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The most significant feature of heterogeneous semiconductor photocatalysis is that

both oxidation and reduction occur in a one-pot process. Thus, photocatalysis leads

to unique redox organic reactions that cannot be achieved by conventional techniques

using oxidants or reductants. Semiconductor photocatalysis is expected to be a new

method for fine chemical syntheses of highly valuablemolecules such as chiral medicines.

However, the use of semiconductor photocatalysts in stereoselective reactions has been

limited so far. This mini-review highlights recent progress in stereoselective organic

reactions using semiconductor photocatalysts, briefly summarizing the enantio- and

diastereoselective reactions based on the currently available literature.

Keywords: enantioselective reactions, diastereoselective reactions, semiconductor photocatalysis,
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INTRODUCTION

Chirality is a fundamentally important topic in science because biologically active species such as
enzymes selectively recognize a single enantiomer. Therefore, asymmetric synthesis has attracted
extensive attention not only in organic chemistry but also in the medicinal, pharmaceutical and
agricultural sciences. Up to now, highly stereoselective synthesis of chiral compounds has been
made on a plant scale by conventional stereo-controlling methods (Crawley and Trost, 2012).

Heterogeneous photocatalysis on semiconductors is a unique redox methodology compared to
traditional techniques using oxidants or reductants. Such photocatalysis, especially using titanium
dioxide (TiO2), has attracted much attention in many fields (Fujishima et al., 2000). Despite
significant advances, little attention has been focused on the use of semiconductors for synthetic
organic chemistry (Fox, 1987; Fagnoni et al., 2007; Shiraishi and Hirai, 2008; Kohtani and
Miyabe, 2014; Lang et al., 2014a,b; Kisch, 2017; Kou et al., 2017; Ma et al., 2018). Semiconductor
photocatalysis has several great advantages (Kohtani et al., 2012): (1) It leads to unique one-pot
redox transformations. (2) Particular reductants or oxidants are not necessary. (3) It avoids the use
of dangerous and harmful reagents. (4) It proceeds undermild conditions (normal temperature and
pressure). (5) Semiconductors such as TiO2 are chemically stable, easily separable, and reusable.
Thus, such photocatalysis shows great promise to become “green” chemical processes. Moreover,
semiconductor photocatalysis is expected to grow as a new synthetic method for preparing highly
valuable molecules such as chiral medicines.

Enantioselective synthesis using homogeneous photocatalysts such as chiral metal complexes
has attracted wide attention in recent years (Amador and Yoon, 2016; Megan et al., 2016).
However, the use of semiconductors in asymmetric synthesis has been limited so far. To
our knowledge, ∼10 reports have been published on successful examples of enantio- and
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diastereoselective reactions using semiconductor photocatalysts.
This mini-review highlights the progress in stereoselective
chemical transformations on photoirradiated surfaces of
semiconductor particles, briefly summarizing representative
examples of enantio- and diastereoselective reactions based on
the currently available literature.

ENANTIOSELECTIVE REACTIONS

In 1990, Wang et al. (1990) reported that the enantioselective
photoreduction of 3-methyl-2-oxobutanoic acid 1 proceeded
in aqueous methanol suspension containing platinum loaded
TiO2 (Pt/TiO2) and chiral 2,2’-bis(diphenylphosphino)-
1,1’-binaphthyl (BINAP)-Rh complex to give 2-hydroxy-3-
methylbutanoic acid 2 in 75% yield and 60% ee (Figure 1A).
The mechanism involved in this asymmetric induction is still
unclear. In this transformation, the photo-generated conduction
band (CB) electrons must migrate toward Pt on TiO2. A route
involving the transfer of electrons accumulated on Pt to the
chiral BINAP-Rh complex and the subsequent reduction of 1
by the BINAP-Rh anion is proposed as a possible mechanism.
Chiral metal catalysts possessing BINAP ligands are known to
be efficient catalysts for the enantioselective hydrogenation of
various olefinic and ketonic substrates in the presence of gaseous
hydrogen (H2) in the dark (Shimizu et al., 2007). Accumulated
electrons on Pt will reduce protons (H+) to produce H2.
Therefore, it is possible that substrate 1 is reduced by gaseous H2

and the chiral BINAP-Rh complex as an alternate mechanism.
Kohtani et al. (2018) reported the novel surface-selective and

enantioselective hydrogenation of aromatic ketones 3 induced
by chiral α-hydroxy acids-coadsorbed on TiO2. When (R)-
mandelic acid was used as the chiral reagent, the S-enantiomers
of secondary alcohols 4 were predominantly obtained with
reasonable enantioselectivities (ca. 40% ee) (Figure 1B). The
enantioselectivities were strongly affected by the chiral reagents.
Chiral mandelic acids having hydroxyl, phenyl and carboxy
groups at the chiral carbon atom showed the best enantioselective
stereocontrol. Interestingly, P25 (anatase/rutile = ca. 9/1) and
an anatase TiO2 sample (JRC-TIO-13) exhibited relatively high
enantioselectivities, whereas another anatase TiO2 (JRC-TIO-7)
and the rutile TiO2 led to low % ee. Thus, the enantioselectivity
was affected by the TiO2 crystalline samples. The reduction of
ketones 3 on TiO2 proceeds via electron transfer to 3 leading to
a ketyl radical species and further electron transfer to form an
anion (Kohtani et al., 2014). Asymmetric induction is achieved
through stereoselective protonation of the anion species by (R)-
mandelic acid co-adsorbed on the TiO2 surface.

Jang’s group reported TiO2-induced enantioselective α-
oxyamination of aldehyde 5 with 2,2,6,6-tetramethylpiperidine-
N-oxyl (TEMPO) by the use of a chiral amine catalyst
(Figure 1C) (Ho et al., 2011). This reaction proceeds via
a chiral enamine intermediate, generated from aldehyde 5

and MacMillan’s catalyst, to give oxyamination product 6 in
60% yield with 63% ee. Two pathways are proposed for the
oxidative transformation of the enamine to the iminium cation
intermediate. The first pathway involves the oxidation of the

enamine to a cation radical followed by stereoselective trapping
of the cation radical by TEMPO (path a in Figure 1C). The
second pathway involves the stereoselective reaction of the
enamine with a cation species (TEMPO+) generated by the
oxidation of TEMPO (path b in Figure 1C). The successful
application to a tandem Michael addition-oxyamination was
reported using N719 dye-sensitized TiO2 photocatalyst under
visible light irradiation (Yoon et al., 2012).

Cherevatskaya et al. (2012) reported visible-light promoted
enantioselective alkylation of aldehydes 7 by the use of several
semiconductors and MacMillan’s catalyst (Figure 1D). Later,
Riente et al. (2014) achieved highly enantioselective α-alkylation
of 7 using bismuth-based semiconductor materials (Bi2O3

and Bi2S3) possessing a small band gap and MacMillan’s
catalyst under sunlight (Figure 1D). Li et al. (2015) studied
enantioselective alkylation of aldehydes using a nanocomposite
material of PbBiO2Br nanoparticles with a NbSe2 nanosheet. The
key step in these reactions is presumed to be the stereoselective
addition of alkyl radicals to the chiral enamine intermediates.

Shi et al. (2014) developed an enantioselective molecular
imprinting technique for photoelectrochemical and
photocatalytic recognition of enantiomers. They reported the
chiral recognition and enantioselective decomposition of amino
acids on chiral molecular-imprinted ZnO and anatase TiO2

crystallites. Interestingly, the use of anatase TiO2 crystallites with
specifically exposed (001) facets led to higher enantioselective
recognition, presumably caused by abundant surface hydroxyls
on the (001) facet (Shi et al., 2014).

DIASTEREOSELECTIVE REACTIONS AND
ASYMMETRIC SYNTHESIS

Marinković and Hoffmann reported the radical addition of
tertiary amines to α,β-unsaturated lactones using semiconductor
photocatalyst powders of TiO2 and ZnS (Marinković
and Hoffmann, 2001, 2003). They further developed the
diastereoselective radical tandem addition-cyclization reaction
of (5R)-menthyloxyfuran-2(5H)-one 9 with aromatic tertiary
amines using TiO2 or ZnS (Figure 2A) (Marinković and
Hoffmann, 2004). Two stereoisomeric tetrahydroquinoline
derivatives 10 and 11 were obtained with reasonable
diastereoselectivities. The key radical was initially generated
via the single electron oxidation of N, N-dimethylaniline. The
stereoselective addition of the alkyl radical to lactone 9 followed
by intramolecular radical trapping on the aromatic ring led to
the cyclized adduct 10 as the major product.

Ohtani et al. (1990, 2001) reported the deaminocyclization
of chiral L-lysine derivatives 12a-c and 2,6-diaminopimelic
acids (DAP) 14a and 14b to piperidine derivatives 13 and
15, respectively (Figure 2B). In the presence of PtO2/TiO2,
the deaminocyclization of L-lysine 12a gave the piperidine-
2-carboxylic acid 13 in moderate enantioselectivity, probably
due to the competitive oxidation of the two amino groups of
12a. Excellent enantioselectivities were achieved by protection
of the α-amino group. When the protected L-lysine derivatives
12b and 12c were employed, piperidine-2-carboxylic acid 13
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FIGURE 1 | Enantioselective reactions: (A) hydrogenation of α-keto acid 1, (B) hydrogenation of aromatic ketones 3, (C) α-oxyamination of aldehyde 5, and (D)

α-alkylation of aldehydes 7.

was synthesized in 92 and 96% ee, respectively. Additionally,
by deaminocyclization of a 1:1 mixture of racemic DAP 14a

and meso DAP 14b, preferential production of trans-PDC 15

to cis-PDC 15 was achieved by changing the catalyst from
CdS to PtO2/CdS (Figure 2B). The diastereoselectivity was
determined at the final photocatalytic hydrogenation of the
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FIGURE 2 | (A) Diastereoselective tandem radical addition-cyclization reaction and (B) asymmetric synthesis of piperidine-2-carboxylic acid and diastereoselective

cyclization.
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cyclic imine intermediate formed by oxidative deamination and
cyclization. cis-15 would be obtained when the hydrogenation
proceeds via syn-addition of hydrogen atoms to the C=N
bond of the cyclic imine. In contrast, trans-15 is selectively
produced when reduction takes place via stepwise electron
transfer and subsequent stereoselective protonation as illustrated
in Figure 2B. Consequently, the opposite diastereoselective
preparation of trans-PDC and cis-PDC was achieved by simply
changing the catalyst.

PHOTOBIOCATALYSIS FOR ASYMMETRIC
SYNTHESIS

Photobiocatalysis employing isolated enzymes or lysates
involves three types of electron relay systems (Gulder
and Seel, 2019): (1) photosensitizers (metal complexes or
semiconductors, etc.), (2) reaction sites (enzymes), and (3)
electron mediators such as methylviologen, nicotinamide
adenine dinucleotide (phosphate) (NAD(P)+/NAD(P)H), and
flavin mononucleotide (FMN/FMNH2). Excited electrons
generated at the photosensitizer are relayed to the reaction site
via the electron mediators. In addition, sacrificial electron
donors (e.g., tertiary amines or water) are required to
prevent oxidative self-degradation of the photosensitizers.
Successful examples of highly enantioselective reactions
using semiconductor photocatalysts have been reported.
The asymmetric reduction of alkenes using old yellow
enzymes in cooperation with CdSe quantum dots (Burai
et al., 2012), gold nanoparticle- loaded TiO2 (Au/TiO2),
or vanadium doped TiO2 (Mifsud et al., 2014) has been
investigated. Moreover, stereoselective activation of C-
H bonds during peroxygenase-catalyzed hydroxylation of

alkylbenzenes and alkanes has been achieved using Au/TiO2

(Zhang et al., 2017, 2018).

CONCLUSION AND OUTLOOK

This mini-review focuses on the enantio- and diastereoselective
organic reactions occurring in several semiconductor
photocatalyses. As mentioned in this review, our group
found that enantioselective hydrogenation on TiO2 was strongly
affected by the surface structure of TiO2 (Kohtani et al.,
2018). Recently, it was also demonstrated that adsorption of
chiral molecules on a specific semiconductor nanoparticle
surface (mercury sulfide: HgS) was associated with the growth
of chiral semiconductor nanoparticles (Kuno et al., 2018).
Thus, one promising strategy may be the use of highly uniform
semiconductor nanocrystals with specific exposure of the reactive
facets. If these facets could be selectively covered with stable
chiral compounds, enantioselective reactions would be greatly
enhanced. Therefore, increasing attention should be given to
the development of specifically reactive facets on semiconductor
materials for stereoselective organic transformations.
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