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ABSTRACT

Proteins are essential elements of biological systems, and their function typically relies on their ability to successfully bind

to specific partners. Recently, an emphasis of study into protein interactions has been on hot spots, or residues in the bind-

ing interface that make a significant contribution to the binding energetics. In this study, we investigate how conservation

of hot spots can be used to guide docking prediction. We show that the use of evolutionary data combined with hot spot

prediction highlights near-native structures across a range of benchmark examples. Our approach explores various strategies

for using hot spots and evolutionary data to score protein complexes, using both absolute and chemical definitions of con-

servation along with refinements to these strategies that look at windowed conservation and filtering to ensure a minimum

number of hot spots in each binding partner. Finally, structure-based models of orthologs were generated for comparison

with sequence-based scoring. Using two data sets of 22 and 85 examples, a high rate of top 10 and top 1 predictions are

observed, with up to 82% of examples returning a top 10 hit and 35% returning top 1 hit depending on the data set and

strategy applied; upon inclusion of the native structure among the decoys, up to 55% of examples yielded a top 1 hit. The

20 common examples between data sets show that more carefully curated interolog data yields better predictions, particu-

larly in achieving top 1 hits.
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INTRODUCTION

Protein interactions form the essential language of bio-

chemistry, and the ability of molecules to communicate

via binding interactions governs most physiological proc-

esses. Predictive models for protein docking help to

uncover biological mechanisms, explain disease polymor-

phisms, and facilitate the design of therapeutic agents.

The ability to describe mutagenesis effects at the struc-

tural level and connect them to effects on molecular

interactions provides a direct connection between struc-

ture and systems biology, which is an underexplored area

of computational modeling.

A number of factors, including but not limited to the

size and shape of each protein, electrostatic forces, and

hydrophobicity determine the binding affinity of a pro-

tein complex. The binding interface regions are essential

to the formation of a protein–protein complex, and as a

result they have been shown to be more conserved than

other surface-exposed regions of proteins.1 Within these

binding interface regions, there is a subset of residues

known as “hot spots.” These residues are believed to

make the largest energetic contributions to binding affin-

ity, and thus hot spot interactions are selectively con-

served over the course of molecular evolution.

Experimental identification of hot spots has been pur-

sued using alanine-scanning mutagenesis. Recently, there

has been an increase in the development of computa-

tional methods that simulate these alanine-scanning

experiments. Hot spot prediction algorithms use a vari-

ety of approaches, ranging from molecular dynamics

simulations, energetic analysis, and machine learn-

ing.2–42 These programs have proven to be accurate and
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effective models for predicting interface hot spots. In our

study, the KFC2 method was used to predict hot spots, as

it has proven to be highly predictive in comparison with

other models.43 Our goal is to use the evolutionary con-

servation of important hot spot interactions toward the

identification of near-native protein–protein interfaces

generated by low-resolution exhaustive search algorithms.

Proteins sharing a common evolutionary ancestor and

similar function in different species are called orthologs.

As a protein evolves over time and across species, its

amino acid composition may be altered due to mutation,

but its function is often maintained due to selection

pressures. Here, we explore the use of predictive software

to identify hot spots within pairs of interacting orthologs

(known as interologs) using the sequence and spatial

conservation of hot spots across species to help identify

near-native docking predictions.

The application of in silico mutagenesis in docking has

often focused on specific cases rather than as a general

mechanism for scoring docking predictions.44–53 Some

recent work has pursued statistical potentials based on

evolutionary data54 and genome-wide studies of protein

interactions based on hot spots,55 while other

approaches have used evolutionary data to guide sam-

pling within docking algorithms.56,57 Our study suggests

that structure-based prediction of hot spots combined

with evolutionary conservation is able to identify near-

native predictions for a range of systems.

MATERIALS AND METHODS

To select protein–protein interactions for our study, we

used a subset of the Protein Docking Benchmark58 for

which reliable information on interologs could be

obtained. Data Set 1 was constructed using the 3D-

Interologs database.59 Each complex was checked to

ensure that the orthologs were from the same protein fam-

ily and carried out the same or similar biological func-

tion(s). Immune-system proteins were avoided, as these

types of proteins are subject to different evolutionary pres-

sures than other classes of molecules. Furthermore,

selected examples needed to have at least four interologs

in order to ensure statistically significant results. In the

end, based on these parameters we were able to collect

data on 22 different protein–protein complexes. Data Set

2 was taken from the article of Andreani et al.54 using

multiple sequence alignments extracted from the InterEvol

database.60 Using MUSCLE,61 each set of orthologous

sequences was aligned with the sequences of the protein

structures used to generate docking decoys. We added

amino acids missing in the crystal structures at both the

alignment and structure refinement stage. A description of

examples in Data Sets 1 and 2 can be found in Supporting

Information Tables S1 and S2, respectively.

The relative distance between the docking decoys and

the native conformations was measured using the inter-

face RMSD (iRMSD) value, as reported in the ZDOCK

results for the Docking Benchmark Set. Decoys with rela-

tively low interface RMSD values (< 2.5 Angstroms)

were considered near-native hits, while those with higher

RMSD values were considered non-native. For our sam-

ple, we used 1,000 decoys selected from the list of 54,000

results produced by ZDOCK using fine sampling. We

used the top 100 structures as ranked by ZDOCK along

with 900 randomly sampled structures from the

remainder.

Refinements of near-native and non-native decoy

structures were performed with MODELLER,62 which

uses comparative modeling to predict 3D models of pro-

teins using the amino acid sequence and a known tem-

plate structure. This procedure helped to resolve any

clashes and small conformational changes resulting from

induced fit. Once the interface models had been gener-

ated, the KFC2a model43 was used to predict the hot

spots for the refined decoy structures. Note that in a few

cases, hot spots could not be computed for some decoys

due to errors produced by NACCESS,63 which is used by

KFC2a to calculate accessible surface area; analysis on

these examples includes all decoys for which hot spot

data are available, with other structures effectively classi-

fied as non-native. As well, structures that did not gener-

ate any predicted hot spots were necessarily classified as

non-native.

We applied several strategies for assessing evolutionary

conservation of predicted hot spot residues. For each

predicted hot spot, sequence conservation at that posi-

tion was calculated using the multiple sequence align-

ments for interologs, with a conserved hot spot recorded

each time the amino acid in an ortholog matched at a

predicted hot spot. We also examined conservation at

adjacent positions, using windows of 3, 5, 7, and 9 resi-

dues centered at the predicted hot spot. In addition, we

considered whether performance was improved by filter-

ing to ensure a minimum number of hot spots in each

binding partner. We report results for a “windowed”

strategy with window size 3 and a “filtered” strategy

requiring at least 6 hot spots per binding partner. Finally,

these calculations were repeated using a more lenient

definition of conservation based on chemical type

according to the following classifications: small (GA),

hydrophobic (VILMP), aromatic (FYW), nucleophilic

(STC), amide (NQ) acidic (DE), and basic (HKR). In

addition to the decoy structures, we examined the native

structure (remodeled using the same comparative model-

ing procedure as for the decoys) in order to compare its

score with near-native and non-native examples.

For the smaller Data Set 1, we studied structure-based

models of interolog interfaces on a subset of the 1000

decoys. Each decoy structure was used as a template for

comparative modeling of the interolog interfaces. After

collecting hot spot data on the template and each of the

orthologous models, we evaluated the conservation of
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these hot spots between the template and the interolog

interfaces. Hot spots were considered conserved if they

were both spatially and chemically conserved. This meant

that they needed to be within 3 Å of each other in the

three dimensional space, and also that they must be of

the same chemical type using the classifications given

above. For example, if a valine residue on the template

was within 3 Å of a methionine residue of an ortholog,

and both were predicted as hot spots, the hot spot was

considered conserved.

RESULTS

To rescore examples using sequence conservation, we

averaged the fraction of conserved hot spots obtained for

each binding partner. As previously described, this was

done using several strategies, including filtering to

require at least six predicted hot spots in each binding

partner, and windowed conservation around the pre-

dicted hot spots. Supporting Information Tables S3 and

S4 show detailed results for eight strategies: absolute con-

servation unfiltered/unwindowed (A), filtered (AF), win-

dowed (AW), and filtered/windowed (AFW), plus each

of these four strategies applied using chemical conserva-

tion (C, CF, CW, CFW). Systems for which near-native

hits were present among the decoys will be referred to as

viable. Note that all systems become viable with the

inclusion of the native structure among the decoys.

In Figure 1, one can observe some of the differences

among scoring strategies. For benchmark example 1XQS,

the filtered strategies eliminate some non-native

Figure 1
The benchmark example 1XQS highlights some of the possible scoring variations produced by the eight sequence-based scoring strategies. The fil-

tered strategies remove some of the high-scoring non-native predictions. The benefit of windowed and chemical conservation varies among exam-
ples; in this case, the windowed strategies performed somewhat worse overall than the unwindowed strategies. The chemical strategies performed

slightly better than the strategies based on absolute sequence conservation, particularly on the native structure.
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structures that scored highly, these examples likely had a

hot spot or two in each partner that happened to be

conserved by chance. The windowed strategies perform

somewhat worse on this example, with overall conserva-

tion dropping in both partners. The chemical strategies

do not make much difference overall, but the rank of the

native structure is improved relative to near-native hits.

Table I gives the number of systems generating top 10

and top 1 hits for the various scoring strategies and data

sets, and results at the system-specific level are detailed

in Supporting Information Tables S3–S8. The CWF strat-

egy produced the most systems with hits in the top 10 in

both data sets, with 14/17 (82%) examples with a top 10

hit for Data Set 1 and 25/55 (45%) examples with a top

10 hit for Data Set 2. Other strategies saw a range of 53–

76% success on Data Set 1 and 42–45% success on Data

Set 2. Upon adding the native structure to the collection

of decoys, the CWF strategy generated top 10 hits for

17/22 (77%) of examples in Data Set 1 and 31/85 (36%)

of examples in Data Set 2. Other methods were success-

ful in 50-77% of examples in Data Set 1 and 34–39% of

examples in Data Set 2 when including the native

structure.

For generating top 1 hits, the CWF strategy was suc-

cessful on 6/17 (35%) of examples from Data Set 1 and

12/55 (22%) of examples from Data Set 2. Other strat-

egies ranged in success from 12-35% on Data Set 1 and

from 15-24% on Data Set 2. Upon addition of the native

structure as a decoy, CWF was successful in 10/22 (45%)

of cases for Data Set 1 and in 15/85 (18%) of cases for

Data Set 2. Other strategies were successful in 23–55% of

examples in Data Set 1 and 14–20% of examples in Data

Set 2 when including the native structure.

To better understand the difference in success rates

between Data Sets 1 and 2, we analyzed the subset of

examples common to both data sets. The decoys used in

each case were the same, but the selection of orthologs

was different. The orthologs used in Data Set 1 were

checked more carefully to ensure similar function, while

the orthologs in Data Set 2 are more extensive but also

include more speculative data such as “putative” protein

sequences. Table II summarizes the comparison, which

shows that the Data Set 1 alignments produced top 10

and top 1 hits at significantly higher rate than align-

ments in Data Set 2, regardless of the conservation strat-

egy used. Figures showing the relationship between

iRMSD and hot spot conservation for these examples

can be found in Supporting Information Figure S1.

In addition to sequence-based analysis, we constructed

homology models of interolog interfaces using a subset

Table I
For Each of the Eight Strategies (A, AF, . . . CW, CFW), the Number of Systems Returning Top 10 and Top 1 Hits is Given, Along with the Number

of Viable Systems for Which Hits Were Present

Viable A AF AW AFW C CF CW CFW ANY

Top 10 Results
Data Set 1 17 10 13 9 11 10 13 12 14 15
Data Set 1 1 Native 22 13 17 11 14 13 15 15 17 19
Data Set 2 55 24 25 23 23 23 25 23 25 37
Data Set 2 1 Native 85 32 33 27 28 29 33 32 31 52

Top 1 Results
Data Set 1 17 2 4 5 6 2 5 6 6 12
Data Set 1 1 Native 22 5 5 8 7 6 5 12 10 18
Data Set 2 55 8 13 8 12 9 8 9 12 23
Data Set 2 1 Native 85 12 17 12 13 12 13 17 15 36

By adding the native structure, hits are present in all systems, and the analysis is repeated using this data.

Table II
Using Only the 20 Examples Common to Data Sets 1 and 2, the Table Gives the Number of Systems Returning Top 10 and Top 1 Hits Is Given,
Along with the Number of Viable Systems for Which Hits Were Present

Viable A AF AW AFW C CF CW CFW ANY

Top 10 Results
Data Set 1 16 10 12 8 10 10 12 11 13 14
Data Set 1 1 Native 20 13 15 10 13 12 13 13 15 17
Data Set 2 16 6 7 7 7 5 8 7 8 11
Data Set 2 1 Native 20 8 9 7 9 6 10 8 9 13

Top 1 Results
Data Set 1 16 2 4 4 5 2 5 5 5 11
Data Set 1 1 Native 20 5 5 7 6 6 5 10 8 16
Data Set 2 16 1 3 1 3 1 1 1 4 7
Data Set 2 1 Native 20 2 5 2 3 2 2 3 5 10

By adding the native structure, hits are present in all systems, and the analysis is repeated using this data.
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of decoys and sequences from Data Set 1. The structure-

based conservation strategy is most similar to the C or

CW sequence-based strategies, since we used the chemi-

cal definition of conservation and allowed spatial align-

ment of predicted hot spots. The general trends seemed

to match those of the sequence-based approaches, with

roughly the same set of systems generating high-scoring

hits. One interesting difference was that the range of

scores among near-native hits was often more narrow for

the structure-based analysis (c.f., 1AY7, 1B6C, 1E6E,

1GLA, 1Z0K). In these cases, it is likely that decoy struc-

tures generated non-native hot spot predictions that were

also predicted in the modeled interolog structures but

did not reflect the true hot spots of the complex. In this

respect, the structure-based modeling may offer some

improvement over the simpler sequence-based approach.

Figures showing the relationship between iRMSD and

(total) hot spot conservation for these examples can be

found in Supporting Information Figure S2.

DISCUSSION

Our results have been structured to facilitate easy

comparison with the work of Andreani et al. on the

InterEvol Score.54 They assessed their method by rescor-

ing ZDOCK decoys, ranking them both individually and

within clusters. For Data Set 2, they were able to achieve

a top 10 hit in 14 cases; following a clustering procedure,

this improved to 24 cases. Their results were shown to

be an improvement over several existing interface scoring

methods, including ZDOCK 3.0,64 ZRANK,65 and SPI-

DER.66 We examined a smaller number of decoys and

did not apply clustering, since some viable systems

return very few hits. Without clustering, our approach

was successful in 25 cases using the CWF strategy when

using the same sequence alignments.

An extensive recent survey67 suggests that the best

current methods are able to achieve top 10 hits in <60%

of cases and a top 1 hit in <30% of cases. While our

study is smaller due to data limitations, we achieved a

top 10 hit in 14/17 (82%) of viable cases for Data Set 1

using the CWF strategy. A top 1 hit was obtained in 6/17

(35%), and when the native structure was added, this

number jumped to 10/22 (45%). A total of 18/22 (81%)

structures returned a top 1 hit according to one of the

strategies when the native structure was included. For

Data Set 2, top 10 hits were obtained in 25/55 (45%)

and top 1 hits for 12/55 (22%) of viable systems using

the CWF strategy. Upon addition of the native struc-

tures, the fraction of systems returning top 10 hits was

31/85 (36%), and the fraction returning top 1 hits was

15/85 (18%) when using the CWF strategy. The results

presented in Table II suggest that many of the unsuccess-

ful systems from Data Set 2 may be successful using our

approach if given an optimal collection of interologs. It

is yet unclear how to define the “sweet spot” in choosing

orthologs, since high levels of sequence homology offer

little information, while divergent examples may not dis-

play sufficient levels of conservation at predicted hot

spots.

In addition to success rates, it is interesting to note

how scoring of the (remodeled) native structures com-

pare with scoring of near-native and non-native decoys.

In many cases, the native structure scored at or near the

top, while in other cases it scored significantly lower

than near-native hits. In cases where performance on

native structures was notably worse than for near-natives,

the structures generated an abundance of predicted hot

spots. This suggests that false positive predictions may be

the reason for this difference. In addition, many near-

natives did somewhat better than native structures when

using windowed strategies. In these cases, it seems likely

that some hot spot predictions were made at true hot

spots in the native structure while near native structures

generated hot spot predictions at neighboring positions.

CONCLUSION

Through the study of interolog interactions, we

observe a strong correlation between low iRMSD and

hot spot conservation across a range of systems. Our

analysis suggests that, with appropriate choice of intero-

logs and good sampling of near-native structures, our

hot spot-based approach can return top 10 and top 1

hits at a comparable or higher rate than the best existing

methods.

While these initial results are very promising, it is clear

that further improvements are possible through better

selection of interolog sequences and refinements to the

KFC2a model able to reduce false positive predictions.

The windowed and filtered strategies can also be refined,

such as by taking the maximum conservation at any resi-

due within the window or by setting the filtering thresh-

old according to the size of the protein–protein interface.

Future work will also consider how to select the “best”

near-native decoys, such as those with the highest frac-

tion of near-native contacts, since correct prediction of

hot spots is likely to correlate with correct prediction of

native residue-residue interactions. As high-quality

resources such as InterEvol60 and 3D Interologs59

develop alongside our evolutionary-driven scoring mod-

els, there is an opportunity to learn more about molecu-

lar evolution at the atomic scale.
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