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1  | INTRODUC TION

1.1 | Background

New Guinea is a large island in the southwest Pacific of unusual 
topographic, geological, and biogeographic complexity. Its western 

margin forms the boundary between the Oriental and Australian fau‐
nal regions. The complex geological makeup of New Guinea is due to it 
being the amalgamation of numerous geological units. The island was 
formed by the accretion of an Australian craton—the southern part 
of the island and numerous Pacific terranes and island arcs—forming 
the northern part of the island (Burrett, Duhid, Berry, & Varne, 1991; 
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Abstract
New Guinea is a topographically and biogeographically complex region that supports 
unique	 endemic	 fauna.	 Studies	 describing	 the	 population	 connectivity	 of	 species	
through	this	region	are	scarce.	We	present	a	population	and	landscape	genetic	study	
on the endemic malaria‐transmitting mosquito, Anopheles koliensis	 (Owen).	 Using	
mitochondrial and nuclear sequence data, as well as microsatellites, we show the 
evidence of geographically discrete population structure within Papua New Guinea 
(PNG).	We	also	confirm	the	existence	of	three	rDNA	ITS2	genotypes	within	this	mos‐
quito and assess reproductive isolation between individuals carrying different geno‐
types. Microsatellites reveal the clearest population structure and show four clear 
population units. Microsatellite markers also reveal probable reproductive isolation 
between	sympatric	populations	in	northern	PNG	with	different	ITS2	genotypes,	sug‐
gesting that these populations may represent distinct cryptic species. Excluding indi‐
viduals	belonging	to	the	newly	identified	putative	cryptic	species	(ITS2	genotype	3),	
we modeled the genetic differences between A. koliensis populations through PNG 
as a function of terrain and find that dispersal is most likely along routes with low 
topographic relief. Overall, these results show that A. koliensis is made up of geo‐
graphically and genetically discrete populations in Papua New Guinea with landscape 
topography being important in restricting dispersal.
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Pigram & Davies, 1987). Because of this complexity, New Guinea har‐
bors a diverse array of locally endemic species (taxa that are endemic 
to certain parts of the island; Allison, 2007). Previously identified pat‐
terns of biological connectivity reveal that many New Guinean spe‐
cies show strong affinities to both Australia and Asia. The population 
structure and local endemicity observed in some species suggest that 
the geological history of the region has been important in the diversi‐
fication of species. In many cases, vicariance is thought to play a more 
important role than dispersal in the current distributions of species 
in	New	Guinea	 and	parts	 of	Australasia	 (Heads,	 2013).	 This	 theory	
is supported by the presence of biological breaks that occur in loca‐
tions associated with historically separate landmasses in New Guinea 
as well as to the north and the south of the Central Range. This moun‐
tain range traverses the island from east to west, presenting a north–
south	barrier	to	dispersal	for	most	species	(Heads,	2013;	Macqueen,	
Goldizen,	Austin,	&	Seddon,	2011).

While	 the	 biogeography	 of	 New	 Guinea	 has	 been	 explored	
relatively extensively, there is less understood regarding the 
population genetics and phylogeography of individual species 
throughout the region. The Punctulatus Group of mosquitoes 
currently comprise 13 cryptic species that are widely distributed 
throughout New Guinea and northern Australia and show over‐
lapping	distributions.	Some	species	of	this	group	transmit	malaria,	
and they provide a useful system with which to study the genetic 
diversity of organisms relative to the landscape features of this 
region. As larvae, they show highly specific aquatic requirements, 
however, as adults they can be on the wing and their ability to 
disperse is not well understood and may vary between species 
and sex (Ambrose et al., 2014). A study of two closely related 
isomorphic mosquito species in this group—Anopheles hinesorum 
Schmidt	and	the	coastally	restricted	Anopheles farauti Laveran re‐
veal similarities in the location of genetic breaks in New Guinea 
(Ambrose et al., 2012). In stark contrast, a third species in this 
group—Anopheles punctulatus showed little apparent population 
structure between these regions despite the use of fast‐evolving 
microsatellite	markers	 (Seah,	Ambrose,	Cooper,	&	Beebe,	2013),	
suggesting it has undergone a recent range bottleneck and ex‐
pansion throughout New Guinea and has recently traversed the 
Central Range.

Here,	we	focus	on	a	fourth	cryptic	member	and	important	ma‐
laria vector of the Punctulatus Group, Anopheles koliensis (Owen; 
Cooper	et	al.,	2009;	Slooff,	1964).	This	species	is	found	throughout	
New Guinea, New Britain, and until recently on several islands of the 
Solomon	Archipelago	(Beebe	&	Cooper,	2002;	Spencer,	Spencer,	&	
Venters, 1974; Taylor, 1975). In Papua New Guinea (PNG—eastern 
New Guinea), A. koliensis appears to be primarily a lowland species, 
inhabiting the river valley flood plains mostly below 300 m through‐
out the northwestern and southeastern lowland regions of PNG—it 
is rarely found in the distinct wet/dry monsoonal climate area of 
southwest PNG (Beebe, Russell, Burkot, & Cooper, 2015; Cooper 
&	Frances,	2002).	Surveys	through	PNG	suggest	oviposition	occurs	
in natural ground pools and swamps, as well as in human‐disturbed 
or human‐modified sites, including vehicle wheel tracks and drains 

(Cooper,	Waterson,	Frances,	Beebe,	&	Sweeney,	2002;	Slooff,	1964).	
This mosquito was also found to have a positive association with 
human habitation (Cooper et al., 2002).

Due to both overlapping and variable adult morphology of the 
Punctulatus Group, molecular tools including genomic DNA probes 
and PCR are required for species identification (Beebe, Foley, 
Cooper,	Bryan,	&	Saul,	1996;	Beebe	&	Saul,	1995).	The	most	utilized	
diagnostic tool is a PCR, restriction fragment length polymorphism 
analysis (RFLP) of the ribosomal DNA (rDNA) internal transcribed 
spacer	2	 (ITS2).	This	diagnostic	marker	 clearly	discriminates	A. ko‐
liensis from all other members in the Punctulatus Group based on 
agarose	gel	electrophoresis	(Beebe	&	Saul,	1995).

An	earlier	study	through	northeast	PNG	(Madang	and	East	Sepik	
region) using the PCR‐RFLP species diagnostic tool with a sensitive 
acrylamide gel size separation suggested A. koliensis comprised three 
ITS2‐RFLP	variants	 (Benet	et	 al.,	 2004).	These	 ITS2	RFLP	variants	
were	designated	genotype	W,	found	only	around	Wosera	in	north‐
east	PNG's	Sepik	region;	genotype	M,	found	only	in	the	Madang	re‐
gion	and	MW,	found	throughout	their	study	sites	in	northern	PNG	
(Madang	and	Wosera	regions).	The	authors	suggested	these	geno‐
types may be evidence for distinct subspecies as some variation in 
time of night blood feeding was found (Benet et al., 2004). Variation 
in night feeding time may be important for the capacity of this spe‐
cies to develop behavioral resistance to the long‐lasting insecti‐
cide‐treated bed nets now deployed in the region (Russell, Beebe, 
Cooper, Lobo, & Burkot, 2013).

In this study, we further investigate the population genetics 
of A. koliensis	in	Papua	New	Guinea.	We	initially	aim	to	verify	the	
existence	of	the	three	previously	described	rDNA	ITS2	RFLP	vari‐
ants within A. koliensis and assess reproductive isolation between 
individuals	with	these	genotypes.	We	use	additional	nuclear	 loci	
(DNA sequence and microsatellite) as well as a mitochondrial 
locus	 to	 achieve	 this.	 We	 use	 this	 sequence	 and	 microsatellite	
data to describe the population genetic structure of A. koliensis 
throughout PNG and hypothesize that the complex geological 
history and landscape topography of New Guinea have shaped 
population structure in this mosquito. Finally, we use recently de‐
veloped methods to assess whether landscape topography plays a 
role in maintaining this genetic structure, providing the first con‐
tribution to the literature on landscape genetics of a species in 
New Guinea.

2  | MATERIAL S AND METHODS

2.1 | Mosquito collection, identification, and 
genotyping

Mosquitoes were collected by human‐landing catches, CO2‐baited 
light traps, or through larval collections with the larvae being bred 
out	 to	 adults.	Using	 these	 sampling	 techniques,	A. koliensis was 
collected throughout PNG (Tables 1 and 2, Figure 1) and stored 
frozen, in alcohol, or desiccated on silica gel. Genomic DNA was 
extracted using a salt extraction method (Beebe, Ellis, Cooper, & 
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Saul,	1999),	and	samples	were	identified	to	species	by	a	species‐
specific	PCR‐RFLP	of	the	ITS2	(Beebe	&	Saul,	1995).	Only	samples	
identified as A. koliensis were analyzed further. To confirm the 
presence	of	the	M,	MW,	and	W	genotypes	that	were	identified	by	
using acrylamide gel electrophoresis RFLP separation (Benet et 
al.,	2004),	we	used	a	3%	agarose	gel	and	slightly	longer	ITS2	prim‐
ers	outlined	 in	Alquezar,	Hemmerter,	Cooper,	 and	Beebe	 (2010)	
for improved resolution of the three genotypes (Alquezar et al., 
2010).

2.2 | DNA sequencing and analysis of the ITS2, 
COI, and rpS9

Due to the multicopy nature of the rDNA, multiple variant copies 
(paralogues)	 of	 the	 ITS2	 gene	 are	 often	 present	 within	 individual	
genomes and PCR products. These intragenomic sequence variants 
often	cannot	be	directly	sequenced	using	Sanger	DNA	sequencing	as	
paralogues containing indels can collapse the chromatogram. For this 
reason, three individuals from sympatric populations from sites 1,330, 

TA B L E  1  Summary	of	the	field	sampling	and	rDNA	ITS2	genotype	classification

Site Region UIN Year Sample n ITS2 ITS2a n msats Longitude Latitude

1 Papuan 1754 1998 A 11 G1 11 −9.210437 148.571044

2 Gulf 1651 1998 A 18 G1 16 −7.840529 146.531037

3 Gulf 1654 1998 A 20 G1 20 −9.297003 147.229459

4 Gulf 1679 1998 A 6 G1 0 −8.837559 146.847221

5 Gulf 1664 1998 A 5 G1 0 −7.862963 146.391317

6 Gulf 1141 1994 A/L 9 G1 10, 6* −7.969226 145.771503

7 Gulf 1170 1994 A 17 G1 9 −7.854744 146.339626

8 Madang/Lae 1425 1996 L 6 G1, G2(4) 6 −7.485226 147.246525

9 Madang/Lae 1383 1996 A 5 G1 0 −5.907663 146.940373

10 Madang/Lae 1403 1996 L/A/H 7 G1 7 −6.576148 146.820893

11 Madang/Lae 1365 1996 A 7 G1, G2(6) 0 −5.959224 147.078606

12 Madang/Lae 1321 1995 A 5 G1, G2(4) 5 −5.562424 146.176588

13 Madang/Lae 1330 1995 A 12 G1, G2(6)b 12 −5.239049 145.459759

14 Madang/Lae 1335 1995 L 16 G1, G2(7) 10 −5.477717 145.826484

15 Madang/Lae 1230 1995 H/A/L 25 G1, G2(7) 9 −5.414203 145.726434

16 Madang/Lae 1343 1995 A 14 G1 10 −4.55025 144.584708

17 Sepik 1236 1995 L/A 6 G1, G3(2) 0 −4.091523 143.563258

18 Sepik 1250 1995 A 16 G1, G3(4) 11 −4.187481 143.514957

19 Sepik 1384 1996 L 7 G1 0 −5.885432 145.738048

20 Sepik 1077 1993 A 6 G1 8 −3.819071 142.042905

21 Sepik 1081 1993 A 10 G1 7 −4.312503 142.326457

22 Sepik 1091 1993 A 9 G1 9 −4.103764 141.144154

23 Sepik 1109 1993 A 9 G1, G3(1)b 10 −4.093148 142.589981

24 Sepik 1116 1993 A 10 G1, G3(3) 5 −4.591389 143.274005

25 Sepik 1120 1993 A 7 G1 10 −4.191994 143.516772

26 Sepik 1136 1993 A 5 G3b 0 −3.956554 143.927244

27 Sepik 1118 1993 A 33 G1, G3(15) 31 −4.06985 143.256244

28 Sepik 1119 1993 A 10 G1 0 −4.092078 143.384137

29 Sepik 1131 1993 A 9 G1 0 −3.96853 143.282969

30 Sepik 1262 1995 A 5 G1 0 −4.282071 144.139967

31 Sepik 1348 1995 A 5 G1 0 −5.076785 144.718064

32 Sepik 1309 1995 A 6 G1 0 −4.653888 144.254696

33 Sepik 1266 1995 A 5 G1 0 −4.291936 144.37037

Abbreviations:	A,	adult;	H,	human‐landing	catch;	L,	larval.
aNumbers of non‐G1 individuals found at that site are in parentheses. 
bA	subset	of	individuals	from	these	sites	were	cloned	and	sequenced	for	the	ITS2.	
*Adult collection, larval collection. 
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1,109, and 1,136 (see Table 1 for site localities) were PCR‐amplified for 
the	ITS2	and	cloned	into	bacteria	with	3–5	randomly	selected	colonies	
sequenced following the methods of Alquezar et al. (2010).

A 527‐bp segment of the mtDNA COI and a 430‐bp region of nuclear 
ribosomal	protein	S9	(rpS9)	were	also	amplified	and	directly	sequenced	
following	methods	of	Ambrose	et	al.	(2012).	For	the	rpS9,	pseudohaplo‐
types	of	the	nuclear	locus	were	inferred	using	the	program	PHASE	im‐
plemented in DNAsp v5 (Librado & Rozas, 2009). Additionally, DNAsp 
v5 was used to estimate haplotype diversity and nucleotide diversity, as 
well as to test for neutrality using Tajima's D (Tajima, 1989) and Fu's Fs 
(Fu, 1997) for each locus. Recombination was assessed using the pro‐
gram	RPD3	(Martin	et	al.,	2010).	Haplotype	networks	were	constructed	
using	TCS	1.21	(Clement,	Posada,	&	Crandall,	2000)	under	a	95%	con‐
nection	limit.	Genetic	diversity	for	mtDNA	and	rpS9	was	estimated	in	a	
number of ways including haplotype diversity, haplotype richness and 
evenness	(Kimura,	1964),	and	nucleotide	diversity.	Haplotype	evenness	
provides an estimate of the number of equally frequent alleles that 
would result in the estimated haplotype diversity of the sampled popu‐
lation. Diversity estimates were obtained using the R packages gstudio 
(Dyer,	2014),	pegas	(Paradis,	2010),	and	adegenet	(Jombart,	2008).

2.3 | Microsatellite development and amplification

Primers for microsatellite analysis were obtained from 454 py‐
rosequencing data of the genomic DNA of A. koliensis following 
the methods of Ambrose et al. (2014). A total of 24 microsatellite 

markers were initially screened. Primers were selected based on 
their ability to consistently amplify a clean product (single locus) 
from all populations. No markers were excluded due to low variabil‐
ity,	and	details	of	primers	used	can	be	found	in	Table	S1.	Each	locus	
was amplified by PCR using fluorescently labeled forward primers. 
The final PCR mixture contained 1× Taq buffer and 0.5 units of Taq 
(MyTaq; Bioline). The cycling involved an initial denaturation of 95°C 
for 3 min, and then 13 cycles of 95°C for 30 s, 56°C for 40 s with a 
decrease of 0.5°C/cycle, and 72°C for 30 s, followed by 25 cycles of 
95°C for 30 s, 50°C for 40 s, and 72°C for 30 s, and a final 72°C for 
5 min using minimum transition times. Amplified PCR products were 
genotyped by an external contractor, Macrogen.

2.4 | Population parameters and statistics

Alleles for each marker were scored manually in the program 
GeneMarker	(Holland	&	Parson,	2011).	The	presence	of	null	alleles	for	
each marker was checked at a population level (based on the popu‐
lations found by subsequent analyses) using the program MICRO‐
CHECKER	(Van	Oosterhout,	Van	Heuven,	&	Brakefield,	2004).	Using	
these	 same	population	definitions,	we	checked	 for	HWE,	 as	well	 as	
calculating	 observed	 (Ho)	 and	 expected	 (He)	 heterozygosity	 in	 the	
program	 GenAlEx,	 v6	 (Peakall	 &	 Smouse,	 2006),	 and	 the	 program	
GenoDive (Meirmans & Van Tienderen, 2004) was used to calculate Fis 
for	each	population	(Table	S2	contains	details	of	null	alleles,	HWE,	etc.).	
FSTAT	v2.9.3	(Goudet,	1995)	was	used	to	test	for	linkage	disequilibrium	

TA B L E  2  Population	parameter	summary	for	the	mtDNA	COI	and	nuDNA	rpS9

Site Region (site code) UIN n Rp9 Rp9 TD Rp9 Pi Rp9 Hd n COI COI TD COI Pi COI Hd

1 Papuan (CP144) 1754 9 −0.208 0.444 0.824 7 0.197 0.823 0.905

2 Gulf (CP16) 1651 6 1.183 1.046 0.848 10 −1.136 0.274 0.8

3 Gulf (CP20) 1654 7 1.274 1.024 0.89 10 −1.116 0.394 0.911

4 Gulf (CP51) 1679 5 0.024 0.58 0.356 5 −0.175 0.302 0.9

5 Gulf (GR7) 1664 4 1.238 0.796 0.679 5 −0.973 0.173 0.4

6 Gulf (GR3) 1141 4 1.098 1.029 0.75 3 NA 0.144 0.667

7 Gulf (GR59) 1170 1 NA NA NA 3 NA 0.432 0.667

8 Madang/Lae (LR106) 1425 4 NA NA NA 7 1.161 0.967 0.714

9 Madang/Lae (LR45) 1383 5 −0.038 0.380 0.778 5 −0.047 1.339 0.9

10 Madang/Lae (LR75) 1403 6 0.255 0.766 0.742 10 −1.507 0.504 0.867

11 Madang/Lae (LR9) 1365 5 0.024 0.58 0.622 8 −0.45 0.910 0.929

13 Madang/Lae (MP137) 1330 9 −1.173 0.249 0.608 9 −0.773 1.272 0.972

14 Madang/Lae (MP143) 1335 7 −0.634 0.642 0.824 10 −0.429 1.248 1

15 Madang/Lae (MP15) 1230 0 NA NA NA 4 NA 1.332 1

16 Madang/Lae (MP151) 1343 6 −0.205 1.458 0.924 8 −0.202 1.280 1

17 Sepik	(MP21) 1236 0 NA NA NA 10 −1.525 1.085 1

18 Sepik	(MP37) 1250 5 −0.22 1.280 0.978 10 −0.511 1.224 0.978

19 Sepik	(MP47) 1384 3 0.520 0.779 0.8 2 NA 0 0

20 Sepik	(SR22) 1077 0 NA NA NA 6 −1.445 0.792 1

21 Sepik	(SR29) 1081 9 −0.941 1.387 0.863 7 −0.681 0.926 1

22 Sepik	(SR41) 1091 7 −1.024 0.696 0.912 13 −0.733 1.329 0.974

24 Sepik	(SR74) 1116 5 0.199 1.703 0.978 10 −0.973 1.641 0.978

26 Sepik	(SR97) 1136 4 −0.075 1.135 0.929 5 0.0868 1.469 0.9
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between loci. To estimate population genetic structure between all 
pairs of sites (used subsequently for landscape genetic analyses), we 
used	Hedrick's	GST'	(Hedrick,	2005),	a	measure	which	is	not	biased	by	
within‐population	variation	as	implemented	in	MMOD	(Winter,	2012).

2.5 | Population structure: Bayesian clustering

In order to assess broadscale population structure in New Guinea, 
we used a Bayesian clustering method as well as discriminant analy‐
sis	of	principal	 components	 (DAPC;	 Jombart,	Devillard,	&	Balloux,	
2010). The Bayesian clustering method was implemented in the pro‐
gram	STRUCTURE	v.	2.3.4	(Pritchard,	Stephens,	&	Donnelly,	2000),	
which	we	ran	through	Structure_threader	(Pina‐Martins,	Silva,	Fino,	
& Paulo, 2017). The admixture model with no location priors was 
used and run for 20 replicates of K [2, 8] for 500,000 generations 
with	an	additional	burnin	of	500,000	generations.	We	used	the	pro‐
gram	CLUMPAK	 to	 assess	 the	most	 likely	K value and to produce 
final graphs based on the major mode of the best K (Kopelman, 
Mayzel,	Jakobsson,	Rosenberg,	&	Mayrose,	2015).

2.6 | Population structure: multivariate approach 
(DAPC)

To	complement	the	Bayesian	analysis	run	in	STRUCTURE	(outlined	
below), we also performed a discriminant analysis of principal com‐
ponents	 (DAPCs)	 using	 the	 R	 package	 adegenet	 (Jombart,	 2008;	
Jombart	et	al.,	2010).	This	is	a	multivariate	analysis	designed	for	the	
use on genetic data such as microsatellites. It does not require that 
specific population genetic assumptions be met or try to fit data to 
a predefined model. Advantages over principal component analy‐
sis (and principal coordinate analysis) include that it is optimized to 
maximize	variation	among	rather	than	within	groups.	We	used	the	

online	server	(Jombart,	2008)	to	determine	the	optimal	number	of	
principal	components	(PCs)	to	retain.	We	then	performed	DAPC	on	
the	five	groups	identified	using	STRUCTURE,	retaining	60	PCs	and	
3 discriminant axes.

2.7 | Landscape genetic analysis

We	conducted	a	landscape	genetic	analysis	to	investigate	the	pos‐
sible effects of landscape topography on genetic differentiation in 
A. koliensis. The most eastern population in the northern Papuan 
Peninsula in Figure 1 (site 1 in Table 1) was omitted from all land‐
scape analyses due to this population consisting of a single collec‐
tion site that showed a distinct site‐specific genetic signature. To 
describe topographic complexity across the study area, we obtained 
elevation data (90 × 90 m horizontal resolution) for PNG from the 
Shuttle	Radar	Topography	Mission	(SRTM;	Jarvis,	Reuter,	Nelson,	&	
Guevara, 2008) and used these elevation data to produce a layer de‐
scribing landscape topography using the “terrain ruggedness index” 
(Wilson,	O'Connell,	Brown,	Guinan,	&	Grehan,	2007).	This	index	as‐
signs greater values to areas that have higher (e.g., hills) or lower 
(e.g., valleys) elevation than their surroundings, and thus would be 
expected to positively correlate with dispersal cost (Row et al., 2015). 
After producing the terrain ruggedness layer at the 90 × 90 m reso‐
lution, the layer was then aggregated and resampled to a 5 × 5 km 
resolution to reduce computational burden. The landscape genetic 
analyses were conducted in R (version 3.4.1; R, 2011) and used the 
raster	 (Hijmans,	 2014),	 rgdal	 (Bivand,	 Keitt,	 &	 Rowlingson,	 2017),	
rgeos (Bivand & Rundel, 2014), and sp (Pebesma & Bivand, 2005) R 
packages for spatial data processing.

We	assessed	four	different	hypotheses	for	connectivity	among	
the northern, southern, and combined populations. The first hy‐
pothesis was the null hypothesis, and under this hypothesis, 

F I G U R E  1   Topographic map of Papua 
New	Guinea.	Sites	on	map	are	Anopheles 
koliensis sampling sites used in this study 
(detailed in Table 1) and are color‐coded to 
show the distributions of the three rDNA 
ITS2‐RFLP	genotypes	identified
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pairwise measures of genetic variation were fit to a constant. The 
second hypothesis described the connectivity between a set of 
populations as a function of the geographic distance between them 
(Wright,	1943).	The	third	hypothesis	used	terrain	ruggedness	to	ac‐
count for spatial variation in dispersal cost across the landscape and 
least‐cost path distances to model connectivity among populations. 
The fourth hypothesis also used terrain ruggedness and used com‐
mute distances to model connectivity among populations (Chandra, 
Raghavan,	Ruzzo,	Smolensky,	&	Tiwari,	1996).	Thus,	 the	 third	hy‐
pothesis and fourth hypothesis used different distance metrics to 
model connectivity. Least‐cost distances are best suited for model‐
ing dispersal patterns that occur along the shortest and easiest to 
traverse routes (Adriaensen et al., 2003). Commute distances, on 
the other hand, are more suited for patterns that involve dispersal 
along multiple routes and are diffusive across the landscape. They 
are highly correlated with the more widely known “resistance dis‐
tances”	implemented	in	Circuitscape	(Kivimäki,	Shimbo,	&	Saerens,	
2014; McRae, 2006), but are more computationally efficient. The 
least‐cost and commute distances were calculated using the gdis‐
tance R package (van Etten, 2015). To reduce computational bur‐
den, these distance metrics were calculated assuming movement 
in four directions.

Since	 landscape	 topography	may	 be	 nonlinearly	 related	with	
dispersal	 cost	 (Peterman,	 Connette,	 Semlitsch,	 &	 Eggert,	 2014;	
Ruiz‐Lopez et al., 2016), we used genetic algorithms implemented 
in the ResistanceGA R package (Peterman, 2018) to identify the 
(near) best transformation for terrain ruggedness given different 
population sets (i.e., north, south, and combined) and connectiv‐
ity metrics (i.e., least‐cost paths and commute distances). Briefly, 
these genetic algorithms were run using a population size of 250 
and were terminated after they converged (i.e., no improvement 
after	200	consecutive	iterations;	using	the	ga	R	package;	Scrucca,	
2013). At each iteration in the algorithm, a candidate set of trans‐
formation parameters were generated, and the terrain ruggedness 
layer was transformed using the candidate set of parameters to 
generate a candidate dispersal cost layer. Next, pairwise distance 
measures were derived from the candidate layer, and the pairwise 
distance measures were fit to pairwise measures of genetic dif‐
ferentiation using linear mixed‐effects models (using the lme4 R 
package;	 Bates,	Mächler,	 Bolker,	&	Walker,	 2015).	 These	models	
accommodated the nonindependence of pairwise values using a 
maximum‐likelihood populations (MPLE) parameterization (Clarke, 
Rothery, & Raybould, 2002). The log‐likelihood values associated 
with a given model, and in turn candidate cost or resistance sur‐
face, were used to assess the support for a given set of trans‐
formation parameters. Although the ResistanceGA R package 
offers both monomolecular and Ricker transformation functions 
(Peterman, 2018), we only examined monomolecular transforma‐
tions because we expect terrain ruggedness to have a monotonic 
relationship with genetic differentiation. The pairwise least‐cost 
and commute distances measures derived from the best surfaces 
were subsequently used to examine the relative importance of sur‐
face topography on connectivity.

We	 used	 an	 information‐theoretic	 approach	 (Burnham	 &	
Anderson, 2003) to assess the relative support for each of the four 
connectivity hypotheses under the northern, southern, and com‐
bined populations. Linear mixed‐effects models were fit to the pair‐
wise measures of genetic differentiation using the predictor variables 
for each connectivity hypothesis (as described above in the optimi‐
zation process). The corrected Akaike information criterion (AICc) 
statistic was used to assess model performance due to low sample 
sizes (Burnham & Anderson, 2003). Following standard methodol‐
ogy (Burnham & Anderson, 2003), AICc statistics were calculated 
for each model, and the corresponding δAICc statistics and Akaike 
model weights (wi) were used to assess the relative support for each 
hypothesis	(calculated	using	the	MuMIn	R	package	(Bartoń,	2017)).	
We	also	calculated	marginal	and	conditional	R2 statistics to provide 
a	more	 intuitive	 description	 of	model	 fit	 (Nakagawa	&	 Schielzeth,	
2013). To assess uncertainty in the relative support for each hypoth‐
esis (following Dudaniec et al., 2016; Dudaniec et al., 2016), we con‐
ducted a bootstrap resampling analysis (10,000 replicates). In each 
bootstrap replicate, a subset of 75% of the populations in a popula‐
tion set (i.e., north, south, or combined) were randomly selected, the 
linear mixed‐effects models corresponding to each of the connec‐
tivity hypotheses (as described above) were refitted to the subset 
of populations, and the AICc statistics for the refitted models were 
calculated. After completing all of the iterations, we finally calcu‐
lated the average rank and percentage of times that each hypothesis 
was found to have the most support among the bootstrap replicates.

3  | RESULTS

3.1 | Ribosomal DNA ITS2 genotype identification

All individuals included in this study were identified as A. koliensis 
by	PCR‐RFLP	of	the	ITS2	followed	by	restriction	digest	using	Msp I 
(Beebe	&	Saul,	1995).	Three	subtle	ITS2	restriction	profile	variants	
could be identified in the agarose gel that reflected those previously 
found using 10% acrylamide gels (Benet et al., 2004; see Figure 2). 
Of the 345 samples assessed from 33 sites throughout PNG, a com‐
mon	 genotype	 termed	 G1	 (equivalent	 to	 Madang/Wosera	 [MW]	
genotype in Benet et al., 2004) was identified from 32 collection 
sites. A second genotype (G2 equivalent to the Madang [M] geno‐
type) was less common (five sites) and restricted to the Madang/
Lae region of northern PNG. The third genotype (G3 equivalent to 
Wosera	 [W]	 genotype)	was	 present	 at	 four	 sites	 (both	 inland	 and	
coastal)	in	the	Sepik	region	only	in	northwest	PNG.	Thus,	G2	and	G3	
appeared spatially structured in northern PNG—G2 in the eastern 
Sepik	region	and	G3	in	the	Madang/Lae	region.	Only	G1	was	present	
south of the Central Range.

The	ITS2	sequences	were	generated	from	plasmid	clones	drawn	
from a subset of individuals taken from sites where the genotypes 
could be regarded as being in sympatry in northern PNG (G1–G2 
[site 13] and G1–G3); however, no sites were identified with all three 
genotypes	 present.	 As	 expected,	 ITS2	 sequences	 clustered	 into	
three genetic groupings (see haplotype network in Figure 2b) that 
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correlate	 with	 the	 three	 ITS2	 genotypes	 identified	 by	 PCR‐RFLP	
analysis.

3.2 | Population genetics: COI and rpS9 
sequence analysis

The COI sequencing of 463 bp from 177 individuals revealed a 
high diversity with 99 unique haplotypes (haplotype diversity 
[Hd]	=	0.984,	nucleotide	diversity/site	[π]	=	0.011).	Neutrality	tests	
using all sequences suggest an excess of low‐frequency polymor‐
phisms present (significant test for Tajima's D (p	 <	 .05)	 of	 −2.01	
and Fu and Li's D and F test statistic (p	<	.02)	of	−4.19	and	−3.84,	
respectively.	The	phased	386‐bp‐long	rpS9	sequence	revealed	60	
pseudohaplotypes	 from	107	 individuals	 (Hd	=	0.944,	π	 =	0.011).	
Neutrality tests were mixed with a nonsignificant Tajima's D: 
(−1.56)	but	 significant	 (p < .02) Fu and Li's D and F test statistic 
of	−3.54	and	−3.21,	respectively.	For	both	markers,	these	results	
indicate an excess of singletons. This is reflected in the haplotype 

networks for both loci which are displayed in Figure 3. Given the 
lack of common haplotypes, this is unlikely to be due to a recent 
population expansion or selective sweep and probably reflects a 
very large and stable population supporting very high diversity. 
Site‐specific	spatial	graphs	showing	mtDNA	COI	haplotype	diver‐
sity	(Hd)	are	presented	in	Figure	S1.

The	haplotype	networks	in	Figure	3	suggest	the	rpS9	has	more	
shared haplotypes between populations than the COI, and little dis‐
cernible structure. Both mtDNA and nuclear loci show a high level of 
haplotype diversity with many unique haplotypes present in single 
individuals.	 At	 the	 rpS9	 locus,	 a	 common	 haplotype	was	 found	 in	
all geographic regions sampled, whereas at the COI locus there are 
shared haplotypes only between the two populations from northern 
PNG	with	 these	 four	 haplotypes	 being	 shared	 between	 the	 Sepik	
region and Madang/Lae region.

3.3 | Population genetics: microsatellite analysis

Evidence of null alleles was found in some populations for some loci 
(Table	S2).	In	STRUCTURE	analyses,	mean	LnP(K)	improved	rapidly	
for K	=	2	to	K	=	4	and	plateaued	at	K	=	5	and	analyses	run	in	CLUMPAK	
support K	=	5	as	the	most	likely	K value. The barplot for K	=	5	shows	
additional informative population structure over K	 =	4	and	 is	pre‐
sented in Figure 4. Two geographically defined populations can be 
clearly distinguished as separate genetic clusters, those being the 
southern New Guinean population and individuals from site CP144 
(northern Papuan Peninsula). In addition to this geographically de‐
fined	structure,	individuals	of	ITS2	G3	(sampled	from	various	sites	in	
northern	New	Guinea	in	sympatry	with	other	ITS2	genotypes)	form	
another discrete group. This group may represent another cryptic 
species as there is no evidence of admixture with individuals of other 
ITS2	genotypes.	Finally,	there	appears	to	be	an	east–west	population	
break	between	 the	Madang/Lae	 region	 (sites	8–16)	 and	 the	 Sepik	
region (sites 17–33) with some evidence of admixture or incomplete 
sorting between these groups.

Groupings	 in	 the	DAPC	complement	 the	STRUCTURE	analysis	
and provide more detail into relationships between groups. Again, 
southern New Guinea, northern Papuan Peninsula, and individuals 
of	 ITS2	G3	 form	 clear	 and	 separate	 groups.	 The	 Sepik	 population	
appears central in the DAPC cluster plot and may therefore have 
seeded all other populations. Individuals of the rDNA Genotype 3 
appear	 to	be	most	 similar	 to	 individuals	 from	 the	Sepik	 region	 (of	
other rDNA genotypes) with which they are sympatric. Again, the 
Sepik	 and	 Madang/Lae	 populations,	 while	 somewhat	 distinct,	 do	
overlap suggesting admixture or incomplete sorting. The southern 
New	Guinean	population	appears	most	closely	related	to	the	Sepik	
population.

3.4 | Effects of landscape topography on 
connectivity

Landscape topography had a large effect on connectivity among the 
A. koliensis populations at the broadscale (Figure 5a). The model that 

F I G U R E  2  Three	rDNA	ITS2	restriction	digest	variants	
were found within Anopheles koliensis in PNG (G1, G2, and G3; 
upper	panel).	When	a	subset	of	these	variants	were	cloned	and	
sequenced, they revealed intraindividual paralogues and three 
distinct sequence variant lineages with no shared sequences 
between lineages. The haplotype network (lower panel) shows the 
genetic relationship of these cloned sequences with genotypes with 
G1 common through PNG with G2 and G3 showing nonoverlapping 
geographic restriction in northern PNG
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best explained genetic variation among all of the populations was 
the model that accommodated landscape topography and modeled 
dispersal using least‐cost path distances (Table 3). The relative sup‐
port for this model eclipsed all others (wi	=	1),	and	this	model	was	
able to explain a large proportion of the variation in genetic differ‐
ences between populations (0.7R2m). This model also had the most 
support in 97.52% of the bootstrap replicates, showing that the sup‐
port	does	not	hinge	on	a	specific	combination	of	populations.	Under	
this model, where surface topography was transformed using an 
inverse–reverse	monomolecular	function	(Figure	5c,	Table	S3),	low‐
land areas presented very little resistance to gene flow (shown in 

purple, blue, and green in Figure 5a) and it was only montane areas 
that presented substantial barriers to gene flow (shown in yellow 
Figure 5a).

The connectivity between the northern populations was 
also	affected	by	landscape	topography	(Figure	5b).	Similar	to	the	
broadscale connectivity patterns, the best support connectivity 
model was the model that accommodated landscape topography 
between populations and described dispersal using least‐cost dis‐
tances (wi	=	0.99;	Table	3).	This	model	was	able	to	explain	an	ade‐
quate proportion of the variation in genetic differences among the 
sampled populations (0.43R2m), and was also reasonably robust 

F I G U R E  3  Haplotype	network	for	
the	mtDNA	COI	and	nuDNA	rpS9	DNA	
sequences for Anopheles koliensis. The size 
of the circle reflects number of individuals 
sharing a particular sequence, and the 
connections represent single mutational 
steps. Colors designate regions in PNG 
were identified as genetically distinct by 
the microsatellites

F I G U R E  4   Analysis of population structure for Anopheles koliensis from PNG based on 11 microsatellite loci. The upper panel shows two 
views	of	a	discriminant	analysis	of	principal	components	(DAPCs).	The	lower	panel	shows	results	from	the	Bayesian	STRUCTURE	analysis	
(K	=	5).	Points	and	bars	are	colored	to	represent	regional	groups:	sPNG	=	southern	PNG	(ITS2	G1),	CP144	=	northern	Papuan	Peninsula	(ITS2	
G1),	LR/MP	=	Madang	region	(ITS2	G1	and	G2),	SR	=	Sepik	region	(G1),	and	ITS2	G3	=	Sepik	region	(ITS2	G3)
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against uncertainty, having received the most support in 70.93% 
of	the	bootstrap	replicates.	Here,	surface	topography	was	trans‐
formed	 using	 a	 monomolecular	 function	 (Figure	 5d,	 Table	 S3),	
where both highland (shown in green, Figure 5d) and montane 
areas (shown in yellow, Figure 5d) played a role in limiting gene 
flow between populations.

There was little evidence to suggest that landscape topogra‐
phy had any effect on connectivity among the southern A. ko‐
liensis populations. The best supported model was the null model 
(wi	 =	 0.86;	 Table	 3).	 However,	 the	 support	 for	 this	 model	 was	
not robust against uncertainty, with the null model only having 
the greatest amount of support in only 40.01% of the bootstrap 
replicates. One explanation for this result could be the presence  
of a couple of “outlier” populations which show markedly differ‐
ent genetic characteristics compared with other southern popu‐
lations. For instance, when the connectivity models were fitted to 
a subset of populations that included the supposed outlier pop‐
ulations, none of the models might have been able to adequately 
explain the genetic differences among the populations, and  
so, the null model received the best support (observed in 9.94% of 
the bootstrap replicates). But when the connectivity models were 
fitted to a subset of populations that did not include the sup‐
posed outlier populations, the models were able to adequately 
describe the genetic differences among the populations, and so,  
the connectivity models which included landscape topography 
had much more support (e.g., terrain ruggedness with least‐cost 
distances had the greatest support in 40.01% of the bootstrap 
replicates).

4  | DISCUSSION

The mosquito A. koliensis transmits malaria and is a member of a 
Punctulatus Group of 13 cryptic species of which 11 can still be 
distinguished	by	the	original	ITS2	PCR‐RFLP	method	(Beebe	et	al.,	
2015;	Beebe	&	Saul,	1995).	In	assessing	A. koliensis through PNG, 
we	identified	three	ITS2	RFLP	genotypes	complementing	a	study	
on this mosquito in northwest PNG (Benet et al., 2004). A com‐
mon	genotype	(G1	or	Madang	Wosera	 in	Benet	et	al.	 (2004))	ex‐
ists throughout PNG, with a second less common genotype (G2 or 
Madang in Benet et al.) sympatric with G1 through the Madang/
Lae	region.	A	third	genotype	(G3	or	Wosera	in	Benet	et	al.,	2004)	
was	also	sympatric	with	G1	but	only	through	PNG's	Sepik	region	in	
northwest PNG. Cloning and sequencing of individuals with these 
ITS2	genotypes	revealed	intraindividual	ITS2	sequence	paralogues	
but no shared sequences between individuals with different geno‐
types, despite genotypes occurring at sympatric collection sites 
(G1–G2 and G1–G3). The analysis of microsatellite data suggests 
that	 individuals	of	 ITS2	genotype	G3	may	be	reproductively	 iso‐
lated	from	individuals	other	with	the	other	ITS2	genotype.	Using	
landscape genetic analysis of microsatellite data, we found that el‐
evation restricts the dispersal of A. koliensis between populations 
in Papua New Guinea.

4.1 | Population structure of A. koliensis in PNG

Population structure is evident between north and south PNG in COI 
but	not	rpS9.	The	high	haplotype	diversity	in	both	mtDNA	COI	and	

F I G U R E  5   Landscape genetic analysis. The top panels show resistance to gene flow maps estimated using landscape topology for (a) all 
populations and (b) the northern populations. Colors show the spatial distribution of resistance to gene flow, points correspond to sampled 
populations, and lines represent potential dispersal routes between sampled populations using the resistance data. The bottom panels 
show the modeled relationship between landscape topology, measured as the terrain roughness index, and resistance to gene flow for (c) 
all populations and (d) the northern populations. Maps and data for the southern populations are not shown because the landscape genetic 
models fit exclusively to these populations failed to explain an adequate proportion of their genetic variation
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rpS9,	and	an	excess	of	singleton	sequences	suggest	that	the	species	
has a long history in the region. The higher effective number of hap‐
lotypes and π	for	the	COI	and	rpS9	sequence	data	per	site	(Table	2)	
together suggest northern PNG may be an older and more stable 
population	than	southern	PNG.	We	suggest	that	the	northern	New	
Guinean population may have founded the southern population in‐
curring an apparent genetic bottleneck caused by the Central Range. 
The	 single	 population	 in	 eastern	PNG,	 north	of	 the	Owen	Stanley	
Range (site CP144), appeared genetically distinct at the level of the 
COI in that it did not share haplotypes with the other populations. 
However,	haplotypes	of	individuals	from	this	site	appear	in	different	
parts of the haplotype network and the lack of haplotype sharing 
may be an artifact of the small sample size from CP144 (n	=	11).

The analysis of the 11 microsatellites provided enhanced de‐
tail in regard to the spatial separation of populations through PNG. 
The population in southern PNG seen in the COI marker were now 
clearly identified, and the northern Papuan Peninsula population 
could	 be	 discriminated.	Within	 northern	 PNG,	 microsatellites	 ap‐
peared	to	pull	apart	the	Sepik	region	populations	to	the	west	from	
the Madang/Lae populations in the east—an area that could be re‐
garded as continuous.

4.2 | Effects of landscape topography on genetic 
connectivity

Overall, the broadscale differences among the A. koliensis popula‐
tions could be better explained when considering the topography 

of the region as it is supported by both our model selection anal‐
ysis and the bootstrap analysis for the combined set of popula‐
tions. The least‐cost path model for mosquito dispersal suggests 
that movement between populations occurs along distinct routes, 
rather than a diffusive model for dispersal where individuals take 
multiple routes between each pair of populations. This phenom‐
enon has also been observed in montane amphibian populations 
(Kershenbaum	 et	 al.,	 2014;	 Zancolli,	 Rodel,	 Steffan‐Dewenter,	 &	
Storfer,	2014).

Focusing only on the northern PNG populations, the best sup‐
ported hypothesis for fine‐scale genetic variation among these pop‐
ulations also included topography with a least‐cost distance model 
for dispersal. This result suggests that at the fine scale, individuals 
in the northern populations may also exploit specific routes for dis‐
persal. The bootstrap analyses corroborate this outcome, but they 
suggest that geographic distance may also play a minor role in gene 
flow. This is may be due to the limited number of northern popula‐
tions that were sampled in the present study, and additional data 
covering more of the northern populations could potentially reduce 
this uncertainty.

Unlike	the	northern	PNG	populations,	the	best	supported	hypoth‐
esis for fine‐scale genetic variation among the southern populations 
was the null hypothesis. The relative support for the null hypothesis 
was far greater than any other hypothesis when fitting models to all 
of	the	sampled	southern	populations.	However,	the	bootstrap	analy‐
sis revealed that this strong level of support was only present when 
fitting models to all of the sampled southern populations and that 

TA B L E  3   Effects of topology on connectivity among Anopheles koliensis populations

Populations Connectivity model δAICc AICc wi R2m R2c Mean rank Best model (%)

Combined Topology and least‐cost 
distance

−328.61 0.00 1.00 0.70 0.75 1.03 97.52

Topology and commute 
distance

−287.06 41.55 0.00 0.54 0.79 1.98 2.35

Geographic distance −206.14 122.47 0.00 0.04 0.47 3.12 0.13

Null −198.30 130.31 0.00 0.00 0.51 3.88 0.00

North Topology and least‐cost 
distance

−201.99 0.00 0.99 0.43 0.56 1.55 70.93

Topology and commute 
distance

−192.54 9.45 0.01 0.34 0.49 1.98 2.64

Geographic distance −188.98 13.01 0.00 0.16 0.41 2.54 26.43

Null −176.53 25.46 0.00 0.00 0.42 3.93 0.00

South Null −5.20 0.00 0.86 0.00 0.10 3.00 9.94

Geographic distance 0.52 5.72 0.05 0.03 0.03 2.20 19.56

Topology and commute 
distance

0.70 5.90 0.05 0.01 0.01 2.79 30.49

Topology and least‐cost 
distance

0.75 5.95 0.04 0.01 0.01 2.00 40.01

Note: Data show results for maximum‐likelihood population effects (MLPE) describing genetic differences among combined, northern, and south 
populations. For a given model, AICc represents its corrected Akaike information criterion, δAICc is the difference between its AICc statistic and that 
of the best supported model in the set, and wi is its Akaike weight which denotes the probability that it is the best in the set. The marginal (R2m) and 
conditional (R2c) statistics are also reported. To account for uncertainty, the results from the bootstrap analysis are also reported. These show the 
mean rank of the models and the percentage of times that each model was the best in its set.
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the relative support for the null hypothesis was much lower when 
specific populations were omitted. Therefore, it seems likely that 
geographic distance and landscape topography have some effect 
on the spatial patterns of gene flow among southern populations. 
However,	to	understand	the	effect	of	landscape	topography	on	gene	
flow among southern PNG A. koliensis populations, more extensive 
geographic sampling from this region is needed. These results further 
highlight the importance of quantifying uncertainty among compet‐
ing hypotheses in landscape genetics (Dudaniec et al., 2016).

4.3 | Reproductive isolation between sympatric 
rDNA variants and divergent biting behaviors in 
Anopheles mosquitoes

Microsatellite	data	suggest	that	individuals	of	ITS2	genotype	G3	were	
reproductively isolated from individuals of the more common G1 and 
G2	ITS2	genotypes.	Individuals	of	ITS2	genotype	G3	appear	to	be	spa‐
tially	 restricted	 to	 the	western	Sepik	 region	of	northern	PNG,	while	
individuals	of	ITS2	genotype	G2	seem	to	be	restricted	to	the	Madang/
Lae region, which supports the observed gene flow restriction be‐
tween	the	Sepik	and	Madang/Lae	populations.	The	 ITS2,	being	part	
of the rDNA gene family, is tandemly arranged multicopy gene family 
in metazoans, and the evolutionary machinery maintaining sequence 
fidelity between copies in this array is not well described and does 
not follow traditional Mendelian rules of inheritance (Bower, Cooper, 
& Beebe, 2009; Eickbush & Eickbush, 2007; Nei & Rooney, 2005). In 
Anopheles mosquitoes, the rDNA is usually positioned on the sex chro‐
mosomes adjacent to the centromeres (Kumar & Rai, 1990) and the 
relatively	 rapidly	 evolving	 ITS2	 spacer	 has	been	 a	useful	marker	 for	
detecting early genetic discontinuity between populations (Alquezar 
et al., 2010; Beebe, 2018; Coleman, 2009; Muller, Philippi, Dandekar, 
Schultz,	&	Wolf,	2007).	The	positional	effect	of	the	rDNA	being	adja‐
cent to the centromere would be to reduce recombination (Nachman 
& Churchill, 1996). In Anopheles, elevated levels of genetic divergence 
have been observed in regions proximal to the X chromosome in the 
face of gene flow across other parts of the genome (Reidenbach et 
al.,	 2012;	Weetman,	Wilding,	 Steen,	 Pinto,	&	Donnelly,	 2012).	 If	 al‐
leles for traits pertaining to time of night‐biting behavior occur near or 
within this low recombination landscape, the appearance of intraspe‐
cific behavioral differences may associate with rDNA divergence. 
Interestingly, the Benet et al. (2004) study observed variation in night‐
biting behavior between the A. koliensis genotypes in northern New 
Guinea. Their study found evidence that the Madang (M) variant (G2 
in	this	study)	starts	to	blood	feed	later	in	the	night,	where	MW	(G1)	
and	W	(G3)	were	actively	seeking	a	host	as	early	as	6	p.m.	It	would	be	
reasonable to hypothesize that genes for circadian or other rhythmic 
actives may be positioned near the centromere on the X chromosome.

Individuals	 of	 ITS2	 genotype	G3	 are	 spatially	 restricted	 to	 the	
Sepik	region	of	northern	PNG	and	form	a	clearly	separate	group	in	
the microsatellite clustering analyses, despite being sampled from 
the	same	sites	as	individuals	of	ITS2	RFLP	genotype	G1.	The	distinct	
microsatellite profile of these genotypes despite their overlapping 
ranges provides evidence that A. koliensis may well be more than one 

species in PNG. Individuals carrying the G1 and G2 genotypes show 
no evidence of genetic structure at other loci despite appearing 
to have different host feeding initiation times (Benet et al., 2004). 
We	found	that	the	geographic	structure	observed	through	PNG	is	
best explained by landscape topography, with slope (or elevation) 
presenting as a significant factor. This makes sense given that the 
species exhibits a predominantly a lowland distribution (Cooper et 
al.,	 2002).	 Although	 the	 individuals	 of	 ITS2	 G1	 and	 G2	may	 have	
differences in time of feeding, they could not be separated by fast‐
evolving	microsatellites.	Their	distinct	ITS2	genotypes	may	however	
represent early stages of genetic discontinuity which may, in time, 
lead to reproductive isolation across other parts of the genome.
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