 
limitations, we developed a geographic identifier assign-
ment algorithm and used a variable selection procedure, 
a novel combination that enhanced our spatio-temporal 
BHM predictive framework. We analyzed pediatric emer-
gency department (ED) visits for asthma in the US state 
of South Carolina as a case study. Our primary meth-
odologic goal was to evaluate and address geographic 
missingness and variable selection on two datasets from 
our case study: (1) using only records with valid census 
tract identifiers, and (2) using all records by employing 
a geographic identifier assignment procedure. Our sub-
sequent public health goal was to identify and detail key 
neighborhood socioenvironmental factors and interac-
tions associated with our outcome, neighborhood asthma 
ED visit risk. We show how a methodology including a 
geographic identifier assignment algorithm and variable 
selection in a flexible BHM predictive framework can 
improve ecologic health studies by more accurately dis-
entangling the complex socioenvironmental factors asso-
ciated with pediatric asthma disparities using existing ED 
utilization data.

Methods
Motivating data
There are well documented disparities in asthma out-
comes by race, socioeconomic (SES) status, urban/rural 
status, and other factors, but these patterns vary by 
world region [35, 36]. Past research has highlighted the 
disproportionate asthma burden among urban children. 
However, recent research has shown a similar asthma-
related health burden in rural areas, especially among 
rural African American communities [37–44]. Risk fac-
tors for asthma ED visits include factors at an individual 
level, in addition to socioenvironmental factors at family, 
neighborhood, and even regional or administrative lev-
els, making them difficult to disentangle. Uncontrolled or 
severe asthma, whether due to unique individual experi-
ences with the disease or influenced by deprived neigh-
borhoods and poverty [45, 46], can lead patients to seek 
care at EDs.

We used data from the South Carolina Revenue and 
Fiscal Affairs (SCRFA) office, which combined asthma 

(International Classification of Disease 9, ICD9, codes 
493.XX, primary diagnosis) ED visit record data from 
multiple sources across payor types (including no insur-
ance). Records also included billing address geographic 
identifiers at the census tract and ZIP code levels. To the 
best of our knowledge, the dataset captures all ED vis-
its for asthma among children ages 5–19 in the state of 
South Carolina for the years 1999–2015. Records were 
aggregated by year and census tract to generate the 
outcome, ED visit count per year, to facilitate a small-
area ecologic analysis of counts in spatial units. Data on 
demographics, weather, and the 19 prospective socioen-
vironmental covariates and confounders (air pollutants, 
social, and environmental confounder categories) were 
attained from numerous sources listed in Table  1 and 
visualized in Fig. 1.1 Consistent with our covariate data, 
we selected a static geometry, 2010 US census tracts, 
for analytic simplicity, and all variables were joined and 
mapped to it [47]. We used a geographic information 
system (GIS) (ArcGIS, Environmental Systems Research 
Institute, Redlands, CA) when necessary to create meas-
ures from spatially-explicit information. 

Geographic identifier assignment
We employed an intuitive, stochastic geographic imputa-
tion algorithm using areal weighting and misaligned spa-
tial units at different scales (i.e., multiscale). Recognizing 
that census tract sizes are inversely proportional to pop-
ulation density (e.g., sparsely populated census tracts in 
rural areas tend to be larger in area than densely popu-
lated urban tracts), we chose to use areal proportions as 
probabilities of assignment to attempt to reconstruct the 
differential patterns of rural-dominated missingness. The 
algorithm consisted of 4 main steps. We (1) determined 
the proportion of census tract areas (generally the smaller 
unit at a finer spatial scale) contained within each mis-
aligned ZIP code (generally the larger unit at a coarser 
spatial scale). Next, we (2) ordered the census tract-
in-ZIP code proportions in a list that we set and saved, 
which subsequently generated a cumulative proportion. 
For every record with a missing census tract identifier, 
we then (3) generated a random number between 0 and 
1, and (4) the cumulative proportion range in which it 
fell determined the imputed census tract identifier in its 
respective ZIP code (Dataset A1). An exhibit, Fig. 2, visu-
alizes the spatial mismatch of intersected census tracts 
and ZIP codes.

1 We used the 2010 US Census determination of urban versus rural [78] in 
our continuous measure of census tract percent urban. However, urban/rural 
delineations can be determined differently within the US and globally by other 
methodologies [79].
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Statistical analyses
We constructed a spatio-temporal BHM predominately in 
the novel NIMBLE package in R [48–52] due to its stability 
and computational efficiency. This is one of the first appli-
cations of the NIMBLE package to model spatio-temporal 
data in a health context. We created a general hierarchi-
cal model framework that we subset to construct all other 
models, and it took the form:

Yik ∼ Poisson(µik)

µik = Eiθik

(1)
log (θik)+ α + ui + vi + wj + gk + β ′

1X ik + β ′

2X j

β∗ ∼ Normal
(

0, τ−1
∗

)

τ−1
∗

∼ Gamma(2, 1)

Table 1 Variables that were constructed and considered during the model building process

CASES Center for Air, Climate, and Energy Solutions [75], PRISM Climate Group [76], ACS 2010 US Census and 2010 American Community Survey [77], SCRFA South 
Carolina Revenue and Fiscal Affairs, SCBOP South Carolina Board of Pharmacy, SCDOT South Carolina Department of Transportation, SCDHEC South Carolina 
Department of Health and Environmental Control, EPA Environmental Protection Agency

Variable Description Level Type Time Source

Outcome

 Count Asthma ED visit count Census tract Count 1999–2015 SCRFA

Demographics

 PERC_W Percent of the population white race Census tract Continuous 2010 US Census

 Per_You Percent of the population ages 5–19 Census tract Continuous 2010 US Census

 Per_Mal Percent of the population male Census tract Continuous 2010 US Census

 Per_high Percent of the population graduated high school Census tract Continuous 2010 US Census

 POV100 Percent of the population < 100% federal poverty level (FPL) Census tract Continuous 2010 US Census

 hmedinc Household median income (scaled by $1 k) Census tract Continuous 2010 US Census

 propmiss Average annual proportion of census tract identifiers missing Census tract Continuous 1999–2015 SCRFA

Weather

 Temp Average annual temperature (℃) Census tract Continuous 1999–2015 PRISM

 Dewp Average annual dewpoint temperature (°C) Census tract Continuous 1999–2015 PRISM

Air pollutants

 CO Average annual CO concentration (ppm) Census tract Continuous 1999–2015 CACES

 NO2 Average annual  NO2 concentration (ppb) Census tract Continuous 1999–2015 CACES

 O3 Average annual  O3 concentration (ppb) Census tract Continuous 1999–2015 CACES

 SO2 Average annual  SO2 concentration (ppb) Census tract Continuous 1999–2015 CACES

 PM25 Average annual  PM2.5 concentration (μg/m3) Census tract Continuous 1999–2015 CACES

 PM10 Average annual  PM10 concentration (μg/m3) Census tract Continuous 1999–2015 CACES

Social

 Pharm_km Distance to nearest pharmacy (km) Census tract Continuous 2017 SCBOP

 tot_hour Total hours worked in primary care by health professionals County Continuous 2018 SCRFA

 PER_VAC Percent houses vacant Census tract Continuous 2010 US Census

 PPL_HOUSE Average people per house Census tract Continuous 2010 US Census

 Per_Urb Percent of the population urban Census tract Continuous 2010 US Census

 Ped_Per_Un Percent of the pediatric population on public insurance Census tract Continuous 2010 US Census

 Pop_km2 Population density (people/km2) Census tract Continuous 2010 US Census

Environmental confounders

 Ag_count Agricultural facility count Census tract Count 2018 SCDHEC

 Road_km2 Road density (km road/km2 census tract area) Census tract Continuous 2018 SCDOT

 maj_km Distance to nearest major air pollutant emitting facility (km) Census tract Continuous 2017 US EPA

 maj_ang_rad Direction to nearest major air pollutant emitting facility (radians) Census tract Continuous 2017 US EPA

 pow_km Distance to nearest fossil fuel burning power plant (km) Census tract Continuous 2017 US EPA

 pow_ang_rad Direction to nearest fossil fuel burning power plant (radians) Census tract Continuous 2017 US EPA
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in which, at the first level of the hierarchy, the Poisson-
distributed observed counts, Yik , were modeled with rate 
term, µik , indexed by i census tracts over k years. At the 
second level of the hierarchy,  μik was a function of the 
expected counts, Ei , and relative risk, θik . The expected 
counts, Ei , were generated by taking the product of the 
observed average annual statewide asthma ED visit rate 
for 1999-2015 and the census tract population. Both were 

relatively static over time, though results were sensitive 
to models that used annually-varying expected counts. 
However, because previous research identified that a sta-
bilized, time invariant measure of expected counts was 
preferable in analyses of space-time data [53], we chose 
the time invariant version of Ei . Using a log link shown in 
Eq. 1 at the third level of the hierarchy, we modeled the 
relative risk of ED visits in which j indexed counties, α 

Fig. 1 Quartiles of asthma emergency department (ED) visits and risk factors included in the study by census tract in South Carolina 1999-2015. 
Percent male, percent youth, direction to nearest major air pollutant facility, and direction to nearest fossil fuel burning power plant are not 
mapped. Annual-varying measures were averaged over time
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was the model intercept, ui was a correlated spatial ran-
dom effect (census tract), vi was an uncorrelated spatial 
random effect (census tract), wj was a correlated spatial 
random effect (county), gk was a temporal trend effect 
(year), β1 was a vector of coefficients (census tract), X ik 
was a vector of variables (census tract-years), β2 was 
a vector of coefficients (county), and X j was a vector of 
variables (county). Few previous studies have addressed 
unmeasured confounding at multiple levels by including 
random effects at multiple spatial scales. At the fourth 
level of the hierarchy, β∗ coefficients each followed zero-
centered normal distributions with precision parameters 
τ∗ (variance τ−1

∗
 ), respectively. Finally, at the fifth level of 

the hierarchy, τ∗ precisions each followed gamma distri-
butions with shape parameter 2 and scale parameter 1, 
making them weakly informative [54, 55]. Furthermore, 
because the underlying model was a Poisson model of 
counts, we could not easily incorporate the individual 

level covariates (e.g., patient race, sex, age). The choice to 
use a Poisson model was made for three main reasons: we 
desired to (1) model a stable outcome, to (2) quantify our 
outcome over time and space, and (3) we lacked suitable 
control data (e.g., we did not have non-case information, 
nor did we have a suitable control disease unrelated to 
asthma for contrast). All variables were mean-centered to 
improved computational efficiency.

Model building
We adopted the following model-building strategy: first, 
we assessed different versions and structures of spatial, 
temporal, and spatio-temporal random effects without 
covariates by fitting multiple preliminary models. We 
found that the random effects shown in Eq.  1 were the 
optimal combination for both model convergence and 
describing the variation in ED visit counts absent any 
covariates (Model 1a). For comparative purposes, we 

Fig. 2 Exhibit displaying areal proportions used in the stochastic geographic identifier assignment procedure for emergency department (ED) visit 
records having a missing census tract identifier
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next examined a model with only a priori demographic 
and weather controls (Model 1b) and assessed if it were 
superior to a model with only random effects (Model 1a). 
We next merged Models 1a and 1b to assess whether a 
model with random effects, demographic, and weather 
covariates (Model 2) were superior to the model subsets.

Variable selection
Few researchers have previously leveraged variable 
selection in analyses of health service utilization data, 
especially after addressing geographic missingness. A 
preliminary model without interactions was first fit, 
and Markov chain Monte Carlo (MCMC) sampling 
was conducted. From preliminary model results, it was 
determined that average annual CO concentration was 
a statistically significant variable. We then chose to test 
theoretically plausible interactions with the remain-
ing five air pollutants  (NO2,  O3,  SO2,  PM2.5, and  PM10) 
and two weather variables (temperature, dewpoint tem-
perature) to assess effect modification, including CO as 
a main effect. We then fitted a Gibbs variable selection 
model (Model 3) employing φ entry parameters [56] fol-
lowing φ ∼ Bernoulli(p) and having p ∼ Beta(0.5, 0.5) 
prior distributions on the 19 prospective air pollut-
ant, social, and environmental confounding variables 
(Table  1), in addition to five CO-air pollutant interac-
tions. MCMC sampling was again conducted. Variables 
were selected if the respective posterior mean values of φ 
were greater than 0.5 (i.e., 0.5 probability, or 50% of sam-
ples) [57]. We chose to avoid a stepwise variable selection 
process to not introduce additional unmeasured con-
founding from variables that were not yet in the model. 
As such, we applied an all-at-once selection model to 
determine the collection of variables from amongst 
the correlated covariates that the model deemed most 
important in best describing variation in asthma ED visit 
risk.

Model fit assessment
For each model, we quantified the log pseudo marginal 
likelihood (LPML), a “leave one out” cross-validated fit 
statistic in which less-negative values indicate better fit. 
Here, LPML fit statistics are calculated using the aver-
age annual conditional predictive ordinate (CPO) values 
for each census tract. We chose to evaluate the LPML as 
opposed to other statistics such as the deviance informa-
tion criterion (DIC), Watanabe-Akaike information cri-
terion (WAIC), and the mean squared prediction error 
(MSPE) because it was both cross-validated and compu-
tationally efficient.

Sensitivity analyses
To assess sensitivity of subsequent analyses to the geo-
graphic identifier assignments, we repeated the algo-
rithm four additional times, creating Datasets A2-A5. 
Each repetition of the algorithm allowed for each record 
with a missing census tract identifier the possibility to 
be assigned to another census tract within the record’s 
known ZIP code. Furthermore, we created five additional, 
independent Datasets A6-A10 that used a population 
proportion-based assignment algorithm instead of areal 
proportions as probabilities. For additional comparison 
and contrast, we also created a second dataset (Dataset 
B) that removed records with missing census tract iden-
tifiers—a complete case analysis. We constructed and 
fit models on each dataset independently. Similar to our 
decision on a cut point of 0.5 for φ , we chose variables 
that were selected across Datasets A1–A5 greater than 
50% (i.e., the majority) of the time. Here, unlike covari-
ates whose values can be easily imputed multiple times 
(i.e., multiple imputation) quickly in BHM framework, it 
is highly computationally intensive to run numerous vari-
able selection models employing sampling of the poste-
rior distribution. Moreover, geographic identifiers are 
discrete and are used as the basis for determining the 
health outcome counts, and bear little resemblance nor 
function similarly to a covariate that might have missing 
values. Using results from the variable selection models 
(Model 3), we attained a final model (Model 4).

We conducted additional sensitivity analyses to assure 
that the results from Bayesian hierarchical space–time 
models were not model-driven by reproducing final 
Model 4 for Datasets A1-10 and Dataset B in general-
ized linear mixed effects (GLMM) model framework. 
Contrasted across frequentist and Bayesian frameworks, 
coefficient estimates were generally similar and in the 
same direction for every predictor variable.

Furthermore, we assessed sensitivity of results to speci-
fication of the CO variable. We employed a categorical 
quartile version of CO with the first quartile as the refer-
ence group that did not change results.

Results
Approximately 96% of the ED visit records had a valid 
ZIP code identifier, and 20% of those records had a miss-
ing census tract identifier. The primary cause of missing-
ness in our data were mostly due to non-standard address 
structures more common for rural areas [8], such as PO 
boxes and rural routes. Significant population differences 
existed for individual child records having complete geo-
graphic information compared to records with missing 
geographic information overall (Table  2) and spatially 
by ZIP code tabulation area (ZCTA, Fig.  3). Records 
with a missing census tract identifier were significantly 
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associated with being more African American (73.9% 
compared to 66.9%), more on subsidized insurance 
(64.1% compared to 61.5%), and visiting a rural emer-
gency department more frequently (40.4% compared to 
29.3%). Even though the children with missing census 
tract information more frequently visited a rural care 
center contrasted with children’s records having intact 
census tract identifiers, we posit that many others that 
visited urban facilities may have been rural residents. As 
such, rural residents still may be undercounted, indicat-
ing a large rural dimension to records with missing cen-
sus tracts.

In addition, there were patterns in the aggregated ED 
visit records in South Carolina for 1999–2015 (Fig.  4). 
A vastly disproportionate ED visit burden existed for 
African Americans that comprised only 27.6% of the 
2010 state population (Figs. 4b and 4d) [47]. There were 
increases in ED visits over time, particularly among both 
urban and rural African Americans (Fig.  4: all panels). 
Note that the urban/rural status here is for the admit-
ting facility and not patient residence. The increasing 
raw trend was later mirrored by the presence of positive 
annual temporal trend effects in statistical models.

A correlation matrix of all census tract socioenvi-
ronmental covariates in the form of a heat map was 
constructed (Fig. 5) to assess relationships between vari-
ables. The heatmap visually indicated positive (red) and 
negative (blue) Spearman correlations for ranked census 
tracts. In addition, Fig. 6 shows the average annual con-
centrations for each of the six criteria pollutants included 
in this study in South Carolina over 1999–2015.

For each model and dataset, respectively, we evalu-
ated the LPML measure of fit (Table 3). Note that Table 3 
LPML fit measures can be directly compared only within 
each dataset (i.e., within-column) and not across Data-
sets A1 (presumed  gold standard) and B. Inclusion of 
random effects (Model 1a) instead of demographic and 
weather covariates (Model 1b) was far superior in terms 
of LPML fit (− 3770.0 to − 4858.5). In addition, includ-
ing random effects, demographic, and weather covari-
ates in a model (Model 2, LPML: -3756.1) was superior 
to a model with only random effects (Model 1a, LPML: 
− 3770.0). By this measure, Model 4 was the best fitting 
model (LPML: − 3736.7).

Beta coefficient estimates, standard deviations, and 
credible intervals were included for Model 4, the final 
model, for Datasets A1 and B in Table  4. Results from 
variable selection (Model series 3) conducted on the five 
datasets (A1–5) that used the areal proportion-based 
geographic identifier assignment algorithm were consist-
ent. In all five of the datasets, people per house and aver-
age annual CO concentration were selected, and in four 
of the models, distance to nearest pharmacy was selected. 
Given the consistency of variable selection results, we 
assumed that Dataset A1 was representative and could be 
used as the final model.

In Model 4 for Dataset A1, the demographic and 
weather measures included as controls were statistically 
significant. Despite attempting to better characterize 
neighborhoods by assessing 19 additional socioenviron-
mental factors of census tracts, the associations between 
neighborhood asthma risk and race (percent white, 
β: − 0.013; 95% CI: − 0.015,− 0.011), education (per-
cent graduated high school, β: − 0.013; 95% CI: − 0.017, 
− 0.008), and income (median household income, β: 
− 0.008; 95% CI: − 0.011, − 0.006), respectively, could 
not be explained away. As such, the more white, edu-
cated, and wealthy a census tract was, the lower risk for 
an asthma ED visit it had, controlling for all other factors.

Aside from demographics and weather variables, soci-
oenvironmental variables selected into Model 4 for Data-
set A1 included average annual CO concentration (β: 
− 0.148; 95% CI: − 0.286, − 0.004), distance to nearest 
pharmacy (β: 0.015; 95% CI: 0.007, 0.023), average  peo-
ple per house (β: 0.297; 95% CI: 0.149, 0.452), and CO 
interactions with  O3 (β: 0.058; 95% CI: 0.039, 0.077), 

Table 2 Individual characteristics of  emergency 
department (ED visits) for  asthma 1999–2015 
among children in South Carolina by whether records had 
missing or complete census tract identifiers

Census tract identifier

Missing (%) Complete (%) p

n 21,268 96,570

Race

 White 4725 (22.2) 27,468 (28.4) < 0.001

 African American 15,721 (73.9) 64,561 (66.9)

 Hispanic 361 (1.7) 2037 (2.1)

 American Indian 56 (0.3) 225 (0.2)

 Asian 30 (0.1) 218 (0.2)

 Other 375 (1.8) 2061 (2.1)

Age (median [IQR]) 10.00 [7.00, 14.00] 10.00 [7.00, 14.00] 0.001

Sex

 Female 9024 (42.4) 40,495 (41.9) 0.187

 Male 12,244 (57.6) 56,075 (58.1)

Payor

 Governmental 13,636 (64.1) 59,422 (61.5) < 0.001

 Private insurance 4976 (23.4) 25,577 (26.5)

 Self-pay 2551 (12.0) 11,129 (11.5)

 Other 105 (0.5) 442 (0.5)

Urbanicity

 Urban 12,679 (59.6) 68,323 (70.7) < 0.001

 Rural 8589 (40.4) 28,247 (29.3)
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temperature (β: 0.287; 95% CI: 0.102, 0.452), and dew-
point temperature (β: − 0.261; 95% CI: − 0.415, − 0.105), 
controlling for all other factors, respectively. Addition-
ally, though it was not associated with improved model 
fit, we included a main effect for  O3 (β: 0.001; 95% CI: 
− 0.002, 0.003) to aid in interpretability because  O3 sig-
nificantly interacted with CO. When we removed records 
with missing census tract identifiers, as in Dataset B, or 
assigned them based on population proportions, as in 
Datasets A6-10, socioenvironmental variables selected 
from Model 3 via variable selection included a very dif-
ferent and smaller collection: only average  people per 
house was significantly associated with asthma ED visit 
risk. Distance to a pharmacy, CO, and interactions with 
CO, each of which have strong urban/rural dimensions, 
were not significantly associated with asthma ED visit 
risk among children. Furthermore, variable selection 
for Datasets A6–10, using proportions of populations 

as assignment probabilities, showed that only average 
annual CO concentration was selected consistently, and 
average people per house and nearest pharmacy dis-
tance were not selected. The contrasting results seem 
to be consistent with the patterns of increased geo-
graphic missingness of ED visits in rural areas (Table 2, 
Fig. 3), also reported by others [8].

Discussion
The examination of relationships between neighbor-
hood factors and health outcomes remains a difficult 
task for epidemiologists and public health researchers 
[58]. This study sought to identify an improved method-
ological approach to common challenges encountered 
by environmental health researchers, including missing 
small-area geographic information, multiple correlated 
neighborhood covariates, and unmeasured confound-
ing factors at multiple spatial scales. We strove to 

Fig. 3 Average proportion of emergency department (ED) visits having a missing census tract identifier by ZIP code tabulation area (ZCTA) in South 
Carolina 1999–2015
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develop a small-area, spatio-temporal methodology 
that would allow us to disaggregate complex multidi-
mensional data often used in neighborhood studies into 
a subset of the most predictive components.

Methodologic goal: geographic information and variable 
selection
Our primary methodologic goal was to identify differ-
ences in final models using variable selection on datasets 
that employed different methods of handling missing cen-
sus tract identifiers. In Table 4, the final model for Data-
set A1, which included geographic imputation via areal 
proportion probabilities of assignment, was different than 
the final model for Dataset B, without imputation, and 
different than the final models for Datasets A6–10 that 
used population proportions as assignment probabilities. 
Also of interest was the consistency of variable selec-
tion results for five independent assignments for miss-
ing census tract identifiers using our areal proportion 

imputation algorithm. We showed that, despite the mul-
tiple independent assignments, variable selection identi-
fied predictors consistently in the spatio-temporal BHM 
predictive framework. We believe that our results were 
consistent across datasets because any “small misses” 
(an incorrect assignment of a record to a specific census 
tract within a ZIP code) were compensated for by the 
smoothed structure of the spatially correlated random 
effect term, ui . As such, while true geocoding accuracy 
within ZIP codes was relatively unimportant for identify-
ing key predictors in the presence of the smoothed spa-
tial effect, maintaining records via the areal proportions 
imputation approach was important. As the mechanisms 
causing the inability of addresses to be linked with cen-
sus tracts were non-standard address types that are more 
strongly associated with rural areas, our preference was 
to use areal proportions that assigned higher probabili-
ties to rural census tracts. As such, assignments of miss-
ing census tracts based on population proportions likely 

Fig. 4 Emergency department (ED) visits in South Carolina 1999–2015. a All daily ED visits (points) and the annual average number of daily ED visits 
(line). b Annual sum of ED visits by patient race. c Annual sum of ED visits by urban/rural status of admitting ED. d Annual sum of ED visits by patient 
race and urban/rural status of admitting ED
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did not characterize rural risk factors as well, given that 
that procedure was more likely to assign missing tracts 
to denser, urban areas. Application of the algorithm was 
critical for permitting records with missing census tracts 
to have a valid identifier, thereby retaining them in the 
analysis. The increased counts produced by this method-
ology is an advantage, as it offers an enhanced ability (i.e., 
power) for detecting subtle effects, often critical in stud-
ies using ecologic population level socioenvironmental 
factors.

The estimates for important sociodemographic vari-
ables (e.g., race, education, income) identified in other 
studies were similar between the two final models. How-
ever, the model (Model 4) fit to our imputed data (Data-
set A1) revealed two additional important predictors: 

distance to nearest pharmacy and air pollution (CO 
and its interactions). Without addressing the small-area 
geographic missingness, we would not have identified 
these potentially key predictors of asthma ED visit risk. 
Although additional validation of our methodology is 
needed across other spatial contexts and datasets, we feel 
this important finding demonstrates how our approach 
could be used to enhance and improve precision in simi-
lar studies.

Another benefit added by the geographic imputation 
was the potential for the reduction of bias. This is dem-
onstrated in Table  2, as the records with missing cen-
sus tract identifiers show higher proportions of African 
Americans and people visiting rural admitting facilities. 
Exclusion of such data would generally bias findings 

Fig. 5 Heatmap showing spearman correlations between variables considered during model building
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toward nonminority groups in urban areas. The handling 
of missing geographic information was shown to criti-
cally influence and change results and the subsequent 

interpretation of disparity predictors, particularly for 
rural subpopulations.

Public health goal: identification of key neighborhood 
predictors
A public health objective was to improve our under-
standing of key neighborhood predictors of health risk, 
specifically asthma ED visits. We found that measures 
of neighborhood sociodemographic  factors and weather 
conditions were consistently significant in our models 
(Table 4). Consistent with other contextual health effect 
studies, census tracts with greater numbers of Cauca-
sians, educated individuals, and higher incomes experi-
enced lower rates of ED visits for pediatric asthma [22, 
40, 59, 60].

Additional neighborhood factors associated with 
increased asthma ED visit risk included increased dis-
tance to a pharmacy, increased average number of 

Fig. 6 Criteria air pollutant concentrations in South Carolina 1999–2015. Data: Center for Air, Climate, and Energy Solutions (CASES), Environmental 
Protection Agency (EPA)

Table 3 Log pseudo-marginal likelihood (LPML) cross-
validated model fit statistics for Models 1–4 for Dataset A1 
(includes geographic imputation) and Dataset B (complete 
cases only)

Model Description LPML

Dataset A1 Dataset B

1a Intercept + random effects − 3770.0 − 3556.1

1b Intercept + demographics − 4858.5 − 4603.1

2 Model 1a + model 1b + weather − 3756.1 − 3542.4

3 Model 2 + variable selection NA NA

4 Model 3 + air pollut-
ants + social + environmen-
tal + interactions

− 3736.7 − 3543.6
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people per household, and interactions involving CO. 
“Pharmacy deserts” have attracted scant attention in 
the context of asthma, though researchers have shown 
that the ratio of controller-to-total medications pre-
dicts ED visits for asthma [61, 62]. Geographic access 
to specialists and primary care professionals each sig-
nificantly predicted asthma ED visits in nearby North 
Carolina, but they were only marginally significant in 
neighboring Georgia [63]. Our finding of a significant 
association with people per house may be both a proxy 
for family living conditions (e.g., crowding) and/or a 
dimension of neighborhood quality, which is consist-
ent with findings in previous studies [64]. While CO 
appeared to have an independently protective relation-
ship with asthma ED visit risk, it was found to vary by 
levels of  O3, temperature, and dewpoint temperature. 
Findings of detrimental effects of CO have been pre-
dominantly linked with urban areas having high lev-
els above health effect thresholds [65, 66]. However, 
CO may be complicated by having multiple health 
effect thresholds, as toxicologic and biologic research 
has indicated potentially beneficial anti-inflammatory 

effects of low levels of CO [67, 68]. In addition, SC is 
generally characterized by having low air pollution lev-
els relative to the United States [69] and other parts 
of the world, including Europe [70]. Furthermore, our 
measure of CO was strongly correlated with percent 
urban, population density, and road density (Fig.  5). 
Thus, CO may have been also acting as an urban/rural 
indicator, capturing an effect of urbanized areas hav-
ing better access to primary and preventive care than 
rural areas in our study population. In many places in 
SC air pollution levels may be below chronic thresh-
olds for asthma. Shorter temporal scales, such as days 
preceding an ED visit, are more often used in health 
effects studies [71–74]. Last, we note that calibrating 
CO exposure models in SC has been problematic due to 
sparse monitoring in the state, and estimated exposures 
may therefore have potential for inaccuracies. Regard-
less, researchers should continue to study the dose–
response relationship of ambient CO exposure for both 
adverse and protective health effects.

Numerous hypothesized or previously identified factors 
were surprisingly not selected by the variable selection 

Table 4 Pediatric asthma emergency department (ED) visit  relative risk estimates, standard deviations, and  credible 
intervals for a 1-unit increase after controlling for all other factors for the final model (Model 4) for Dataset A1 (includes 
geographic imputation) and Dataset B (complete cases only)

Description Dataset A1 Dataset B

Coefficient 
Estimate

Standard 
Deviation

95% Credible Coefficient 
Estimate

Standard 
Deviation

95% Credible

Model intercept − 0.307 0.030 − 0.366, − 0.248 −0.560 0.034 − 0.627, − 0.495

Demographics

 Percent of the population white race − 0.013 0.001 − 0.015, − 0.011 − 0.015 0.001 − 0.017,  − 0.014

 Percent of the population age 5-19 − 0.063 0.004 − 0.070, − 0.056 − 0.071 0.004 − 0.079, − 0.063

 Percent of the population male − 0.012 0.003 − 0.018, − 0.005 − 0.011 0.004 − 0.018, − 0.003

 Percent of the population graduated high school − 0.013 0.002 − 0.017, − 0.008 − 0.011 0.002 − 0.016, − 0.006

 Household median income (scaled by $1 k) − 0.008 0.001 − 0.011, − 0.006 − 0.011 0.001 − 0.013, − 0.008

 Average annual proportion of census tract identi-
fiers missing

0.395 0.084 0.231, 0.561 NA NA NA

Weather

 Average annual temperature (°C) − 0.028 0.010 − 0.048, − 0.008 − 0.032 0.008 − 0.046, − 0.018

 Average annual dewpoint temperature (°C) 0.034 0.007 0.021, 0.048 0.016 0.007 0.003, 0.029

Air pollutants

 Average annual CO concentration (ppm) − 0.148 0.070 − 0.286, − 0.004 NA NA NA

 Average annual  O3 concentration (ppb) 0.001 0.001 − 0.002, 0.003 NA NA NA

Social

 Distance to nearest pharmacy (km) 0.015 0.004 0.007, 0.023 NA NA NA

 Average people per house 0.297 0.076 0.149, 0.452 0.521 0.080 0.363, 0.679

Interactions

 CO by  O3 interaction 0.058 0.010 0.039, 0.077 NA NA NA

 CO by temperature interaction 0.287 0.090 0.102, 0.452 NA NA NA

 CO by dewpoint temperature interaction − 0.261 0.077 − 0.415, − 0.105 NA NA NA
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procedure, including distance and direction to nearest 
power plant and to nearest major air polluting TRI envi-
ronmental confounders, agricultural facility count, road 
density, housing vacancy rate, urbanicity, population 
density, primary care availability, and percent of the pedi-
atric population on public insurance.

Limitations
There are limitations to this research. The geographic 
bounds of “neighborhoods” used herein were not com-
munity defined. Census tracts, while preferable to much 
coarser and less population-homogeneous units such as 
ZIP codes or counties, only served as proxy measures 
of neighborhoods [6]. Census tracts are proportional 
to population density, and representing them as points 
(population weighted centroids) could have been prob-
lematic in large and rural census tracts, in particular. 
This was an ecologic study, and we lacked the ability to 
easily control for individual covariates and confounding 
factors due to aggregation for the underlying Poisson 
count model used. Sub-annual (e.g., hourly, daily, weekly) 
population mobility was also unaccounted for with these 
methods using residential billing addresses. Many of 
the ecologic confounding factors were static, in essence 
only capturing a mean association over time. We could 
not control for current tele-pharmacy usage, and it was 
possible that some rural residents may already have been 
using such services. Finally, it was difficult to control for 
the sub-population that used the ED in place of primary 
care, in addition to “frequent fliers” who used the ED 
regularly.

Conclusion
In this study we addressed major methodologic limi-
tations in spatio-temporal analyses of administrative 
health care data. We presented a predictive framework 
for consistently identifying important neighborhood 
factors using a case study of asthma ED visits in South 
Carolina. We developed an areal proportion-based geo-
graphic identifier assignment algorithm that we used 
in conjunction with a state-of-the-art spatio-temporal 
BHM. We addressed missing and misaligned geographic 
identifiers, multiple correlated covariates, unmeasured 
confounding factors, and other potential sources of bias. 
In addition to reducing bias, we increased statistical 
power for improving precision of estimated associations 
by utilizing coarser spatial information (i.e., ZIP code 
identifiers) to maintain records. Models were fit in the 
NIMBLE package in R, a novel application to health uti-
lization data. We disaggregated complex indexes such as 
SES and urbanicity/rurality to measurable components 
with potential for intervention and additionally assessed 

synergistic effects. This novel small-area, spatio-tem-
poral methodology could be applied to other outcomes 
and locations, making it an important analytic tool for 
researchers desiring to leverage ecologic data.
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