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ABSTRACT

As the use of next-generation sequencing (NGS)
for the Mendelian diseases diagnosis is expanding,
the performance of this method has to be improved
in order to achieve higher quality. Typically, perfor-
mance measures are considered to be designed in
the context of each application and, therefore, ac-
count for a spectrum of clinically relevant variants.
We present EphaGen, a new computational method-
ology for bioinformatics quality control (QC). Given
a single NGS dataset in BAM format and a pre-
compiled VCF-file of targeted clinically relevant vari-
ants it associates this dataset with a single arbiter
parameter. Intrinsically, EphaGen estimates the prob-
ability to miss any variant from the defined spectrum
within a particular NGS dataset. Such performance
measure virtually resembles the diagnostic sensitiv-
ity of given NGS dataset. Here we present case stud-
ies of the use of EphaGen in context of BRCA1/2
and CFTR sequencing in a series of 14 runs across
43 blood samples and 504 publically available NGS
datasets. EphaGen is superior to conventional bioin-
formatics metrics such as coverage depth and cov-
erage uniformity. We recommend using this software
as a QC step in NGS studies in the clinical context.
Availability: https://github.com/m4merg/EphaGen or
https://hub.docker.com/r/m4merg/ephagen.

INTRODUCTION

Next-generation sequencing has transformed the landscape
of the whole field of medical genetics. It enhanced the per-
formance of the genetic testing as well as expanded and fa-

cilitated understanding of clinical genetics (1–4). The prin-
cipal focus of the clinical geneticists remains on Mendelian
diseases as they are the most well described and straightfor-
ward to integrate into clinical practice. However, decades of
research efforts and routine testing shed light on the spec-
trum of variations in human genes, associated with a wide
range of genetic disorders and their clinical significance in
terms of variable penetrance and expressivity (5). Moreover,
for the most wide-spread genetic diseases, numeric research
collaborations and public databases provided information
on common and population specific minor allele frequen-
cies for clinically significant variants. For instance, as of
May 2018, Breast Cancer Information Core database (6)
contains information on relative clinically relevant variants
across BRCA1 and BRCA2 genes, implicated in hereditary
breast cancer development, based on the 11 344 affected
population size.

Against this background, despite excessive informational
yield that NGS sequencing data provides, in routine clinical
practice, in essence, it is used to confirm the findings for the
patient: it is either known pathogenic variants (positive re-
sult) or a wild-type (negative result). Meanwhile, the detec-
tion of a variant which is not annotated in public databases
and in literature may be considered as an exceptional event.
Nevertheless, such de novo variants, as well as variant of un-
certain significance or any findings beyond the known spec-
trum of pathogenic variants, have limited significance for
clinical practice. Taking this into account, commonly used
NGS quality control metrics, such as read coverage depth
or coverage uniformity, fail to elucidate the worth of the
negative result since target sequencing regions may be in-
trinsically unequal depending on their genome position.

Here, we describe a novel approach to the measurement
of performance in routine clinical NGS testing. Given single
NGS dataset in BAM format and spectrum of the variants
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of interest with known allele prior probabilities, it employs
methodology which essentially resembles variant calling un-
der reversed null hypothesis. Instead of detecting variants,
this algorithm is utilized to estimate the probability to miss
any variant from the defined spectrum and, therefore, to de-
cide whether collected data are suitable for clinical interpre-
tation or no. Performance of presented sensitivity calcula-
tion was extensively tested both on simulated and on real-
life sequencing datasets. Since it matches every dataset with
a single number, it is ideally suited for routine NGS qual-
ity control and allow head-to-head comparison of different
sequencing approaches.

MATERIALS AND METHODS

Sample collection and sequencing

Sequencing was performed on 43 blood samples from 43
breast cancer patients referred for BRCA1/2 sequencing as
a part of routine case management. Participation in this
project was based on informed consent. All further anal-
yses were based on the archival data that were stored in the
database with no current connection to the patients’ iden-
tifiers. The research was approved by the local ethics com-
mittee of the Atlas Medical Center, LLC. The project was
conducted in accordance with the principles expressed in
the Declaration of Helsinki.

Twenty milliliters of peripheral blood was collected from
each patient. Circulating plasma DNA was extracted from
20 ml of plasma using Plasma DNA extraction kit (Biosil-
ica) or QIAamp Circulating Nucleic Acid Kit (Qiagen) ac-
cording to the manufacturer’s protocols. DNA quality and
quantity were evaluated with Agilent Bioanalyzer 2100 us-
ing High Sensetivity DNA kit (Agilent Technologies).

Target regions amplification was performed employing
the Atlas ABC panel. Primer panel was designed via
Ion Ampliseq Designer (Thermo Fisher Scientific Inc)
through White Glove process and include two primer pools,
comprising 409 amplicons within 4 cancer-related genes:
BRCA1, BRCA2, ATM, CHEK2. Pooled libraries were se-
quenced using Ion Torrent PGM (Thermo Fisher). Raw se-
quence data analysis, including base calling and demulti-
plexing, were performed using the Torrent Suite Software
v.4.0.2 (Life Technologies).

Ten nanograms of circulating plasma DNA were used
to generate sequencing libraries using the Ion Ampliseq li-
brary preparation kit v2.0 (Life Technologies) according to
the manufacturer’s protocol. The barcoded libraries were
quantified using an Agilent 2100 Bioanalyser and Qubit 2.0
Fluorometer TM (Life Technologies) and then diluted to a
final concentration of 10 pM for template preparation using
the OneTouch 2 instrument and Ion One Touch Template
kit v2 (Life Technologies). The resulting pooled libraries
were quality control checked using the Ion Sphere quality
control Kit on the Qubit 3.0 Fluorometer. Libraries were se-
quenced on the PGM Ion Torrent (Life Technologies) using
a PGM 200 sequencing kit v2 and 318 Chip v2.

All samples were sequenced within 14 sequencing
runs (Figure 9). Sequence data mapping to reference
genome (GRCh37.p13) was performed with Burrows-
Wheeler Aligner (BWA-mem, version 0.7.7-r441) (7).

Statistical framework

At first, we consider that object of testing is known to
harbor pathogenic variants of particular, limited spectrum.
This consideration is based on the methodology used to
judge whether variant is clinically relevant or no, requir-
ing population data, segregation data, functional data and
so on (8). Assuming that this spectrum of pathogenic vari-
ants is generated based on the previously studied affected
population Pa f f of size NPa f f we can define a set of M mu-
tation sites with known allele count at each site m, nm :∑M

m = 1 nm = NPa f f . Therefore, relative allele frequency at
site m is pm = nm /NPa f f . Given single sequencing dataset D,
covering aforementioned M sites we can define the probabil-
ity to miss any variant m. This estimation resembles quasi-
experiment to detect mutations in population Pa f f , while
the average dataset quality during this experiment is the
same as the quality of the dataset D. Here, dataset quality
is defined by read count covering each position m and base
quality. In this context, we can define in silico sensitivity of
the dataset, resembling diagnostic sensitivity.

EphaGen takes aligned sequencing data in .bam for-
mat as input file as well as pathogenic variant spectrum
in .vcf format, describing M mutation sites with the allele
count nm for each. To estimate probability to miss variant
m we employ simple probabilistic model for variant calling
(9). Given sequencing data may be represented by matrix
D = (D̄1, . . . , D̄M)T, totaling N reads covering M target

mutation sites, with Dm =
⎛
⎝1, , , 1︸ ︷︷ ︸

lm

, 0, . . . , 0︸ ︷︷ ︸
km−lm

⎞
⎠, representing

alignment for the site m, where 1 stands for reference allele
and 0 stands for alternative allele. Assuming that (i) data
Dm at different sites are independent (ii) sequencing errors
arise independently at rate ε and (iii) error rates are identi-
cal for all bases, posterior probabilities for observing data
Dm at site m given 0, 1 or 2 reference alleles at this site can
be approximated with a binomial distribution:

P (D|0m) =
(

km
lm

)
εlm (1 − ε)km−lm (1)

P (D|1m) =
(

km
lm

)
/2km (2)

P (D|2m) =
(

km
lm

)
(1 − ε)lm εkm−lm (3)

For the posterior probability of observing 0, 1 or 2 refer-
ence alleles at site m given data Dm we have:

P (αm|D) = P (D|αm) P (αm)∑2
im=0 P(D|im)P (im)

, α ∈ {0, 1, 2} (4)

And called genotype is thus:

α̂m = argmaxαm∈{0,1,2} P (αm|D) , (5)

While mutant genotype α̂m = 0 or α̂m = 1 are accepted if
P(α̂m|D) > P(α̂m) and genotype Phred quality exceeds 20:

Qα̂m = −10 log10

[
1 − P (α̂m|D)

]
> 20, (6)
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where P(α̂m|D) = P(α̂m|D)−P(α̂m)
(1−P(α̂m))

Prior probabilities of homozygous for alterna-
tive allele call, heterozygous call and homozy-
gous for reference allele call can be calculated un-
der Hardy-Weinberg equilibrium and are P (0m) =
pm

2 , P (1m) = ∑M
i=1,i �=m 2 pi pm = 2 pm(1 − pm) and

P (2m) = ∑M
i=1,i �=m pi

2 + ∑M
i = 1,i �=m

∑M
j = 1, j �=i 2 pi p j =

(1 − pm)2 respectively.
According to the aforementioned quasi-experiment, each

site is tested to be mutant (homozygous or heterozygous for
alternative allele) or reference (homozygous for reference al-
lele). Considering that true condition is presence of alterna-
tive allele in homozygote or heterozygote, sensitivity can be
calculated as ratio of number of true positives (quasi-test
system calls mutation if allele is present in sample) to the
total count of alleles:

S = 1
2

∑M

m = 1

[
γm,1 P (1m) + 2 ∗ γm,0 P (0m)

]
, (7)

where γm,1 and γm,0 are probabilities to correctly identify
sample as heterozygous and homozygous for alternative al-
lele at site m respectively.

During aforementioned quasi-experiment we may expect
any data Dϕ = (D̄1,ϕ, . . . , D̄M,ϕ)T, where probabilities of
observing each data Dm,ϕ may be calculated by equations
1–3. For each possible dataset Dϕ using equations 5, 6 we
can estimate whether the variant m will be detectable or no.
Therefore, accounting for all possible datasets that may be
generated, probability to correctly detect α (α ∈ {0, 1}) al-
ternative alleles for the site m may be calculated as γm,α =∑

ϕ P(Dm,ϕ|αm) δϕm,α P(αm),
where, δϕm,α denotes where variant m is detectable in

dataset Dϕ or no:

δϕm,α =
{

1, i f α = α̂m
0, i f α �= α̂m

, α ∈ {0, 1}

And, thus, Equation (7) can be written as:

S = 1
2

∑M

m = 1

∑
ϕ

[
P

(
Dm,ϕ|1m

)
δϕm,1 P(1m)

+2 ∗ P
(
Dm,ϕ|0m

)
δϕm,0 P (0m)

] =
∑M

m=1

∑
ϕ

cm,ϕ

(8)

In Equation (8), the second sum is over all combinations
of data Dm,ϕ assuming i alternative alleles. Assuming that
all reads are equal and discounting differences in base qual-
ity it can be approximated with:

S =
∑M

m=1

∑km,ϕ

i=0
cm,ϕ , (9)

Where Dm,ϕ = Dm,i ≡

⎛
⎜⎝1, , , 1︸ ︷︷ ︸

i

, 0, . . . , 0︸ ︷︷ ︸
km,ϕ−i

⎞
⎟⎠ .

Further, we use a Poisson distribution with cumulative
distribution function cd f (km,e) = �(�km,e�,km)

�(km) , km,e > 0 as a
model to calculate probability of observing km,e reads cov-
ering site m after generating another dataset Dϕ with the

same total amount of N reads covering M target muta-
tion sites. To define the set of expected coverages at site m,
Km,exp, we can calculate the pair of km,l and km,h so that
Km,exp = {k : km,l ≤ k ≤ km,h}, km,l − km,h is minimal across
all possible pairs and:{ CDF (km,h) − CDF (km,l ) ≥ 0, 99

, km,h > km, km,l > 0, orkm,h − km = km − km,l

CDF (km,h) − CDF (km,l ) ≥ 0, 95, km,h > km, km,l = 0,

which stands for the 99% confidence interval of km,e. Af-
ter Km,exp defined this way, probability of observing km,e ∈
Km,exp should be normalized according to the chosen inter-
val: P (km,e) = pmf (km,e, km)/

∑
k∈Km,exp

pmf (k, km), where

pmf (km,e, km) is probability mass function of Poisson dis-
tribution.

Here, we should note, that coverage for mutation site may
equals to 0. Since it may be caused by amplicon drop-out,
deeper sequencing of the same library wont naturally gen-
erate data with reads covering this site. On the other hand
it may be caused by significant coverage non-uniformity or
low mean coverage and thus, despite not observed in data
D, it might be covered during sequence generating Ñ > N
reads, though based on the single sequencing dataset Ñ re-
mains not-definable. Therefore, for those sites, covered with
0 reads it is defined that km,l = km,h = 0 and Km,exp = {0}
(10).

After defining Km,exp we can update Equation (6):

S =
M∑

m=1

∑
km,e∈Km,exp

km,e∑
i=0

cm,ϕ P (km,e)

It is known that the process of sequence analysis is prone
to produce diverse systemic errors originating at different
stages of analysis, including directly sequencing, library
preparation and even specimen sampling. Such errors can
be handled employing more complicated variant calling
models, cross-sample analysis or other methods. However
simple probabilistic model may produce false calls in such
cases, which will introduce bias into sensitivity calculation.
In order to avoid such perturbation, during the step of cal-
culating km for each site if homozygote or heterozygote for
alternative allele is more likely than homozygote for refer-
ence allele, all reads supporting alternative allele are purged
from the alignment.

RESULTS

Overview

We have developed EphaGen, an open-source application
implemented in Perl/R, which can be used as a stand-
alone version. EphaGen takes two files as input: aligned
sequenced data in .bam format and target variant spec-
trum in .vcf format. Target variant spectrum can be con-
structed based on the previously studied affected popula-
tion employing prospective, retrospective, meta-analysis or
database view methodology. Therefore, each variant ob-
served in the affected population can be associated with mi-
nor allele count which should be included into input .vcf
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file. Based on the simple probabilistic model for variant call-
ing under the reversed null hypothesis, EphaGen estimates
the probability to miss any variant from target spectrum
or single site sensitivity (Figure 1). Therefore, instead of
directly detecting variant from sequencing data, EphaGen
calculates maximum potential diagnostic sensitivity of any
variant calling methodology which can be employed to de-
tect variants from data (see Methods for detailed statistical
framework).

EphaGen run time depends on both the amount of refer-
ence variant sites and read count generated during NGS ex-
periment (Figure 2A, B). While dataset load and sensitivity
calculation based on the statistical framework are two time-
limiting stages of the analysis both of them pertain linear
growth depending on the target variant sites count. Calcu-
lation time follows exponentials growth as average reference
variant site coverage increases. To eliminate drastic escala-
tion of the calculation we used empirically derived single site
sensitivity approximation based on the generalized logistic
curve.

Performance of sensitivity estimation on simulated data

The crucial component of EphaGen is a pre-compiled VCF-
file database of genomic variant alleles with the correspond-
ing probabilities to identify each variant allele in the af-
fected population. In our study, we used BIC (Breast Can-
cer Information Core, assessed may 2018) (6) and CFTR2
(Clinical and Functional Translation of CFTR, assessed
may 2018) (11) databases to compile two target variant spec-
trums in order to test efficiency of diverse NGS-based sys-
tems to detect BRCA1/2 and CFTR clinically significant
variants respectively. Only variants noted as clinically im-
portant in BIC and CF-causing or those with varying clin-
ical consequence in CFTR2 were used for the analysis ex-
cluding variants with the reference or alternative allele of 50
bp or longer. A total of 1319 various variant sites were col-
lected for BRCA1/2 genes amounting to 1339 diverse alle-
les comprising 11 344 alleles counts and 310 variant sites for
CFTR gene (321 diverse alleles and 136 260 alleles counts).

Single site sensitivity calculation is based only on three
variables: site coverage, base quality and allele prior proba-
bility, calculated as the site allele count divided by the total
allele count in reference VCF-file (see Methods for details).
Therefore, we set to evaluate the performance of this sta-
tistical framework varying the aforementioned parameters.
The dependency of single site sensitivity on the site cov-
erage built at 0.015% allele prior probability follows clas-
sic S-shape curve reaching 99% sensitivity at 41×, 26× and
21× site coverage at 15, 25 and 35 base Phred quality re-
spectively (Figure 2C). Meanwhile, dependency on the al-
lele prior probability follows peculiar form, demonstrating
the growth of the sensitivity as allele probability increase in
a range 0–5% comprising the major fraction of allele proba-
bility distribution across diverse genes with the heterogenic
clinically significant variant spectrum (Figure 2D).

In order to estimate the dependency of the sensitivity
calculation on coverage uniformity, we simulated coverage
following log-normal distribution with varying mean and
standard deviation (�) for the set of 100 variant sites (Fig-
ure 2E). Allele prior probabilities were simulated with the

uniform distribution. Base Phred quality was constant and
set to 30. To measure coverage uniformity, we used even-
ness score, essentially described in Oexle (12). Evenness
score calculation was performed across all reference vari-
ant sites. At low coverage depth, sensitivity retains almost
constant ration to evenness score when standard deviation
ranges from 0.1 to 1, which is the most common range for
NGS coverage uniformity. However, at high coverage, as ex-
pected, sensitivity asymptotically approaches 100%, mean-
ing that despite decreasing coverage uniformity all sites are
covered with enough reads to confidently detect every single
variant.

Further instead of uniform distribution for variant prior
allele probability we use the distribution that follows pre-
viously collected BRCA1/2 of CFTR sites (Figure 2D).
This resulted in variation introduced into sensitivity calcu-
lation. As coverage uniformity decreases, standard devia-
tion of sensitivity across different data simulations demon-
strates growth, while the rate depends on the coverage depth
(Figure 2F). In addition, sensitivity variation depends on
the spectrum of variant allele frequencies. For instance, the
standard deviation of the sensitivity to detect CFTR vari-
ants across different data simulation is 3.6 times higher than
for BRCA variants, which is in agreement with the dif-
ference between allele frequency scatter for two reference
databases (coefficient of allele count variation: 12.8 versus
8.3 for CFTR and BRCA respectively). This means that the
more allele frequency distribution resembles uniform dis-
tribution, the less variation of sensitivity across datasets is
observed.

The utility of estimated sensitivity as NGS performance mea-
sure

In order to assess the performance of the EphaGen sta-
tistical framework, we have downloaded NGS sequencing
data from 11 SRA studies (Figure 3A) with a total of 308
whole exome sequencing datasets and 196 target sequenc-
ing datasets. This comprised eight different whole exome se-
quencing (WXS) panels and three BRCA1/2 targeted pan-
els. In addition to publically available datasets, we have per-
formed 14 sequencing runs for target resequencing across a
total of unselected 43 blood samples by leveraging custom
amplicon panel designed to cover all exons of BRCA1 and
BRCA2. As all analyzed publically available datasets were
obtained employing Illumina sequencing technology, gen-
erating generally the same base quality, calculated in silico
sensitivity was related to two major bioinformatics quality
control metrics: mean target coverage depth and coverage
uniformity defined by evenness score.

Considering that WXS datasets were collected across dif-
ferent laboratories, average coverage depth significantly var-
ied across different datasets. However, that does not relate to
evenness scores which were generally similar across different
datasets for particular capture panel, with an exception of
SRP072350 project utilizing SeqCap V3.0 (mean evenness
score of 0.75 versus 0.84). This indicates that library prepa-
ration strategy has a potential to significantly impact result-
ing sequencing efficiency of specific loci. Despite similar GC
content between target regions mapping to BRCA1/2 and
CFTR loci, most panels demonstrated slight differences of
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Figure 1. Overview of the EphaGen framework for calculation of the estimated in silico sensitivity. (A) Reference database of target clinically significant
variants is constructed with information on the allele count for each present allele at every variant site. (B, C) Based on the simple probabilistic variant
calling model taking into account site coverage, base quality and allele prior probability the probability to miscall each implied variant allele from reference
database are calculated, contributing to the Single Site Sensitivity or false negative rate related to the single variant allele subtracted from 1. (D) Finally,
resulting dataset sensitivity is calculated through summation across all sites (see Methods).
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Figure 2. EphaGen validation on simulated data. (A, B) EphaGen run time is limited to two time-limiting stages: dataset load and directly sensitivity
calculation based on the statistical framework. Dependency of both of them on average variant site coverage is built for 1000 target variants (A) and on target
variant count is built for 100× average variant site coverage (B). (C) Single site sensitivity calculation varying variant site coverage demonstrates S-shape
curve with increasing steep as the phred quality score increases. Graph is built at allele prior probability of 0.015%. (D) Single site sensitivity calculation
varying allele prior probability demonstrates a peculiar curve however distinguishing an increase in sensitivity as the allele prior probability increases
at range 0–5% with a decreasing slope as the coverage increases. Histograms at the top of the graph demonstrates allele prior probability distribution for
reference databases of target clinically significant variants build based on BIC and CFTR2 databases for BRCA1/2 and CFTR genes respectively. Influence
on coverage uniformity was assessed by simulating data with log-normal coverage distribution across fixed count of variant sites with varying standard
deviation (�) and fixed mean coverage at 5×, 15×, 60× and 500×. Variant allele prior probabilities followed uniform distribution during simulation. (E).
Simulating data with allele prior probability distribution resembling the ones for BRCA1/2 and CFTR variants introduces variation in sensitivity (F),
which increases as coverage distribution standard deviation grows up.
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Figure 3. Data used for EphaGen validation. (A) A total of 504 publically available datasets from 11 different SRA projects were downloaded to estimate
sensitivity calculation performance, representing 11 different target capture strategies. In addition, 43 datasets were generated employing Ampliseq Custom
Design panel, targeting only BRCA1/2, ATM and CHEK2 genes. Diverse panels were characterized with diverse coverage of reference variant database (see
main text for calculation methods), thus, limiting their sensitivity for detection of thereof. P-values calculation was based on t-test for difference between
parameter distribution across datasets from single project versus parameter distribution across datasets generated employing specific panel, excluding
datasets from that project. Histograms (B, C) demonstrates differences between parameter distribution (mean coverage – B and coverage uniformity
calculated as evenness score – C) across different loci, noting that coverage uniformity is far from ubiquitous across the whole target regions.
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mean loci coverage depth (mean ratio 1.24 with the maxi-
mum at 1.7 for TruSeq Exome Enrichment Kit) (Figure 3B).
Importantly, coverage of different loci across most panels
demonstrated significantly different uniformity with mean
evenness score difference of 0.05 and reaching 0.07 and 0.08
for SeqCap EZ V3.0 and Nextera Rapid Capture Expanded
Exome kits respectively (Figure 3C), illustrating the need
to thoroughly control coverage uniformity across all tar-
get loci during multi-genic analysis rather than focusing on
genome-wide coverage uniformity.

Although the panels selected for the analysis pertain
whole exome design or BRCA1/2 targeted design, some
of the variants from the pre-compiled variant databases
may be not targeted by any of the panel. This may result
in inconsistent coverage of such variant sites generated by
these panels and therefore cap the sensitivity calculation
for some datasets. Hence, we sought to estimate such sen-
sitivity cap for each panel for both BRCA1/2 and CFTR
variants. For that, we counted sites covered by at least 5
or 0.1× (mean locus coverage depth) reads across at least
50% downloaded datasets for each panel. As a result, ev-
ery panel covers 100% of BRCA1/2 alleles with an excep-
tion for SeqCap EZ v2.0. Only three datasets employing
indicated panel were used for the analysis. Interim, most
panels reach sensitivity cap for detecting CFTR reference
variants at 99% or less, mostly due to commonly mistarget-
ing intronic variants, namely rs397508266, rs397508261 and
rs75039782, comprising nearly 0.93% of all CFTR alleles
(Figure 3A).

The dependency of the NGS dataset sensitivity on the
mean target loci coverage may be approximated with Single
Site Sensitivity curve (Figure 2C) with R2 of 0.98 and 0.52
for BRCA1/2 and CFTR variants, respectively. It is impor-
tant to note that BRCA1/2 approximation reaches maxi-
mum coefficient of determination for Single Site Sensitivity
curve built with Phred quality of 14, while for CFTR – 19.
Nevertheless, approximation accuracy for the CFTR sensi-
tivity calculation is low (Figure 2), with higher coefficient
of variation for sensitivity at low coverage as compared to
BRCA1/2 related approximation (0.22 versus 0.02, 0.13 ver-
sus 0.04 and 0.006 versus 0.03 for the coverage depth bands
10–20, 20–30 and 30–40 bp respectively). Such high sensitiv-
ity variation for CFTR datasets is in accordance with that
in the simulated data (Figure 2F). However, sensitivity to
detect CFTR variants reaches 99.7% of the estimated sen-
sitivity cap at 30x-40x in average, while the same level of ac-
curacy for BRCA1/2 variants analysis can be reached only
at 50x-60x coverage (99.3% of cap in average). This could
be explained by the wider spectrum of BRCA1/2 mutations
with 1230 (275 for CFTR) unique variant sites spread on
24.5 kb (7.1 kb for CFTR) target region and 12.3 bp (15.0
for CFTR) average inter-variant distance within the single
exon. Thus, either higher uniformity is required to confi-
dently detect the whole spectrum or higher coverage depth
with low uniformity. Meanwhile, 48% of BRCA1/2 alleles
were presented with the minimal allele count of 1 in refer-
ence VCF-file database and thus missing the single variant
does not lead to overall sensitivity perturbation and there-
with demonstrating higher approximation accuracy. Mean-
while, each CFTR reference variant is presented with higher
allele prior probability in average and thus missing it dis-

turb overall sensitivity at a higher order compared to the
BRCA1/2 case. Overall this points that different test sys-
tems demonstrate the varying response to sequencing cov-
erage depth. Thus, reaching the same quality standard may
require higher coverage depth for some test systems.

Further datasets demonstrating outlying in silico sensi-
tivity were identified by employing Chauvenet’s criterion
under the assumption that target variable follows lognor-
mal distribution in 10 bp coverage bands separately for
BRCA1/2 and CFTR loci. Datasets with outlying sensi-
tivity for BRCA1/2 variants detection were significantly
enriched with ones generated with SureSelect Human All
Exon V4 panel (Figure 4A) (observed 81% versus expected
9%, P-value 1.2e–11). Coverage uniformity of such datasets
did not differ from total sample (P-value of 0.21). Notable
sensitivity drop which was observed across SureSelect V4
datasets was primarily due to inconsistent coverage of the
rs80357783 variant site, comprising 18% of total BRCA1/2
allele count and, thus, accounting for 94% of the total es-
timated false negative rate in average across such outlying
datasets. Coverage of the principal rs80357783 variant was
only 4% of mean loci coverage across datasets with outly-
ing sensitivity, and 18% across total sampling. In part, such
inconsistent, low coverage could be due to the variant site
not being directly covered with hybridization probes, with
the nearest probe mapping at a distance of 14 bp, accord-
ing to the panel specification provided by the manufacturer.
For the rest of the datasets with the outlying sensitivity to
detect BRCA1/2 variants, approximately 90% of the false
negative rate was split among 64 variants, on average. These
datasets were characterized by lower coverage uniformity
(mean evenness score of 0.61 versus 0.79, P-value 0.007).
As for CFTR related analysis, 85% of the sensitivity drop
cases were associated with the high estimated false nega-
tive rate of the rs113993960 variant, accounting for the 73%
of the clinically significant CFTR alleles. With no satura-
tion for any panel, these cases were also not associated with
lower coverage uniformity or total coverage (P-value 0.46
and 0.32).

To decipher the differences of sensitivity calculation at
high coverage we performed log

( 1
1−x

)
transformation of the

sensitivity to create a map from [0, 1] to [0, +∞]. Further
linear regression with no intercept put apart datasets with
different evenness score by the slope of the line, demonstrat-
ing different benefit gain with an increase in coverage depth
for different coverage uniformity. Therefore, the ratio of the
slopes for two different evenness score ranges may be inter-
preted as the ratio between efficient coverage. In this way,
BRCA1/2 genes sequencing almost does not benefit with
an increase in coverage uniformity up to 0.85, whereas with
evenness score of 0.85 and more efficient coverage increases
up to almost two times (slope of the line 0.0661 versus
0.0354). It is important to say that datasets with evenness
score of 0.85 and higher across BRCA1/2 loci were limited
to the ones generated with SeqCap EZ v3.0 panel. These
datasets were obtained in course of diverse SRA projects,
thus, limiting the interpretation of these results and its ap-
plication for any other dataset except those analysed here.
Nevertheless, linear regression across datasets generated by
different panels had not demonstrated significantly differ-
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Figure 4. Sensitivity calculation results across all test datasets for BRCA1/2 (A) and CFTR (B) loci. Approximation was performed with the curve,
resembling dependency of the Single Site Sensitivity on coverage (Figure 2B) with varying Phred Quality. Inline graphs demonstrate approximation accuracy
at different Phred Quality values.
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ent slope in evenness score ranging from [0.7, 0.75) to [0.75,
0.8) (P-value ranging from 0.4 to 0.84), for different panels.
Overall, these findings demonstrate the utility of evenness
score interpretation in terms of the efficient coverage and
how coverage uniformity influences dataset quality for call-
ing clinically relevant variants (Figure 5D). Since most pan-
els pertain sensitivity cap as was demonstrated before, effi-
cient coverage of CFTR reaches asymptote as the coverage
depth growth, with an exception for SeqCap MedExome
Kit which covers commonly mistargeted intronic CFTR
variants (Figure 5B). After removing these variants from
the reference VCF-file database, linear regression demon-
strated the same separation of datasets with varying cover-
age uniformity by the slope of the lines (Figure 5C), even
if their rate of efficient coverage growth was higher as com-
pared to BRCA1/2 (Figure 5D).

Sensitivity calculation for comparative analysis of different
sequencing approaches

In addition to the sensitivity calculation EphaGen outputs
Single Site Sensitivity for each variant site from a refer-
ence database in VCF-file format. Combined with the allele
prior probability, it allows calculating estimated false nega-
tive rate by the following formula: FN = AF*(1 – Single Site
Sensitivity), where AF is prior allele probability, defined by
reference variant database. We sought to estimate how cal-
culated this way false negative rate varies among different
variant sites for each locus across different panels. For this,
we performed downsampling of all datasets to 20 000 and
4000 reads mapping to BRCA1/2 and CFTR loci respec-
tively, as this amount of sequencing data is enough to reach
99% of the sensitivity cap in average for each loci, as was
previously shown. Since the false negative rate is limited by
the allele prior probability, one may expect a correlation be-
tween these two variables. However, spearman rang correla-
tion between average false negative rate across datasets em-
ploying the single panel was low, though overall higher for
CFTR-related analysis (Figure 6B, C). Moreover, the corre-
lation overall was low between false negative rates produced
by different panels (Figure 6A), pointing out that different
panels are prone to produce false negatives at different sites.
Overall, this indicates that selection of the panel to perform
sequence of the selected loci should be performed in accor-
dance with the population of interest, as some populations
may harbor founder mutations when some panels but not
the others are prone to produce high false negative rate for
these particular mutations.

As amplicon based BRCA1/2 targeted sequencing aims
at shorter regions in total, compared to WXS sequencing,
this allows performing sequencing at deeper coverage. Se-
quencing coverage for datasets generated with amplicon-
based BRCA1/2 targeted panels was at 4200× in average
versus only 140× for WXS panels. Nevertheless, after ex-
cluding outliers, estimated sensitivity of these datasets was
only slightly higher with 98.4% sensitivity in average (ver-
sus 97.5% for WXS) and 25% (versus 35% for WXS) of
the datasets reach sensitivity of 99.9% and 7.5% (11.5% for
WXS) reach the sensitivity of 100%, considering, that sensi-
tivity estimation is limited by 5◦. Off note, since some of the
amplicon-based datasets were generated employing semi-

conductor sequencing (see Materials and Methods for de-
tails), this should affect sensitivity calculation as this tech-
nology tends to produce data with lower Phred read quality.
However, we did not observe any trend towards lower sensi-
tivity of these datasets (mean versus other amplicon-based
datasets: 99.9 versus 98.2, P-value < 0.0001), which could
be explained either by ultra-deep coverage or by the fact that
only Ion Ampliseq Custom Design panel was used to gener-
ate libraries that were sequenced with semiconductor tech-
nology, so bias could be introduced by enrichment strategy.
In order to perform the head-to-head comparison of both
enrichment strategies, all datasets were downsampled to re-
semble conditions when a fixed number of reads are gener-
ated by sequencing (Figure 7A). As a result, hybridization
based enrichment strategy outperformed amplicon-based in
all ranges of coverage depth. While understanding that en-
richment strategy is selected according to cost-analysis or
other prevailing factors, our analysis points to an advantage
of hybridization approaches over amplicon based ones.

Further, we performed head-to-head performance com-
parison of the amplicon-based panels based on the sensitiv-
ity calculation. We observed that two panels, namely Qia-
gen Generead BRCA 1/2 v2 and Ion Community BRCA1/2
panel were characterized by close sensitivity values given the
read count as is (mean 99.8% versus 99.7% respectively, P-
value 0.08). Downsample analysis demonstrated superior-
ity of the sensitivity value for Generead panel in all cov-
erage depth ranges, though with no statistical significance
in any (Figure 8A). What’s more important we observed
higher sensitivity standard deviation for Ion Community
BRCA1/2 panel in coverage depth ranges (Figure 8A). This
was correlated to the higher standard deviation in evenness
score as several datasets demonstrated drop in coverage uni-
formity (Figure 3A), though not associated with drop in
sensitivity (Spearman correlation coefficient, 0.33, P-value
0.11) (Figure 8B). As we studied variants demonstrating low
single site sensitivity we identified that sensitivity drop was
associated with the undercoverage of the five variant sites
located within exon 20 comprising for a total of 0.7% of
the BRCA2 gene (Spearman correlation coefficient 0.89, P-
value < 0.001) (Figure 8B). Of note, BRCA2 exon 20 skip-
ping was not reported in any sample in the original study
(13). Limiting the analysis to datasets with descent BRCA2
exon coverage (15× and more) demonstrated contrariwise
inferiority of the Generead panel compared to the Ion Com-
munity BRCA1/2 panel (mean sensitivity 99.95% versus
99.8%, P-value < 0.0001) despite the higher estimated sen-
sitivity cap (Figure 3A). This points, that though datasets
generated by Ion Community BRCA1/2 panel were char-
acterized by both high standard deviation of the even-
ness score and standard deviation of the sensitivity, several
datasets with low coverage uniformity still demonstrated
high sensitivity due to ultra-deep coverage. Meanwhile, sen-
sitivity analysis allowed identifying the low quality cases,
and illustrating the applicability of the sensitivity calcula-
tion as the quality control metric in routine practice.

Furthermore, after excluding outliers, two panels, namely
Qiagen Generead BRCA 1/2 v1 and Ampliseq Custom De-
sign panel were characterized by close coverage uniformity
(average evenness score of 0.76 versus 0.76, P-value 0.056).
However, the last was characterized by the superior sensi-
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Figure 5. Sensitivity calculation deciphers importance of the coverage uniformity. Dependency of estimated dataset sensitivity on coverage at high coverage
depth was assessed employing mapping sensitivity values from [0, 1] to [0, +∞] (see main text for methods). Further intercept free linear regression
demonstrates separation of different coverage uniformity ranges by the slope of the line for BRCA1/2 loci (A). Log-transformed sensitivity of CFTR
variants detection reaches asymptote for the most panels due to sensitivity cap as panels does not cover several intronic CFTR variants (B). Excluding
these variants from the analysis results in the same separation of different coverage uniformity ranges by the slope of the approximation line (C). The rate
of growth of the slope as uniformity increases is higher for CFTR loci (D).

tivity estimates (mean 99.9% versus 97.8%) which is corre-
lated with the sensitivity cap estimations (Figure 3A), ex-
posing the utility of the sensitivity calculation for compar-
ative analysis.

Sensitivity calculation for quality control in routine practice

As datasets sequenced employing Ion Ampliseq Custom
Design panel were generated through the number of se-
quencing runs, we retrospectively assessed how sensitivity
calculation can be used for quality control in routine prac-
tice. With the total of 43 datasets generated through 14
separate runs, average sensitivity within a single run was
over 99.9% in 78% cases, while across two runs (14%) we
observed average sensitivity drop down to 86% and 91%
(Figure 9). Average sensitivity drop within single run was

associated with coverage uniformity drop (Spearman cor-
relation coefficient 0.75, P-value < 0.001). We identified
that these cases were also associated with single primer
pool under-representation (average coverage ratio 184 ver-
sus 1.3 in other cases). Drawing parallels with the series of
datasets generated employing Ion Community BRCA1/2
panel, where coverage uniformity drop was not associated
with the sensitivity drop (Figure 8B), this finding highlights
the utility of sensitivity calculation for routine quality con-
trol.

DISCUSSION

Progress in the development of appropriate performance
measures is essential to advancing applied science and en-
gineering. Such measures not only allow manufactures to
control the quality of the scalable process, but also to per-
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Figure 6. Use of the EphaGen to decipher differences between target panels. During sensitivity calculation false negative rate is estimated for each variant
from reference database. As this rate is limited by the prior probability of the variant, one may expect correlation between these two values. Spearman
rang correlation was therefore calculated for all panels between their false negative rate as well as allele prior probability (A). (B, C) Top 40 variants by
frequency and corresponding average false negative rate for BRCA1/2 (B) and CFTR (C) related analysis.

form reasonable comparison between current solutions to
adopt the best one. From this perspective, control metrics
providing a single arbiter number are beneficial as they al-
low ubiquitous head-to-head comparison of complex sys-
tems with numerous variables (14).

As NGS moves forward into routine medical genetics ex-
periment, its clinical implementation requires higher qual-
ity standards. Several recently developed bioinformatics
control metrics (15–18), do not go further than convenient
measures of the percentage of aligned reads, percentage of
unique reads, percentage of bases corresponding to targeted

sequences, uniformity of coverage, density of clusters, and
percentage of targeted bases with no coverage (19). These
metrics treat all genome positions equally. Notably, disease-
causing mutations tend to be found at certain positions,
in particular due to founder effect (20–24), and also to
functional constraints. Considering that novel variants are
tough for confident classification as pathogenic (11,25,26)
and, in absence of segregation data, may require additional
laboratory research (11), while variants of uncertain signifi-
cance (VUS) not always can be directly translated into clini-
cal recommendations (27–30). Without de-emphasizing de-
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Figure 7. Comparison of the estimated sensitivity for hybridization based
and amplicon based sequencing approaches. Downsampling all datasets to
the fixed number of reads mapping to the target loci (BRCA1/2) demon-
strated overall performance superiority for hybridization based enrich-
ment strategy over amplicon based technology. Sensitivity calculation was
performed across all datasets generated employing specific enrichment
strategy, excluding outliers.

tecting VUS and novel variants in routine laboratory prac-
tice, there is a need for shifting the focus of quality con-
trol step to genome positions carrying recurring, rather than
random variants.

Here, we describe EphaGen, a novel approach to per-
formance measurement in routine clinical NGS testing.
Given a single NGS dataset in BAM format and pre-
compiled VCF-file of reference clinically relevant variants
with known relative allele prior probability (i.e. allele count
in affected population) it associates this dataset with a sin-
gle parameter, resembling diagnostic sensitivity.

As we demonstrate in this study, most valuable bioinfor-
matics metrics, namely coverage depth and coverage unifor-
mity, are rid with interpretation problems. This way diverse
average coverage depth may possess varying efficiency (Fig-
ure 4) as the clinical application varies, coverage uniformity
is not ubiquitous across diverse loci (Figure 3C) and may
reflect the diverse efficiency of coverage for different vari-
ant spectrum (Figure 5). Meanwhile, sensitivity calculation
is genuinely interpretable in clinical terms and present ubiq-
uitous performance measure for a single application defined
by reference VCF-file of clinically relevant variants. For ref-
erence database with uniformly disturbed allele prior proba-
bilities, calculated sensitivity resembles convenient coverage
uniformity metrics. However, the higher dispersion allele
prior probability distribution pertains, the more sequenc-
ing datasets may be observed with decent coverage unifor-
mity, but not sensitivity as in some cases it may significantly
drop. Using BRCA1/2 and CFTR screenings applications
as relevant examples, we have performed the extensive study
on how sensitivity calculation may be used as quality con-
trol metrics (Figures 8B and 9) as well as the analysis tool
for a head-to-head comparison between different sequenc-
ing approaches (Figures 6A, 7 and 8A). The data used for

the analysis was highly heterogeneous due to the variability
of the applied library preparation methods, study designs
used to generate test datasets etc. Therefore, these results
cannot be considered as doubtless conclusion on the com-
parative performance of the studied enrichment strategies in
the application of BRCA1/2 or CFTR screening. Neverthe-
less, it clearly demonstrates a high value of sensitivity cal-
culation as the performance measure and its advantages in
specified applications over coverage depth or coverage uni-
formity measurements.

However, the described approach possesses several inher-
ent limitations. First of all, EphaGen metrics are aimed only
at single nucleotide variants or small insertions/deletions
(generally up to 50 bp.). For now, genome copy number
variations within a single gene, like single or several exon
deletions or insertions, manifest higher importance in med-
ical genetics as sequencing techniques are advanced and
novel variants of this type are identified and their preva-
lence is refined (31–34). Meanwhile, large gene rearrange-
ments are not only disregarded by the described method but
also if occurred in homozygote may serve as a source of mis-
leading sensitivity estimations as falsely treated as coverage
artifacts.

Furthermore, as sensitivity calculation is based on the rel-
ative allele frequency data, it may possess population bias as
diverse ancestral groups demonstrate a variable spectrum of
founder mutations (25,35,36). Finally, allele prior probabil-
ity overestimation of the frequent founder mutations may
be introduced in the allele counts as these variants are of
particular interest for different research groups. Thus, this
may produce bias in false negative rate estimations towards
higher rate for variants with high allele count.

In conclusion, we have described a novel approach to
performance measurement in routine clinical NGS testing.
Given the spectrum of clinically relevant variants, it asso-
ciates single NGS datasets with a single number, resembling
diagnostic sensitivity. On the examples of BRCA1/2 and
CFTR screenings applications, we have performed an exten-
sive study on how sensitivity estimation using described ap-
proach may be used as quality control metrics as well as the
analysis tool for a head-to-head comparison between dif-
ferent sequencing approaches. As developed approach pro-
vides single arbiter number, it can be easily implemented
into existing clinical workflows as a measure of quality con-
trol compatible with Westgard rules in a manner essentially
similar to that for mean coverage depth. EphaGen-provided
sensitivity estimates may be implemented after the vari-
ant calling stage. For example, when only limited amount
of pathogenic variants is expected, for instance, only one
pathogenic variant for germline BRCA1 analysis, or two
variants for CFTR analysis, and variant calling algorithm
has failed to identify it, EphaGen may be used as a ref-
eree evaluating quality of the data and guiding possible re-
analysis.

DATA AVAILABILITY

EphaGen source code available at https://github.com/
m4merg/EphaGen. EphaGen Docker image available at
https://hub.docker.com/r/m4merg/ephagen. DNA sequenc-
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Figure 8. Head-to-head comparison of the Qiagen Generead BRCA 1/2 v2 and Ion Community BRCA1/2 panels. Two panels were characterized by close
sensitivity values given the read count as is (mean 99.8% versus 99.7% respectively, P-value 0.08). (A) Downsampling analysis demonstrated superiority
of the Qiagen Generead BRCA 1/2 v2 panel in terms of mean sensitivity and sensitivity standard deviation. (B) Datasets generated with Ion Community
BRCA1/2 panels in addition to high sensitivity standard deviation were characterized by high coverage uniformity variation (blue line). However, low
coverage uniformity was not in correlation with low sensitivity (red line). False negative rate estimation for each variant site illustrated that datasets,
generated with Ion Community BRCA1/2 panel, demonstrated that 5 variant sites mapping to BRCA2 exon 20 were characterized with low coverage
across datasets with low sensitivity.

Figure 9. Use of the sensitivity estimation in routine testing. Average sen-
sitivity and coverage uniformity variation across 14 different BRCA1/2
sequencing runs of the total of 43 sequencing libraries prepared employ-
ing Ampliseq Custom Design panel demonstrates the utility of sensitivity
calculation as quality control metric. Shaded fill shows 75% quartile.

ing data have been deposited with the Sequence Read
Archive under accession number SRP173561.
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de Pádua Souza,C., Campacci,N. et al. (2018) The germline
mutational landscape of BRCA1 and BRCA2 in Brazil. Sci. Rep., 8,
9188.


