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ABSTRACT
Interleukin-10 (IL10) is an immune regulatory cytokine. Single nucleotide polymorphisms (SNPs) in IL10
promoter have been associated with prognosis in adult classical Hodgkin lymphoma (cHL). We analyzed
IL10 SNPs ¡1082 and ¡592 in respect of therapy response, gene expression and tumor microenvironment
(TME) composition in 98 pediatric patients with cHL. As confirmatory results, we found that ¡1082AA/AG;
¡592CC genotypes and ATA haplotype were associated with unfavourable prognosis: Progression-free
survival (PFS) was shorter in ¡1082AACAG (72.2%) than in GG patients (100%) (P D 0.024), and in ¡592AA
(50%) and AC (74.2%) vs. CC patients (87.0%) (P D 0.009). In multivariate analysis, the ¡592CC genotype
and the ATA haplotype retained prognostic impact (HR: 0.41, 95% CI 0.2–0.86; P D 0.018, and HR: 3.06 95%
CI 1.03–9.12; P D 0.044, respectively). Our analysis further led to some new observations, namely: (1) Low
IL10 mRNA expression was associated with ¡1082GG genotype (P D 0.014); (2) IL10 promoter
polymorphisms influence TME composition;¡1082GG/¡592CC carriers showed low numbers of infiltrating
cells expressing MAF transcription factor (20 vs. 78 and 49 vs. 108 cells/mm2, respectively; P< 0.05); while
ATA haplotype (high expression) associated with high numbers of MAFC cells (P D 0.005). Specifically,
¡1082GG patients exhibited low percentages of CD68CMAFC (M2-like) intratumoral macrophages
(15.04% vs. 47.26%, P D 0.017). Considering ours as an independent validation cohort, our results give
support to the clinical importance of IL10 polymorphisms in the full spectrum of cHL, and advance the
concept of genetic control of microenvironment composition as a basis for susceptibility and therapeutic
response.
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Introduction

Interleukin 10 (IL10) is an immune regulatory cytokine with
non-redundant roles in anti-inflammatory responses,1 B-cell
proliferation,2 and differentiation of T and B cell subsets.3,4 In
addition, it has important roles in the polarization of specific
macrophage subsets, both in infectious conditions and cancer.5,6

Inter-individual differences in IL10 production have a
hereditary component estimated in 75%,7 mainly due to the
effect of promoter polymorphisms,8 such as the three proximal
single nucleotide polymorphisms (SNPs), at positions ¡1082
(A/G), ¡819(C/T), and ¡592(C/A) base pairs from the tran-
scription start site.8,9 Furthermore, genetic modifiers upstream
of the transcription initiation site have been described.10,11

However, the model of the genetic control of IL10 expression
has not reached a consensus yet, and results may vary accord-
ing to cell type and in vitro activation stimuli.12–14

Due to its functions in B cell biology and its ability to induce
a suppressor microenvironment, IL10 is an ongoing target in
B-cell lymphoma research.15,16 Classical Hodgkin lymphoma
(cHL) is a B-cell neoplasm characterized by the presence of
scarce tumor (Hodgkin-Reed-Sternberg, H-RS) cells sur-
rounded by inflammatory non-neoplastic cells, collectively
known as tumor microenvironment (TME), which pathogenic
role is increasingly recognized.17,18 In cHL adult patients, high
IL10 serum levels are mainly associated with tumor burden
(advanced disease stage, elevated LDH and b2-microglobulin
levels) and unfavorable host-tumor factors (presence of B
symptoms, anemia, low serum albumin levels), as well as a
short survival.19–24 Associations of IL10 promoter polymor-
phisms with clinical outcome have been described in some
studies with adult cHL patients,25,26 while in others this associa-
tion has not been found.27,28 Moreover, an analysis of the
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relationship between IL10 genotype and its influence in local
mRNA expression and cellular profiles in the TME of cHL is
lacking. The main goal of this study was to find clinical and
biological correlates of IL10 promoter proximal polymorphisms
in children and adolescent with cHL. Given the important
functions of this cytokine in the immune response, and the rec-
ognized role of TME in cHL therapeutic response, we hypothe-
size that clinical outcome imparted by IL10 genetic variants
may be mediated by effects on the tumor microenvironment
composition or modulation.

Results

Clinical and epidemiological characteristics of patients

The clinical and histological characteristics of cHL patients
have been described previously.29 Median age at diagnosis was
14 years (3–18), and sex ratio (male:female) 1.8:1. Most patients
presented with stages I/II and low-risk disease (62.1% and
52.6%, respectively), mediastinal mass was observed in 65.6%
and extranodal disease in 11.6% of cases. Nodular sclerosis
(NS) was the most frequently observed histological subtype
(69%), followed by mixed cellularity (23%). Epstein-Barr virus
(EBV) was detected in 44.8% of cases (Table S1).

IL10 polymorphisms

In total, 98 patients were successfully genotyped for IL10 pro-
moter rs1800896 (¡1082A>G) and 97 for the rs1800872
(¡592C>A) SNPs. Both SNPs were in Hardy-Weinberg equi-
librium (¡1082 P D 0.53 and ¡592 P D 0.08, Goodness of fit
x2 test). Genotypic frequencies are described in Table 1. In
view of the complete linkage of ¡819C/T and ¡592C/A

SNPs,30 the proximal haplotypes including the three positions
(¡1082A/G, ¡819C/T, and ¡592C/A) GCC, ACC and ATA
were reconstructed in 96 patients. The frequency of haplotypes
in cHL patients was 63.5% (61/96) for GCC; 46.9% (45/96) for
ACC and 50% (48/96) for ATA.

IL10 gene expression

Levels of IL10 mRNA in cHL lymph nodes [mean 2¡DCq §
¡2.515 § 1.531 SD] were higher than the observed in reactive
follicular hyperplasia (RFH) lymph nodes (mean 2¡DCq:
¡3.757 § 1.235 SD) (P D 0.001; Student’s t test) (Fig. 1A).

In the cHL group, ¡1082GG genotype was associated
with lower IL10 mRNA expression (mean 2¡DCq ¡3.517 §
2.009 SD) than AGCAA genotypes (2¡DCq: ¡2.346 § 1.392)
(P D 0.014; Student’s t-test) (Fig. 1B). Genotypes of the
¡592 SNP showed no association with IL10 mRNA expres-
sion (Fig. 1C). In the RFH group, no significant associations
between ¡1082 or ¡592 SNP genotypes and IL10 gene
expression levels could be disclosed, likely due to the small
number of samples analyzed. In respect of IL10 haplotypes,
a trend to high IL10 expression in ATA and ACC carriers
was observed, while the opposite occurred with GCC/GCC
cHL cases (Fig. 1D).

IL10 genetic polymorphisms and mRNA expression in
respect of clinical characteristics and therapy response

Patients with high IL10 mRNA expression (2-DCq > ¡2.243,
median of the group) presented more frequently with B
symptoms (64.3% vs. 35.7% in low expression patients; P D
0.013; x2 test). No associations between IL10 promoter

Table 1. Progression-free survival (PFS) analysis according to genotypes and haplotypes in the IL10 promoter in children and adolescent with classical Hodgkin lymphoma
diagnosis.

CI (95%) of univar. CI (95%) of multivar.

Variable Number of Events HR (Expb) univar. Lower Upper Univar. P-value HR (Expb) multivar. Lower Upper Multivar. P-value

¡1082IL10
GG 0/16 P D 0.065x

AG 10/39 0.495 0.239 0.939 P D 0.031 0.322 0.095 0.805 P D 0.013
AA 10/33
GG 0/16 P D 0.024x

AGCAA 20/72 0.095 0.001 0.691 P D 0.013 0.054 0.000 0.511 P D 0.005

¡592IL10
AA 5/10 P D 0.009x

AC 8/31 2.350 1.278 4.291 P D 0.007 2.362 1.157 4.860 P D 0.019
CC 6/46
CC 6/46 P D 0.032x

ACCAA 13/41 0.378 0.138 0.932 P D 0.034 0.328 0.109 0.909 P D 0.032

Haplotypes
ACC 9/43 P D 0.721x

ATAC GCC 10/43 0.853 0.347 2.068 P D 0.723 1.505 0.521 4.700 P D 0.454
ATA 13/41 P D 0.035x

GCCC ACC 6/45 2.601 1.055 7.119 P D 0.038 2.904 1.043 8.759 P D 0.041
GCC 10/55 P D 0.204x

ACCCATA 9/31 0.560 0.231 1.375 P D 0.200 0.405 0.102 1.361 P D 0.454

xP-values obtained by log-rank test. Other P-values calculated by Cox regression with Firth’s correction strategies. In multivariate analysis was considered the follow varia-
bles: number of extranodal sites, high number of Granzyme B cells (median>25% of cells number in the tumoral microenvironment), leukopenia presence and mixed
cellularity histological subtype. CI: confidence interval; Univar, univariate; Multivar, multivariate.
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polymorphisms or expression level were observed in respect
of Ann-Arbor stage, age, histopathology subtypes, EBV sta-
tus, extranodal commitment, and mediastinal mass.

Median follow up of the patient group was 65.5 months
(72 months for censored patients). Progression-free survival
(PFS) with 5 years follow-up was 78.6%. A poor PFS was asso-

Figure 1. IL10 gene expression. (A) IL10 relative expression in classical Hodgkin lymphoma (cHL, n D 83) and reactive follicular hyperplasia (RFH, n D 20); (B) IL10 relative
expression in classical Hodgkin lymphoma lymph nodes according to IL10¡1082A>G genotypes (AA, nD 32; AG, nD 38; GG, nD 12); (C) IL10 relative expression in clas-
sical Hodgkin lymphoma lymph nodes according to IL10 ¡592C>A genotypes (CC, n D 44; AC, n D 28; AA, n D 10); (D) IL10 relative expression in classical Hodgkin lym-
phoma lymph nodes according to IL10 haplotype (GCC/GCC, n D 12; ACC/ACC, n D 8; ATA/ATA, n D 11). P < 0.05 significant statistical association (Student’s t-test).

Figure 2. Kaplan-Meier curves for progression-free survival (PFS) of pediatric classical Hodgkin lymphoma according to evaluated IL10 promoter polymorphisms. (A) PFS
according to IL10 ¡1082A>G genotypes; (B) PFS comparing ¡1082GG vs. AGCAA genotype carriers; (C) PFS according to IL10 ¡592C>A genotypes; (D) PFS comparing
¡592CC vs. ACCAA genotype carriers; (E) PFS of ATA haplotype carriers vs. others haplotypes. P< 0.05 significant statistical association (log-rank test).
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ciated, in univariate analysis, with leukopenia, extranodal dis-
ease, MC subtype and high numbers of Granzyme BC lympho-
cytes, as described previously.29,31

Genotypes of the ¡592A/C SNP influenced prognosis, with
worse PFS exhibited by ¡592AA patients (50%), when com-
pared with AC (74.2%), and CC patients (87.0%)
(P D 0.009, log-rank test). Patients with the ¡1082GG geno-
type showed a better PFS (100%) than AG and AA carriers
(72.2%) (P D 0.024, log-rank test) (Table 1 and Figs. 2A-D).

Patients carrying the ATA haplotype showed worse PFS
(68.3%) when compared to other haplotypes (86.7%) (P D
0.035, log-rank test; Fig. 2E). The significance was maintained
after application of Firth’correction (Table 1). Thus, genotypes
and haplotypes associated with high IL10 expression levels
were shown to be associated to a shorter PFS. None of the IL10
genetic variants were associated with overall survival (OS)
(Table S2).

In multivariate analysis performed by Firth’s penalized Cox
regression, considering the clinical and microenvironment vari-
ables with described PFS impact, ¡10822 GG genotype (HR:

0.054, 95% CI 0.000–0.511, P D 0.005), the ¡592 CC genotype

(HR: 0.328, 95% CI 0.109–0.909, P D 0.032) and the ATA hap-
lotype (HR: 2.904, 95% CI 1.043–8.759; P D 0.041) retained
prognostic impact (Table 2).

Association of IL10 genetic variants with the tumor
microenvironment cell composition

In view that genotypes and haplotypes determining high levels
of IL10 mRNA in lymph nodes were associated to an unfavor-
able prognosis, we next asked if IL10 genetic background may
dictate some aspects of the TME composition in cHL. In this
work, given the roles of MAF transcription factor in the control
of IL10 expression,32,33 expression of MAF by the TME cells
was used as a surrogate for cell commitment to express IL10.

Distribution of lymphocyte and macrophage sub-popula-
tions in the TME in relation to age group, histology, EBV-status
and their prognostic impact have been previously reported.29,31

MAF expression by H-RS cells was observed in only two cases
and in few cells. Patients with ¡1082GG (low IL10 expression)
and ¡592CC genotypes exhibited low numbers of MAFC
inflammatory cells (median: 20 vs. 78 cells/mm2, and median:
49 vs. 108 cells/mm2; P D 0.012 and P D 0.003, respectively;
Mann-Whitney test) (Fig. 3A, B). Moreover,¡1082GG patients
exhibited low percentages of CD68CMAFC macrophages
(15.04% vs. 47.26% for the other genotypes, P D 0.017; Mann-
Whitney test) (Fig. 3C, Table S3). Conversely, ATA haplotype
(high level IL10 expression) was associated with high numbers
of MAFC inflammatory cells (median 108 vs. 49 cells/mm2, P
D 0.005; Mann-Whitney test) (Fig. 3D, Table S3).

Since EBV may modulate the TME, with EBV-associated
cases being characterized by significantly higher numbers of
cytotoxic/Th1 lymphocytes and macrophages than EBV-
group29,31 we decided to investigate potential interactions
between EBV and the studied SNPs in the TME composition.
For this, we have defined a ratio of FOXP3C over CD8C and
TBETC cells; and MAFC over CD8C and TBETC cells as indi-
cating a predominantly Th2/regulatory TME, and then ana-
lyzed these cell population balances in cases stratified by IL10
genotypes and EBV status.

Analyses were conducted by linear logistic regression using
log10-transformed raw cell ratios as dependent variable. The
MAFC/TBETC ratio showed to be inversely dependent on
both, the EBV presence and low IL10 expression-associated
¡1082GG genotype (P D 0.020), or ¡592CC genotype
(P D 0.031), or GCC haplotype (P D 0.045) (Table S4), indicat-
ing a significant effect of both EBV and IL10 genotypes/haplo-
types in the TME modulation (Fig. 4).

Discussion

A large number of studies have demonstrated that H-RS
cells may be able to modulate their microenvironment, e.g.,
by the production of cytokines and chemokines, contribut-
ing to an immunosuppressive TME and survival of these
neoplastic cells.18,34,35 In this context, IL10 functional
genetic variants that are being strongly considered in the
search for prognostic markers in cHL, may also be factors
of the disease histopathogenesis.

Table 2. Multivariate Cox regression with Firth correction, considering IL10 geno-
types/haplotypes along with other clinical and microenvironment variables influ-
encing PFS in pediatric classical Hodgkin lymphoma. (A) Model I, ¡1082 GG
genotype; (B) Model II, –592 CC genotype; (C) Model III, ATA haplotype.

(A)

Confidence Interval (95%)

Variable HR (Expb) Lower Upper P-value

Extranodal sites 6.641 1.820 21.684 0.006
High number of Granzyme B cells 4.179 1.218 22.122 0.021
Leukopenia 2.822 0.848 7.756 0.086
Mixed cellularity 3.637 1.242 10.076 0.020
¡10822 GG genotype 0.054 0.000 0.511 0.005

This multivariate analysis was performed with 74 patients.

(B)

Confidence Interval (95%)

Variable HR (Expb) Lower Upper P-value

Extranodal sites 4.451 1.314 12.716 0.019
High number of Granzyme B cells 6.209 1.504 57.200 0.008
Leukopenia 3.313 0.823 10.535 0.086
Mixed cellularity 2.850 0.978 7.753 0.055
¡592 CC genotype 0.328 0.109 0.909 0.032

This multivariate analysis was performed with 73 patients.

(C)

Confidence Interval (95%)

Variable HR (Expb) Lower Upper P-value

Extranodal sites 4.265 1.260 12.174 0.022
High number of Granzyme B cells 6.853 1.622 63.888 0.006
Leukopenia 3.265 0.811 10.402 0.089
Mixed cellularity 2.926 1.007 7.923 0.049
ATA haplotype 2.904 1.043 8.759 0.041

This multivariate analysis was performed with 72 cHL patients.
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Our first aim was to validate the impact of IL10 polymor-
phisms on disease prognosis in our series of pediatric cHL. In
our pediatric cohort, the ¡1082AACAG genotypes and ATA
haplotype were associated with unfavourable prognosis, in
agreement with previous results in adult cHL patients, in which
an unfavourable outcome was associated with IL10 ATA/ATA
haplotypes26 and the presence of the ¡592AA genotype.25

Considering ours as an independent validation cohort, our
results give support to the clinical importance of IL10 genetic
variants in the full spectrum of cHL, by demonstrating an asso-
ciation also in the pediatric population.

We next intended to find phenotypic correlates that may
help to explain ours and other’s clinical results. Our methodo-
logical approach to draw genotype-phenotype associations was

Figure 4. Main effect plots of EBV status and¡592 genotypes on the tumor microenvironment polarization, measured by the distribution of the MAFC/TBETC cell ratios.
Variables are normalized to a 0–1 range. The graphic was constructed with the statistical R environment.

Figure 3. Number of cells expressing the MAF transcription factor according to IL10 genotypes and haplotypes. (A) Numbers of MAFC cells according to ¡1082 geno-
types (AA, n D 26; AG, n D 36; GG, n D 13); (B) Numbers of MAFC cells according to ¡592C>A genotypes (CC, n D 42; AC, n D 25; AA, n D 7); (C) Percentages of
CD68CMAFC macrophages according to ¡1082A>G genotypes (AA, n D 24; AG, n D 32; GG, n D 13); (D) Numbers of MAFC cells in ATA haplotype (n D 33) vs. carriers
of other haplotypes (n D 40). P < 0.05 significant statistical association (Mann-Whitney test).

ONCOIMMUNOLOGY e1389821-5



based on the quantification of mRNA levels and cells in tumor
tissues, the higher levels of IL10 expression in cHL lymph
nodes vs. RFH lymph nodes pointed to the immunosupressor
phenotype as a pathogenic factor in the former condition.

In studies based on IL10 systemic levels, it is still a matter of
debate whether IL10 levels reflect its direct participation in cHL
pathophysiology, or merely reflect the effect of tumor burden
on a drained immune system. Our findings of high levels of
tumor IL10 expression associated with B symptoms, as well as
the association of high-expression IL10 promoter polymor-
phisms with an unfavorable therapeutic response reinforce the
idea of a direct role of IL10 in cHL pathogenesis and are in line
with several studies reporting high IL10 serum levels associated
to unfavorable disease characteristics, therapy response and
short survival in cHL patients.19–24,36

We next addressed the phenotypic correlations of IL10
proximal promoter polymorphisms. In our system, which relies
not in experimental cell activation, but in the state of activation
and number of infiltrating and H-RS cells in tumor lymph
nodes, we found that ¡1082A/G genotypes have a leading role
in modulating IL10 expression, with ATA-associated genotypes
and haplotypes contributing to IL10 high expression levels. The
association of ¡1082GG genotype with low expression was
somewhat surprising, since previous studies have found this
genotype associated with IL10 high expression levels.9,13 How-
ever, in vitro assays have shown that the ¡1082A allele was
associated with the highest IL10 production when the position
was isolated against a constant haplotype background.37 The
¡1082A allele was also correlated with high IL10 expression in
whole blood from rheumatoid arthritis patients stimulated in
vitro with lipopolysaccharide;38 in peripheral blood mononu-
clear cells stimulated with ConA;39 as well as in plasma of
healthy individuals.40

Discrepancy with the studies that found ¡1082GG geno-
types associated with high expression levels9,13 may be a conse-
quence of different activation conditions and of the diversity in
cell compositions of the experimental models. In fact, it has
been described, but not yet completely explored in complex
systems, that IL10 promoter occupancy may vary according to
cell lineages (i.e. lymphocytes, monocytes and macrophages)3

where epigenetic mechanisms might be modulated by the
diverse microenvironment stimuli.

In agreement with that concept, we observed scarce num-
bers of MAFC neoplastic cells, while MAF expression by
inflammatory cells was variable, pointing to diverse IL10 acti-
vating pathways in the different cell lineages.3,32,41

IL10 genetic variants determining high IL10 mRNA lev-
els were furthermore associated with high numbers of
inflammatory cells expressing MAF. Thus, assuming the
premise that MAF is an important IL10 transcription factor
in immune cells,32 the model of IL10 mRNA genetic control
was replicated at the cellular level, at least in the TME.
Since the main associations were observed between IL10
polymorphisms and MAF expression by inflammatory cells,
the action in cis of IL10 polymorphisms on the MAF liga-
tion domain in IL10 promoter is a probable explanation.
The MAF recognition element (MARE) localizes to ¡196/
¡184 in the IL10 promoter, and has been demonstrated
functional by both in vitro (EMSA) and in vivo (ChIP

assay) experiments.32,33 It is likely therefore that one of the
effects of the proximal promoter polymorphisms is to mod-
ulate the binding of MAF to its recognition element in IL10
promoter, thereby leading to a more elevated IL10 expres-
sion rate. High expression levels of IL10 in serum and TME
might then mediate a positive loop of enrichment in mono-
cytes with an immunosuppressive phenotype (and conse-
quently M2-like macrophages) as described in B cell non-
Hodgkin lymphoma.42

Additionally, we were able to disclose an inverse correla-
tion of IL10 expression levels with the number of TBETC
lymphocytes (Th1) and a subset of dendritic cells. This may
reflect the inverse numerical relationships in Th1-oriented
and Th2/Treg-oriented microenvironments43,44 and allows
hypotheses about a yet unproven role of the cytokine in the
in situ differentiation and activation of intratumoral lym-
phocytes and dendritic cells.

Macrophages are plastic cells with potentiality to both
pro-inflammatory and regulatory functions.6 The role of
tumor-associated macrophages in the prognosis of cHL is still
controversial, with some studies showing association of high
counts/density of TAM with poor survival in adult cHL,45–47

while some others failed to disclose such association.48,49 This
discrepancy may be due to differences in immunohistochemical
biomarkers and scoring systems.50 However, it is possible that
part of this lack of reproducibility results from TAMs heteroge-
neity. In fact, in pediatric cHL, we have recently shown that
M2-like macrophages, and not M1 macrophages, were associ-
ated with a poor outcome.31 Moreover, the pathogenic role of
immunosuppressive macrophages in cHL is being highlighted
in preclinical studies targeting TAMs with chimeric antigen
receptor T cell (CART) therapy.51

In this work, we extended our previous results, by showing
that percentages of intratumoral MAF-expressing, M2-like-
polarized macrophages were correlated with IL10 genotypes,
suggesting a role of the host genetic background in the suscepti-
bility to polarize intratumoral macrophages to a suppressor
phenotype, indirectly participating in the microenvironment
shaping.

In this study, we were not able to disclose any consistent
association of EBV with IL10 polymorphisms or MAF expres-
sion. Previous studies have shown an increased IL10 produc-
tion in EBVC H-RS cells52,53 and a role of IL10 expression by
H-RS cells in the evasion of viral-directed cytotoxicity,54 sug-
gesting that IL10 might mediate local effects of autocrine stim-
uli and/or immune escape in H-RS cells. In this study, IL10
expression level was measured by mRNA analysis of the whole
lymph node, thus detected levels represent the contribution of
both, H-RS and infiltrating cells. In that regard, since EBV in
pediatric cHL is associated with a cytotoxic/Th1 oriented
TME,29,31 not being able to detect a difference regarding IL10
expression level in EBVC and EBV- cases is not surprising.
Further studies to better discriminate the patterns of IL10
expression at the cellular and molecular level by tumor vs. infil-
trating cells in respect of EBV status would help to clarify this
issue, including the interaction between EBV- and IL10-medi-
ated TME modulations.

To our knowledge, this is a first study to show an associ-
ation between IL10 genotype and phenotype in patients
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with cHL at the molecular, cellular, and clinical levels.
While we are aware of the limitations imposed by the num-
ber of patients, we reinforce that the main goal of this study
was drawing biological and immunological correlates from
meaningful clinical factors, to help highlighting pathogenic
mechanisms in a complex disease such as cHL. On the
whole, our results contribute to fill a gap in the knowledge
of the relationship between IL10 genotype and phenotype
in cancer, and advance the concept of genetic control of
microenvironment composition as the basis of susceptibility
and therapeutic response.

Materials and methods

Patients and samples

Ninety-eight HIV-negative children and adolescents (up to
18 year old) diagnosed with cHL at the Instituto Nacional de
Câncer (INCA), Rio de Janeiro, Brazil, between 1999 and 2006,
were included in this study. All included patients in this study
were evaluated by a minimal follow-up of 60 months.

Diagnosis of cHL was based on morphologic criteria55

and immunohistochemical (IHC) characterization.56 Latent
EBV infection has been investigated previously in all cHL
cases by EBER-ISH hybridization.56 All patients were
treated according to adriamycin-based standard pediatric
protocols, as described.29 Additionally, 20 patients with
HIV-negative RFH diagnosis were included as controls of
IL10 expression (median age: 36 year, 4 – 83). This study
was approved by the INCA Ethics Committee (Number 37/
05 and CAAE 56999916.5.0000.5274) and all patients were
included after signed informed consent.

Nucleic acids extraction

DNA was extracted using QIAamp� DNA FFPE Tissue
(Qiagen�, catalog number 56404) from three to five microtom-
ized sections (3 mm) of formalin-fixed, paraffin-embedded
(FFPE) lymph nodes. Total RNA was obtained with the Master
PureTM kit (Epicentre�, catalog number MCR85102), as
described.57 All working conditions were RNase-free. The
quantity and purity of nucleic acids was evaluated using a
Nanodrop�, ND-1000 Spectrophotometer (Wilmington, Dela-
ware USA) at λ260/280/230 ratios, and additionally, a 2100 Bio-
analyzer (Agilent Technologies, Palo Alto, CA) for RNA
quality.

IL10 genotyping

The single nucleotide polymorphisms (SNPs) rs1800896
(¡1082A>G) and rs1800872 (¡592C>A) (catalog number:
C_1747360_10 and C_1747363_10, respectively) were geno-
typed using TaqMan� assays in a Viia7 platform (Applied Bio-
systems, Life TechnologiesTM, Carlsbad, CA), using 3 ng/mL of
DNA in 15 mL final volume. Thermal profile was 50�C for
2 min, 95�C for 10 min and 50 cycles at 92�C for 15 s and at
60�C for 90 s. A post-read step of 1 min at 60�C allowed allelic
discrimination. Controls with known IL10 genotypes (2 sam-
ples for each homozygote and heterozygote genotype) as well

as 2 negative template controls were included in each run; 10%
of samples were randomly selected to be re-genotyped in the
next run.

IL10 gene expression

cDNA was prepared from 500 ng of total RNA in 20 mL final
volume, using High-Capacity cDNA Archive kit (Applied Bio-
systems, catalog number 4368814). A pre-amplification step
was performed, using the TaqMan� PreAmp Master Mix
(Applied Biosystems). IL10 expression was quantified using a
TaqMan� assays (Hs00961622_m1, Applied Biosystems) in
15 mL final volume with standard 50-cycles thermal cycling.
GUSB (Hs99999908_m1) and HMBS (Hs00609297_m1) were
used as reference genes. Each measurement was performed in
duplicate and quantified by Cq-value with fixed thresholds.
Samples were considered amplifiable with Cq-values <35
cycles, and only duplicates with SD �0.15 cycles were accepted.
The quantification values were expressed as log2 (2-DCq) after
normalization with the mean level expression of the reference
genes.58

Immunohistochemical characterization of tumor
microenvironment

A tissue microarray (TMA) block was built as described previ-
ously.29 The immune cells from the TME were identified by
single or double immunohistochemistry, as described
previously,29,31,56,59 with primary antibodies described in Table
S5. Briefly, immunodetection was performed using ZytoChem
Plus HRP polymer kit (Zytomed Systems, catalog number:
POLHRP-100), employing diaminobenzidine (DAB) chromo-
gen as substrate for single IHC techniques, and with AP Poly-
mer System (Zytomed Systems, catalog number: POLAP-100),
employing Blue Alkaline Phosphatase (Vector Laboratories,
catalog number: SK-5300) as substrate for double detection
IHC. IL10 producing cells were identified by the expression of
MAF, an essential transcription factor for IL10 gene expression
in T lymphocytes and macrophages.3,32,60 The computer
assisted cell quantification was performed with the image anal-
ysis software HISTO (Biomas, Erlangen, Germany), as
described previously.29

The identification of all MAFC cells were performed by sin-
gle IHC, while the specific identification of MAFC macro-
phages was performed by double IHC.59 MAFC inflammatory
cells and MAFCmacrophages were expressed as absolute num-
ber/mm2. Additionally, MAFC macrophages were expressed as
a percent value of CD68C or CD163C macrophages, as follow
(number of MAF-expressing CD68C or CD163C macro-
phages/ total number of CD68C or CD163C macrophages) x
100.

Statistical analyses

Student’s t test and one-way ANOVA were used for comparing
gene expression levels of two or multiple groups. Mann-
Whitney’s test was used to analyze associations between dichot-
omous and continuous non normal variables such as cell num-
bers in the TME, while Spearman’s test was used for correlating
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continuous variables. Pearson’s chi-square and Fisher’s exact
test were used for testing association in dichotomous variables.
P-values <0.05 were considered as significant in 2-tailed tests.
PFS was the time in months between diagnoses to relapse asso-
ciated to cHL, initiation of other unplanned treatment or last
follow-up, and OS the interval in months between diagnosis to
death by any cause or last follow-up. Kaplan-Meier method
and the log-rank test were used for estimating and comparing
the distribution of survival probabilities. Additionally, univari-
ate and multivariate penalized Firth logistic regressions were
performed to reduce possible bias estimation effects due to
small sample number. The proportionality assumptions
for multivariate analysis were analyzed by time dependent
covariance (P> 0.05 assumption satisfied). Higher order inter-
actions between SNP and clinical parameters were not investi-
gated. Statistical Package for the Social Sciences (SPSS) 20.0
software and CRAN R-project were used for statistical analyses.
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