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Multimodal features of structural and functional magnetic resonance imaging (MRI) of the

human brain can assist in the diagnosis of schizophrenia. We performed a classification

study on age, sex, and handedness-matched subjects. The dataset we used is publicly

available from the Center for Biomedical Research Excellence (COBRE) and it consists

of two groups: patients with schizophrenia and healthy controls. We performed an

independent component analysis and calculated global averaged functional connectivity-

based features from the resting-state functional MRI data for all the cortical and

subcortical anatomical parcellation. Cortical thickness along with standard deviation,

surface area, volume, curvature, white matter volume, and intensity measures from the

cortical parcellation, as well as volume and intensity from sub-cortical parcellation and

overall volume of cortex features were extracted from the structural MRI data. A novel

hybrid weighted feature concatenation method was used to acquire maximal 99.29% (P

< 0.0001) accuracy which preserves high discriminatory power through the weight of the

individual feature type. The classification was performed by an extreme learning machine,

and its efficiency was compared to linear and non-linear (radial basis function) support

vector machines, linear discriminant analysis, and random forest bagged tree ensemble

algorithms. This article reports the predictive accuracy of both unimodal and multimodal

features after 10-by-10-fold nested cross-validation. A permutation test followed the

classification experiment to assess the statistical significance of the classification results.

It was concluded that, from a clinical perspective, this feature concatenation approach

may assist the clinicians in schizophrenia diagnosis.

Keywords: Schizophrenia, COBRE, neuroimaging, global functional connectivity, group ICA, hybrid weighted

feature concatenation, machine learning
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INTRODUCTION

Schizophrenia is a major psychiatric disorder that reportedly
affects one percent of the population (Mao et al., 2009).
This disorder can cause chronic impairments in cognition,
perception, reality testing, and emotion among others (Bhugra,
2005). Its underlying mechanism is still unclear, even though
it is considered to involve structural and functional brain
abnormalities (Ho et al., 2003; Karlsgodt et al., 2010; Oh et al.,
2015, 2017). Schizophrenia is usually diagnosed on the basis of
history and mental status examination by psychiatrists under
the guidelines of specified diagnostic criteria. Given that the
diagnostic process is mainly performed by assessment of visible
symptoms and the criteria require long-term observation to
evaluate, a standard diagnostic test is needed to reduce the
possibility of misdiagnosis.

Nowadays, there is growing interest in the use of machine
learning techniques for the diagnosis of diseases (Mirzaei et al.,
2016; Qureshi et al., 2016). Especially psychiatric disorders,
including schizophrenia, have been the focus of research
on automatic diagnosis by machine learning techniques and
neuroimaging data (Davatzikos et al., 2005; Fan et al., 2008;
Nieuwenhuis et al., 2012; Schnack et al., 2014). Previous
studies have mainly utilized unimodal data acquired by
structural magnetic resonance imaging (MRI), resting state
functional MRI, task related functional MRI, or diffusion MRI,
although some studies have included multimodal neuroimaging
data. Considering that patients with schizophrenia have both
structural and functional abnormalities, multimodal image data
can provide more information, enhancing the accuracy of
diagnosis. To wit, multimodal data can provide information
for classification that is unavailable when using unimodal data.
However, it is still unclear whether multimodal data can boost
accuracy effectively as previous multimodal classification studies
included relatively small samples with less than 35 participants in
each group (Du et al., 2012; Ota et al., 2013; Sui et al., 2013).

In this study, we classified patients with schizophrenia and
healthy controls using both anatomical (sMRI) and resting
state functional (rs-fMRI) features. To date, few studies have
used combined sMRI and rs-fMRI features to discriminate
patients with schizophrenia from healthy controls (Silva et al.,
2014). In addition, previous studies combining sMRI and fMRI
utilized only a few parameters such as independent component
analysis (ICA) features and gray matter densities. Considering
the accuracy was under 95% in these studies, the classifier may
be ameliorated with use of more parameters such as global
connectivity, surface area, and curvature features among others.
Although there exist many previous studies using ICA for
extracting the features for classification, however, to the best of
our knowledge, the group ICA method used in the present study
has never been used before for this purpose.

To utilize multiple modalities, they should be integrated
elaborately and the calculation of the importance of each feature
type is crucial for high accuracy acquisition. Concurrent with
this, we applied and proposed a simple and hybrid weighted
feature concatenation method. The method is simple and robust,
and can automatically calculate the weight of each feature

type. In addition, we compared the accuracy of five types of
classifier [linear and non-linear (radial basis function) support
vector machine (SVM), linear extreme learning machine (ELM),
linear discriminant analysis (LDA), and random forest bagged
tree classifier] by applying multimodal brain features and the
proposed feature concatenation method. We hypothesized that
the combination of whole brain sMRI and rs-fMRI features
would be superior to the utilization of unimodal data, and the
accuracy would be sufficient for use in clinical practice.

The remainder of this paper is organized as follows: the
materials and methods section provides information on the
dataset, subject selection, preprocessing of the s/fMRI data,
feature extraction, structural measures, global connectivity,
group ICA, the hybrid weighted feature concatenation
method, the introduction of the classification algorithms,
and permutation testing for assessing the significance of the
results. The results section presents the comparative results of
both the unimodal and multimodal binary classifiers using the
ELM, SVM-L, SVM-RBF, LDA, and Random forest classifiers.
The discussion section includes the commentary on the results,
comparison with previous research, and the clinical significance
of the results. The conclusion section includes the limitations of
the present study and concludes the paper.

MATERIALS AND METHODS

Subjects
We used 72 subjects each from the normal control and
schizophrenia group from the Center for Biomedical Research
Excellence (COBRE) dataset (Calhoun et al., 2011; Hanlon et al.,
2011; Mayer et al., 2013; Stephen et al., 2013). Age ranged from
18 to 65 years in each group. Information on this dataset is
available at http://cobre.mrn.org/. A structured clinical interview
based on DSM-IV was used by trained clinical psychiatrists for
the diagnosis of patients with Schizophrenia in this dataset. For
making a balanced study design, we used only 72 subjects from
each subgroup of the COBRE dataset.

All the subjects were screened and excluded if they had a
history of substance abuse or dependence present in the 12
months prior to the scanning date. In addition, the patients were
also screened for history of neurological disorders, intellectually
disabled, and severe head trauma with a loss of consciousness
for more than 5 min. COBRE is a publically available dataset
distributed with “Creative Commons License: Attribution—
Non-Commercial” and written informed consent was obtained
from all subjects in accordance with the institutional review
board (IRB) protocols of the University of New Mexico (UNM)
(Cabral et al., 2016). Table 1 shows the demographic information
of the subjects.

Dataset and Preprocessing
Structural Data Acquisition
All the participants were scanned with a Siemens TIM 3.0-Tesla
scanner. A multi-echo MPRAGE (MEMPR) sequence was used
with the following parameters: TR/TE/TI= 2530/[1.64, 3.5, 5.36,
7.22, 9.08]/900 ms, flip angle = 7◦, FOV = 256 × 256 mm, Slab
thickness = 176 mm, Matrix = 256 × 256 × 176, Voxel size
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TABLE 1 | Demographic information of subjects from COBRE dataset.

Groups Normal control Schizophrenia

No of Subjects 72 72

Age (mean ± STD) 35.875 ± 11.74 38.167 ± 13.894

Sex (Male/Female) 58/14 52/20

Handedness (Left/Right) 10/62 3/69

Age of onsets (years) – 21.17 ± 7.51

Illness duration (years) – 9.03 ± 9.88

PANSS positive – 14.96 ± 4.83

PANSS negative – 14.53 ± 4.83

PANSS general – 29.22 ± 8.34

PANSS total – 58.71 ± 13.75

STD, Standard deviation; PANSS, positive and negative syndrome scale.

= 1 × 1 × 1 mm, Number of echoes = 5, Pixel bandwidth =

650 Hz, Total scan time = 6 min. Using 5 echoes, the TR, TI,
and time to encode partitions for the MEMPR are similar to that
of a conventional MPRAGE, resulting in similar GM/WM/CSF
contrast.

Structural Data Preprocessing
Cortical reconstruction and volumetric segmentation were
performed with the FreeSurfer v. 5.3.0 image analysis suite,
which is documented and freely available for download online
at http://surfer.nmr.mgh.harvard.edu/. The technical details of
these procedures have been described previously (Dale and
Sereno, 1993; Dale, 1999; Fischl et al., 1999a,b, 2001, 2002,
2004; Fischl and Dale, 2000; Ségonne et al., 2004; Han et al.,
2006; Reuter et al., 2012). Briefly, the preprocessing procedure
includes motion correction of volumetric T1-weighted images,
removal of non-brain tissue using a hybrid watershed/surface
deformation procedure (Ségonne et al., 2004), and automated
Talairach transformation. Moreover, the procedure includes the
segmentation of subcortical white matter and deep gray matter
volumetric structures including the hippocampus, amygdala,
caudate nucleus, putamen, ventricles (Fischl et al., 2002, 2004);
intensity normalization, tessellation of the gray-white matter
boundary, and automated topology correction (Fischl et al.,
2001; Ségonne et al., 2007). In addition, surface deformation
following intensity gradients was performed to optimally place
the gray/white and gray/cerebrospinal fluid (CSF) borders at the
location where the greatest shift in intensity defines the transition
to the other tissue class (Dale and Sereno, 1993; Dale, 1999;
Fischl and Dale, 2000). Once the cortical models are complete,
several deformable procedures can be performed for further
data processing and analysis. These procedures include surface
inflation (Fischl et al., 1999a)and registration to a spherical atlas
that is based on individual cortical folding patterns to match the
cortical geometry across subjects (Fischl et al., 1999b). Moreover,
parcellation of the cerebral cortex into units with respect to gyral
and sulcal structure (Fischl et al., 2004; Desikan et al., 2006)
and creation of a variety of surface based data including maps
of curvature and sulcal depth are part of the procedure. This
method uses both intensity and continuity information from

the entire three-dimensional MR volume in segmentation and
deformation procedures to produce representations of cortical
thickness, calculated as the closest distance from the gray/white
boundary to the gray/CSF boundary at each vertex on the
tessellated surface (Fischl and Dale, 2000). The maps are created
using spatial intensity gradients across tissue classes rather than
simply relying on absolute signal intensity. The maps produced
are not restricted to the voxel resolution of the original data, and
are thus capable of detecting submillimeter differences between
groups. Procedures for the measurement of cortical thickness
have been validated against histological analysis (Rosas et al.,
2002) and manual measurements (Kuperberg et al., 2003; Salat
et al., 2004). FreeSurfer morphometric procedures have shown
good test-retest reliability across scanner manufacturers and
across field strengths (Han et al., 2006; Reuter et al., 2012).
A cortical surface-based Desikan-Killiany-Tourville (DKT) atlas
(Klein and Tourville, 2012) was mapped to a sphere aligning
the cortical folding patterns, which provided accurate matching
of the morphologically homologous cortical locations across
subjects. For each of the DKT31 protocol-based segments,
FreeSurfer calculated 9 different measures, including the number
of vertices, surface area, gray matter volume, mean cortical
thickness, cortical thickness standard deviation, mean cortical
curvature, Gaussian cortical curvature, cortical folding index,
and cortical curvature indices (Colby et al., 2012). For the
subcortical regions, FreeSurfer calculated the area and volume
of the whole segment, white matter volume, and intensity
and overall volume of the whole brain divisions, including of
the cerebrospinal fluid (CSF), intracranial volume (ICV), gray
matter (GM), and white matter (WM). Two of the selected
measures are the most common features in structural studies
(Arbabshirani et al., 2017). The surface area was calculated by
computing the area of every triangle in a standardized spherical
surface tessellation. The local curvature was computed using the
registration surface based on the folding patterns (Qureshi et al.,
2016, 2017b).

Cortical and Subcortical Features
We used measures including the mean cortical thickness,
cortical thickness standard deviation, surface area, volume,
mean curvature, white matter volume, subcortical segment
volume, subcortical intensity, and overall brain volume and
intensity as the structural features. All features were acquired as
morphological statistics for each subject during the FreeSurfer
based preprocessing of the structural MRI data. In addition,
after the preprocessing, FreeSurfer’s QA Tools were used for the
detection and removal of outliers and negative features (Qureshi
et al., 2017b).

Functional Data Acquisition
Resting state functional MRI data were collected with single-
shot full k-space echo-planar imaging (EPI) with ramp sampling
correction using the intercomissural line (AC-PC) as a reference
(TR: 2 s, TE: 29 ms, matrix size: 64 × 64, 32 slices, voxel size:
3 × 3 × 4 mm3). During the acquisition process, all subjects
were instructed to keep their eyes open and stare at the fixation
cross.
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Functional Data Preprocessing
Preprocessing of functional MRI data was based on
Analysis of Functional Neuroimages AFNI software;
http://afni.nimh.nih.gov/afni/ (Cox, 1996). Every single EPI
volume was coregistered to the corresponding anatomical
image of the subject and mapped to the Talairach coordinates
space with the TT_N27+tlrc template. We excluded the first
six images from each EPI volume to achieve the MR steady
state. In addition, slice-timing correction was performed. We
censored and excluded time-points based on the number of
outliers and head motion magnitude. The same number of slices
was excluded for all subjects. Slice alignment was applied using
the local Pearson’s correlation (LPC) cost function. Correction
of head motion along with averaging of EPI volumes was
performed to obtain a mean functional image. Each EPI volume
underwent linear multiple regression to regress the motion
derivatives and effects of the white matter and cerebrospinal
fluid. Spatial smoothing was performed using a Gaussian kernel
with a blur size of 6-mm full width at half maximum (FWHM).
A polynomial detrending was applied (Qureshi et al., 2017b).

Global Connectivity Features
A global connectivity measure was used to calculate the average
brain-wise correlation coefficients (GCOR) of all the possible
combinations of voxel time series. The GCOR estimation of
cortical regions is a computationally expensive process. It
involves the calculation of M (M−1)/2 correlation estimates for
anM voxel volume (Saad et al., 2013). AFNI simplifies the process
by taking reduced time series of each voxel and scaling it by its
Euclidean norm. In addition, it averages the scaled time series
over the whole brain mask and finally the length l2 − norm of
this averaged series represents the GCOR. We used the AFNI
program 3dTcorrMap to get the global functional connectivity
maps. This involved the calculation of correlation (Pearson’s r)
of the residual time series in each voxel with every other voxel in
their brain mask and recording the mean correlation back in the
voxel. These connectedness values were further transformed with
Fisher’s z-transformation to yield normally distributed measures
(Gotts et al., 2012). We used the DKD_Desai_PMAtlas (Desikan
et al., 2006) of the AFNI package to acquire the ROI measures
from 102 cortical and subcortical regions across the whole brain.
Figure 1 depicts a typical global functional connectivity map for
one of the control subjects from the COBRE dataset.

Group Independent Component Analysis Features
Resting state functional MRI data were preprocessed again
with FSL (FMRIB Software Library, www.fmrib.ox.ac.uk/fsl) 6.0
for acquiring the group independent component analysis
(gICA) based connectivity measures. FSL Multivariate
Exploratory Linear Optimized Decomposition into Independent
Components (MELODIC) version 3.14 was utilized to perform a
single-session ICA. The number of independent components was
set as 30, as a model with an order higher than 20 components is
usually required for the detection of some components (e.g., S1,
S2, striatum), whereas a higher order model shows a decrease in
ICA repeatability (Abou-Elseoud et al., 2010). We used variance
normalization and thresholded the independent component

maps with an alternative hypothesis test that was based on the
fitting of a Gaussian/gamma mixture model to the distributions
of the voxel intensities within the spatial maps and controlling
the local false-discovery rate at p < 0.5 (Smith et al., 2004;
Beckmann et al., 2005). Among the 30 independent components,
11 were discarded as noise and/or artifacts upon visual inspection
by an experienced clinical psychiatrist. Finally, 19 components
were identified as functional networks or subnetworks. Similar
networks were used in our previous study (Oh et al., 2017).
Figure 2 depicts some of the 19 selected components; they
represent the well-known resting state functional networks: the
default mode network, sensorimotor network, visual network,
and frontal network.

Using these components, we applied the FSL dual regression
technique (Filippini et al., 2009; Littow et al., 2010; Veer et al.,
2010), to acquire subject-specific spatial maps. During this
process, we utilized the group spatial maps in a linear model
that was fit against the separate fMRI datasets and then acquired
the time-course matrices depicting the temporal dynamics for
each subject and component. After that, we could acquire the
subject-specific spatial maps with the time-course matrices. Next,
we calculated the correlation coefficient between the selected
19 components. It resulted in a 19 × 19 correlation based
connectivity matrix. We isolated the upper diagonal elements of
the connectivity matrix and after vectorizing them, we used them
as the gICA features for each subject. Figure 3 depicts a typical
ICA connectivity matrix for one of the control subjects from the
COBRE dataset.

Finally, we gathered four types of functional connectivity
based features, namely: cortical ROI-based global connectivity,
subcortical ROI-based global connectivity, whole brain-based
global connectivity, and gICA connectivity features. The first
three types of features were based on the DKD_ Desai_PM Atlas
ROI’s (Desikan et al., 2006) and all of them were acquired by
considering the average measure of global connectivity of the
atlas ROIs.

Table 2 presents a brief overview of the structural and
functional measures and number of features used in this study.

Hybrid Weighted Feature Concatenation
Combining features of multiple modalities is a very effective
approach for boosting the performance of a machine learning
setup. It has been used for machine learning in many
research domains, including computer vision for face recognition
(Qureshi, 2013), robotics (Naveed, 2014), and in neuroimaging
classification (Calhoun and Sui, 2016). We investigated a
common feature combination method of simple concatenation
in this study, in contrast to the proposed simple and hybrid
weighted feature concatenation (WC) method. The proposed
method enhanced accuracy while maintaining the number of
features similar to that of simple concatenation.

In the proposed method, we calculated the weights of
each of 12 (nine structural and three functional) measures
M1,M2 , ... ,M12 of the dataset. We want to have the important
features to get a high weight Wi such that (0 <= Wi <= 1) ,
and hence we choose Wi = 1 − Amax + Ai. Briefly,
for calculating the weights W1,W2 , ... ,W12, we first calculated
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FIGURE 1 | An example of a typical global functional connectivity map for one of the control subject of COBRE dataset. First row depicts the coronal, second row

depicts the axial and the third row depicts the sagittal view.

FIGURE 2 | Well-known resting state functional networks acquired from the selected independent component of group ICA result. First image in each network figure

depicts the sagittal, second depicts the coronal and third depicts the axial view. The bright yellow color represents the IC’s while the pale background colors depicts

the MNI152 atlas ROI’s. IC, Independent component; ICA, Independent component analysis; MNI, Montreal neuroimaging institute.

the accuracy of each of the12 measures and then subtracted the
individual accuracy A1,A2, ... , A12 from the highest accuracy
Amax = [Amax]

T value among them. Finally, we subtracted
the resulting value R1,R2, ... , R12 of each measure from vector
1 = [11, 12, .., 112]

T (that corresponds to perfect classification)
to acquire the weights. Mathematically,

[R1,R2, ... , R12]
T = Amax− [ A1,A2, ... , A12]

T

[W1,W2, . . . ,W12]
T = 1− [R1, R2, . . . ,R12]

T

After acquiring the weights [W1,W2, ... ,W12]
T ,

in the simple weighted concatenation, the
weights of each feature type were multiplied

with the corresponding measure data and were
concatenated.

Simple Weighted Conatenation = [W1 ∗ M1||W2 ∗M2 || , ... ,

||W12 ∗ M12]

Hybrid weighted concatenation was performed by multiplying
the corresponding weight with its measure data and
dividing the long-concatenated matrix with the sum of
the corresponding weights. This step was performed
separately for the seven cortical and four subcortical data
types regardless of the modality. This division of cortical
and subcortical measures was based on the anatomical
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FIGURE 3 | An example of a typical group independent component analysis

based connectivity matrix for one of the control subject of COBRE dataset.

ROIs acquired from the DKT and DKD_ Desai_PM
atlases.

Cortical WC = [W1 ∗M1||W2 ∗M2 || , ... , ||

W7 ∗M7] /

7∑

i=1

Wi

Subcortical WC = [W8 ∗ M8||W9 ∗M9 || , ... , ||

W11 ∗M11]/

11∑

i=8

Wi

Hybrid WC = [Cortical WC || SubcorticalWC ||

gICA features]

Where the symbol “||” corresponds to the concatenation. These
simple and hybrid weighted feature concatenation methods were
robust and outperformed simple concatenation.

Classification
Five classifiers were used in this study, namely, ELM, linear and
non-linear (radial basis function) SVM, LDA, and random forest
ensemble classifiers. In addition, we reported the classification
results without applying any feature selection to validate
the significance of the proposed hybrid weighted feature
concatenation framework. A brief description of all the classifiers
used in this study is as follows.

Extreme Learning Machine Classifier
The extreme learning machine originally proposed by Huang
et al. (2006) has been adopted in many previous neuroimaging
studies (Termenon et al., 2013; Zhang and Zhang, 2015; Qureshi
et al., 2016), and (Qureshi et al., 2017b) in the binary and
multiclass settings. The ELM randomly assigns the weights
and bias to the input data to compute the output weight
matrix. This random assignment of weights makes the ELM
algorithm very fast compared to other gradient-based classifiers
such as the SVM. A more detailed discussion of the classifier

can be found elsewhere (Huang et al., 2006; Qureshi et al.,
2016). The ELM classifier requires the “number of nodes” as
the only hyper-parameter that has to be tuned for achieving
maximum performance in terms of accuracy. In this study, we
used the Matlab implementation of the ELM. A greedy search
method was used to tune this parameter for achieving maximum
test accuracy. In this study, the search scale for selecting this
parameter was set to N = [90, 91, ..., 220]. A careful selection
of the number of nodes is necessary to prevent the classifier from
overfitting. All the features were normalized and scaled to values
between –1 and 1 for improving the performance of the ELM
classifier (Qureshi et al., 2016, 2017b).

Support Vector Machine (SVM) Classifier
The SVM classifier, which was originally proposed by Cortes
and Vapnik (1995), has been one of the most popular
machine-learning tools in the neuroscience domain in the last
decade. It is a supervised classification algorithm. It maps
features in higher dimensional space using linear and non-
linear functions known as kernels. In this study, we used
both linear and non-linear (RBF) SVM. In case of SVM-
RBF, value of scaling parameter “σ ” was tuned in the range
σ = [0.000001, 0.00001, . . . , 100000, 1000000] and box-
constraint parameter “C” was tuned in range of C =

[0.005, 0.01, 0.1, . . . , 100000, 1000000] using logarithmic grid
search method.

Linear Discriminant Analysis (LDA) Classifier
The LDA classifier, originally proposed by Duda and Hart (1973),
is a linear classifier that utilizes hyperplanes to discriminate the
data. These hyperplanes maximize the interclass mean while
keeping the interclass variance minimized.

Random Forest Ensemble Classifier
Random forest trees, originally proposed by Breiman (1996),
are a method of building a forest of uncorrelated trees with
randomized node optimization and bagging. Out-of-bag errors
are used as an estimate of the generalization error. The random
forest (RF) measures variable importance through permutation
(Liaw and Wiener, 2002). The general bootstrap aggregation
algorithm was used for training. In RF implementation, with
decision trees as the learner type, only the number of trees and
the number of splits for prediction need to be defined. In this
study, we used 30 trees and 20 splits.

Cross-Validation, Performance Evaluation,
and Significance Testing Methods
The classifier performance was measured in terms of nested 10-
by-10-fold cross-validated classification accuracy. In the nested
cross-validation we repeated each of the 10-fold cross-validation
10 times and reported the average accuracy of the ten 10-
fold cross-validation trials. In addition, sensitivity, specificity,
negative predictive value, positive predictive value, and F1-
Score were calculated as supporting measures for performance
evaluation. These measures were calculated through the true
positive, true negative, false positive, and false negative values
acquired from the confusion matrix by computing the predicted
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TABLE 2 | Summary of the features used in this study.

Label Structural Label Functional Multi-measure and Multi-modal

Measure Count Measure Count Measure Count

CORTICAL FEATURES

M1 CT 64 M7 Global connectivity 67 All cortical 449

M2 CT STD 62

M3 Surface Area 64

M4 Volume 62

M5 Mean Curvature 62

M6 WM Volume 68

Total 382 67 449

SUBCORTICAL FEATURES

M8 Volume 26 M10 Global connectivity 24 All subcortical 76

M9 Intensity 26

Total 52 24 76

WHOLE BRAIN FEATURES

M11 Volume 27 M10 Global connectivity 11 All whole brain 223

M9 Intensity 14 M12 gICA connectivity 171

Total 41 182 223

Grand Total 748

CT, Cortical thickness; STD, standard deviation; WM, white matter; gICA, group independent component analysis.

labels with the true labels of the test data. Formally these
measures are defined as follows:

Accuracy = (TP + TN) / (TP + TN

+ FP + FN)

Sensitivity = TP / (TP + FN)

Specificity = TN / (FP + TN)

Negative Predictive Value (NPV) = TN / (FN + TN)

Positive Predictive Value (PPV) = TP / (TP + FP)

F1− Score = 2TP/ (2TP + FP + FN)

A Permutation test was used to assess the statistical significance
of ELM classifier performance (Golland and Fischl, 2003).
Briefly, it works as follows. First, we chose the actual test accuracy
as the test statistic of the classifier, the class labels for testing
the dataset permuted randomly and were given to the classifier
and checked for cross-validation. Generally, the lower the p-
value of the permuted prediction rate against the prediction
rate of the original data labels the higher the significance of
the classifier performance. There is no fixed rule for setting the
number of permutations. We permuted the data 10,000 times in
the current study similar to previous studies (Qureshi et al., 2016,
2017a,b)

Figure 4 shows the overall framework of the study including
preprocessing, features extraction and hybrid weighted
concatenation, and finally classification.

RESULTS

Results are reported for all the unimodal and multimodal
measures for both the simple and hybrid weighted feature
concatenation methods in addition to the results of each
standalone functional connectivity measure and modality from
both the cortical and subcortical regions. The most important
result of this study was the highest 10-by-10-fold nested cross-
validated predictive accuracy of 99.29% (p< 0.0001) by using the
hybrid weighted feature concatenation method. In addition, we
reported the classification performance of simple concatenation
of multimodal cortical and subcortical features. Stand-alone
measure accuracies for all the structural and functional features
were also reported.

The weight of each measure along with the rank is mentioned
in the Table 3.

Table 4 summarizes the comparative results of all five
ELM, SVM-L, SVM-RBF, LDA, and RF classifiers. Mean
testing and training classification scores after 10-by-10-
fold nested cross-validation of all the feature groups
along with sensitivity, specificity, F1-score, negative
predictive value, and positive predictive value measures
for all the unimodal and multimodal features are reported
for ELM.

Figure 5 depicts all the mean measures reported in Table 3

along with the standard deviation for the ELM results.
In addition, we calculated the accuracy of all the individual

measures for each modality separately. Table 5 summarizes
the mean classification scores after 10-by-10-fold nested cross-
validation for each individual measure type of structural and
functional data.

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2017 | Volume 11 | Article 59

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Qureshi et al. Schizophrenia Discrimination Using Hybrid Features

FIGURE 4 | This figure depicts the overall classification feature weighting and concatenation framework.

TABLE 3 | Weight and rank of each individual measure.

Rank Measure Weight

1 Group ICA 1.0000

2 Curvature 0.9943

3 SC GCOR 0.9829

4 Thickness 0.9819

5 Overall Volume 0.9810

6 Volume 0.9768

7 Cortical GCOR 0.9762

8 Thickness STD 0.9753

9 SC Intensity 0.9695

10 SC Volume 0.9694

11 WM 0.9661

12 Surface Area 0.9518

ICA, Independent component analysis; SC, subcortical; GCOR, global average functional

connectivity; STD, standard deviation; WM, white matter.

Figure 6 depicts all the mean measures reported in Table 4

along with the standard deviation for the ELM results.

DISCUSSION

This study reports the multimodal hybrid weighted feature
concatenation of neuroimaging data for the purpose of
classification. We proposed a simple and powerful hybrid
weighted feature concatenation method. Two types of functional

connectivity based features were utilized in this study to
acquire the highest classification accuracy. Group independent
component analysis (gICA) of functional connectivity features
is a very robust stand-alone measure for achieving high
classification accuracy and provides an accuracy as high as
92.95% (p < 0.0001) when used with an extreme learning
machine. In addition, our highest prediction result of 99.29%
(p < 0.0001) accuracy shows that the proposed hybrid weighted
features concatenation method is very effective for boosting the
accuracy of the ELM classifier.

The ELM classifier in combination with the proposed hybrid
weighted feature concatenation method is effective for the
classification of neuroimaging data. A few recent studies such
as Qureshi et al. (2016), Qureshi et al. (2017a), and Qureshi
et al. (2017b) were based on an extreme learning machine
classification framework for neuroimaging data. However, the
current study proposed a very simplified hybrid weighted feature
concatenation method that allows for the acquisition of higher
classification accuracies without requiring any kind of feature
selection approach. To wit, this advanced concatenation method
is time-effective while boosting classification performance.

Comparison to Previous Studies
For the purpose of comparing the efficiency of the method
proposed in the current study, we enlisted all previous studies on
multimodal classification of Schizophrenia in Table 6, to the best
of our knowledge.

To date, numerous classification studies have been conducted
using only one neuroimaging modality to discriminate patients
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TABLE 4 | Mean classification performance of multimodal features.

Classifier Extreme learning machine SVM-L SVM-RBF LDA RF

Feature type Train Acc Test Acc p-value Sn Sp F1-Score PPV NPV Test Acc Test Acc Test Acc Test Acc

Hybrid WC 0.9954 0.9929 0.0001 1.000 0.9857 0.9933 1.000 0.9875 0.7780 0.763 0.6810 0.7080

Simple WC 0.9977 0.9804 0.0001 0.9732 0.9875 0.9790 0.9778 0.9875 0.7500 0.750 0.6880 0.7010

Simple concatenation 0.9931 0.9724 0.0001 0.9607 0.9857 0.9723 0.9625 0.9875 0.7710 0.750 0.6880 0.7500

Cortical WC 0.9899 0.9367 0.0001 0.9429 0.9321 0.9359 0.9500 0.9375 0.5960 0.611 0.5830 0.5490

Subcortical WC 0.9931 0.9248 0.0001 0.9571 0.8857 0.9296 0.9639 0.9128 0.6670 0.667 0.6250 0.6040

Cortical concatenation 0.9938 0.9381 0.0001 0.9303 0.9464 0.9367 0.9403 0.9528 0.6320 0.638 0.6110 0.6110

Subcortical concatenation 0.9908 0.9314 0.0001 0.9196 0.9446 0.9309 0.9260 0.9514 0.6390 0.681 0.6180 0.6460

Functional concatenation 0.9961 0.9452 0.0001 0.9304 0.9625 0.9426 0.9375 0.9607 0.6740 0.729 0.6880 0.6740

Structural concatenation 0.9907 0.9319 0.0001 0.9304 0.9357 0.9308 0.9389 0.9417 0.6460 0.625 0.6600 0.6460

Sn, Sensitivity; Sp, Specificity; SVM-L, linear support vector machine; SVM-RBF, support vector machine with radial basis function kernel, LDA, linear discriminant analysis; WC,Weighted

Concatenation; Acc, Accuracy; PPV, positive predictive value; NPV, Negative predictive value; RF, Random Forest.

FIGURE 5 | Mean and standard deviation of the classification performance parameters for ELM.

with schizophrenia from healthy controls (Fan et al., 2005,
2008; Bassett et al., 2012; Zanetti et al., 2013). As shown in
Table 6, we listed all previous classification studies that used
schizophrenia vs. normal control multimodal data, and some
of these studies achieved high classification accuracy. However,
a relatively small sample size can boost accuracy by chance,
therefore, more than 130 subjects were reportedly required to
perform such a study (Nieuwenhuis et al., 2012). In fact, only
one of these studies fulfilled this criterion (Silva et al., 2014).
The result of this study was good (94% accuracy); however,

the number of included feature types was smaller than that of
the present study. For example, we utilized global and group
ICA-based connectivity features from the fMRI data as well as
other structural measures including surface area, curvature, and
white matter information. Considering that additional features,
such as surface area, can be related to disease progress, the
use of more features might have contributed to the higher
accuracy of our classification (Li et al., 2016). White matter
information, in particular, should not be ignored as there is
evidence that schizophrenia is a disorder involving both gray

Frontiers in Neuroinformatics | www.frontiersin.org 9 September 2017 | Volume 11 | Article 59

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Qureshi et al. Schizophrenia Discrimination Using Hybrid Features

TABLE 5 | Mean classification results of each measure of the data from each modality.

Classifier Extreme learning machine SVM-L SVM-RBF LDA RF

Feature type Train Acc Test Acc p-value Sn Sp F1-Score PPV NPV Test Acc Test Acc Test Acc Test Acc

Thickness 0.9908 0.9114 0.0001 0.9339 0.8929 0.9120 0.9403 0.9024 0.5630 0.598 0.5900 0.6250

Thickness STD 1.000 0.9048 0.0001 0.9000 0.9089 0.8993 0.9175 0.9099 0.6040 0.614 0.5900 0.5070

Surface Area 0.9900 0.8813 0.0001 0.8339 0.9304 0.8736 0.8575 0.9339 0.5420 0.500 0.4720 0.5690

Volume 0.9930 0.9063 0.0001 0.8786 0.9321 0.9010 0.8975 0.9375 0.4580 0.576 0.5140 0.4240

Curvature 0.9961 0.9238 0.0001 0.9339 0.9143 0.9259 0.9403 0.9300 0.5830 0.601 0.5830 0.5560

WM Volume 0.9954 0.8956 0.0001 0.8643 0.9286 0.8916 0.8820 0.9367 0.4720 0.542 0.5070 0.4930

Cortical GCOR 0.9891 0.9057 0.0001 0.9304 0.8839 0.9051 0.9385 0.8913 0.5490 0.591 0.5970 0.6250

SC Volume 0.9745 0.8989 0.0001 0.9018 0.8946 0.8958 0.9157 0.9014 0.7010 0.597 0.6180 0.6250

SC Intensity 0.9930 0.8990 0.0001 0.8589 0.9339 0.8906 0.8864 0.9389 0.6740 0.625 0.6180 0.6320

SC GCOR 0.9884 0.9124 0.0001 0.8750 0.9482 0.9048 0.9008 0.9528 0.5280 0.583 0.5970 0.5760

Overall Volume 0.9861 0.9105 0.0001 0.9161 0.9036 0.9100 0.9228 0.9103 0.6320 0.631 0.5490 0.5630

Group ICA 0.9915 0.9295 0.0001 0.9000 0.9571 0.9269 0.9139 0.9639 0.7150 0.743 0.6940 0.6390

Sn, Sensitivity; Sp, Specificity; SVM-L, linear support vector machine; SVM-RBF, support vector machine with radial basis function kernel, LDA, linear discriminant analysis; WC,Weighted

Concatenation; Acc, Accuracy; PPV, positive predictive value; NPV, Negative predictive value; GCOR, global average functional connectivity; ICA, independent component analysis;

WM, white matter; STD, standard deviation; SC, subcortical; RF, random forest.

FIGURE 6 | Mean and standard deviation of the classification performance parameters for ELM.

and white matter abnormalities (Davis et al., 2003; Kubicki et al.,
2005).

Clinical Significance of the Results
To summarize, our results showed that the highest level of
classification accuracy may be obtained when integrating all

structural information including gray and white matter, with
functional connectivity information such as ICA and global
connectivity. It may mean that, several parts of the brain
experience deterioration, both structurally and functionally, as
a result of schizophrenia, thus, classification using machine
learning should include the maximum amount of information
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TABLE 6 | Comparison with the classification scores of previous studies using multimodal data.

Study reference Modality Sample

size

Features Feature

count

Classifier Accuracy

(%)

Proposed

Method

sMRI + fMRI 144 Structural ROI measures, Global functional

connectivity, Group ICA

748 ELM 99.29

Du et al., 2012 rs-fMRI + task-related

fMRI (auditory oddball

task)

56 Kernel PCA with spatial ICA maps 53 Fisher’s linear

discriminant

98

Silva et al., 2014 sMRI + fMRI 144 Gray matter density based ICA features (sMRI),

group ICA features (fMRI)

410 Gaussian process

classifier

94

Cetin et al., 2016 rs-fMRI + task-related

fMRI (auditory oddball

task) + MEG

55 Group ICA based functional connectivity scores,

MEG data for each frequency

103 LDA, Naïve Bayes

classifier, and

non-linear SVM

90

Ota et al., 2013 sMRI + diffusion MRI 50 Volume and fractional anisotropy (FA) of certain

regions (insula, thalamus, ACC, ventricles, and

corpus callosum)

31 Linear discriminant

analysis

88

Yang et al., 2010 task-related fMRI (auditory

oddball task) + SNP

(genetic data)

40 Voxels in the fMRI map, ICA components, SNPs 411 Support vector

machine

87

Sui et al., 2013 sMRI + rs-fMRI +

diffusion MRI

63 GM density, ALFF (amplitude of low-frequency

fluctuation), FA

1,863 Support vector

machine

79

computational capacity permits. The DSM criteria, by which
schizophrenia is diagnosed, is still not perfect. The population
of patients with schizophrenia is heterogeneous, as the diagnosis
is based on observable symptoms, and that presents a challenge
for diagnosing or representing all implicated characteristics by a
single type of feature. In fact, since we did not adopt a feature
selection process during the analysis, it is not known which
features influenced the classification. A gross estimation may be
performed by observing feature measure weight information as
provided inTable 3, where group ICA features appear as themost
significant contributor to the classification, although all other
features also exhibited∼90% accuracy. These resultsmay support
the well-known findings that schizophrenia is associated with
comprehensive abnormalities in both structural and functional
domains.. However, in terms of ranking importance, functional
connectivity information showed slightly superior performance
than structural information, and with regard to structural
information, cortical information was superior to subcortical
information in classification performance. Taken together, it
appears that aberrant functional connectivity and structural
abnormalities in the cortex should be givenmore weight, which is
in line with recent research findings (Dong et al., 2017; Larivière
et al., 2017; Massey et al., 2017; Mørch-Johnsen et al., 2017; Peters
et al., 2017).

In real clinical practice, the misdiagnosis related to
schizophrenia usually happens due to many other psychiatric
diseases which can show the similar psychotic symptoms such
as mood disorders and personality disorders. In addition,
the person in the premorbid or prodromal stage of psychosis
who can almost fulfill the diagnostic criteria of schizophrenia
confuses the clinicians about whether they should be diagnosed
with schizophrenia or not. In this study, the high-risk groups
or groups with other psychiatric diseases were not included,
therefore our classifier has some limitations to be used directly in

clinical settings because it can only differentiate healthy people
and schizophrenia patients. Therefore, other classifiers (bipolar
disorder vs. healthy control, bipolar disorder vs. schizophrenia,
or multiclass classifier) should be developed and ameliorated
to give more information to the clinicians. Considering the
machine learning based diagnosis is not perfect yet, it should be
used only as a supportive tool in conjunction with a standard
diagnosis. However, it can be really helpful when the diagnosis is
difficult.

LIMITATIONS

First, our classification process underwent nested cross-
validation without novel data for testing. Although we
acknowledge this issue, we sought to use as much training
data as possible to overcome the sample size limitations in the
classification. Second, the symptom severity score (PANSS)
showed that our sample’s symptoms were relatively mild,
however, the patients had already experienced active symptoms,
therefore, it was challenging to use our classifier for purpose of
prediction. If we had included a high-risk group, we could have
utilized our classifier for early prediction.

In addition, it appears it is relatively easier to distinguish
patients from healthy controls than to distinguish patients from
high-risk groups. Considering our classifier was only learned to
distinguish non-healthy brains from healthy brains, it has limited
role in real clinical field. In other words, other classifiers using
the data from other groups, such as bipolar disorder and high-
risk groups for schizophrenia, would be more helpful. Those
classifiers would enable the identification of schizophrenia-
specific features and could perform the differential diagnosis
among many disorders that involve structural or functional brain
abnormalities. However, despite of those limitations, we believe
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that high accuracy of our classifier would be useful in some
limited clinical situations.

CONCLUSION

The proposedmultimodal hybrid weighted feature concatenation
method is robust, simple, and straightforward, and provides
promising results. The extreme learning machine is an excellent
choice for classifying neuroimaging data. Multimodal and multi-
measure features are robust for providing higher accuracy. The
group ICA based functional connectivity features method is
appropriate and exhibits the highest discriminatory power as
a stand-alone measure type. We did not utilize any feature
selection and optimization algorithm in this study, but as the
chosen features had extremely highly discriminatory power,
the present study produced clinically acceptable diagnostic
accuracies.
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